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The Gel'fand-Levitan equation for the one-dimensional Schriidinger equation is generalized to the case 
that the unperturbed Hamiltonian contains part of the scattering potential, this part being denoted by 
VoCx). and that the direct scattering problem has been solved for this Hamiltonian. Hence one knows the 
reflection coefficient boC k), the point eigenvalues EOi , and the normalizations of the corresponding 
eigenfunctions Co,. We are given bICk), Eli' C li , which are the corresponding quantities for full potential 
VICx)= VoCx)+~VCx). A Gel'fand-Levitan equation is set up in terms of bICk)~boCk) and the 
difference in measures for the discrete spectra for Vo and VI' respectively, from which ~ V can be found. 
One may regard the new algorithm as providing a means to modify a known potential to accommodate 
prescribed changes in the reflection coefficient and changes in the nature of the discrete spectrum. The 
generalization has applications to the Korteweg-<ie Vries equation. It is shown that a kind of 
"superposition" principle exists for solutions in that one can add a function of x and t to one solution and 
obtain a second solution. This principle can be used to separate the soliton part of a solution from the 
continuous spectrum part. 

1. INTRODUCTION. THE ALGORITHM 

In Refs. 1 and 2 the Gel 'fand- Levitan equation for 
the one-dimensional Schrodinger equation was given 
from which the scattering potential could be obtained 
from the reflection coefficient, point eigenvalues, and 
normalizations of the proper eigenfunctions. The un
perturbed Hamiltonian was taken as 

tF 
H o=-(fX2 (_oo<x<oo). (1) 

Another solution of Eq. (3), which is denoted here 
by Xo(x 1 k), is required to satisfy the boundary 
conditions 

lim Xo(x 1 k) = (21T)-1/2[ exp(ikx) + bo(k) exp(- ifn:)], 

The quantities bo(k) and t o(k) are the reflection (on 
the left) coefficient and transmission coefficient, re
spectively. One has 

(6) 

For the sake of brevity we shall assume that the reader 
has familiarity with Refs. 1 and 2. 

ho(- k) = bt(k), ' 0(- k) =tt(kJ. (6a) 

In the present paper we generalize the algorithm to 
the case where Ho includes part of the scattering 
potential: 

(2) 

and we assume that the direct problem for this Hamil
tonian has been solved. To be explicit we assume that 
the (improper) eigenfunctions belonging to the conti
nuous spectrum which satisfy 

Ho<Po(x 1 k) '" ~ ;2 + Vo(x~ <Po (x 1 k) = k2<po(x 1 k), 

(all real k) 

which satisfy the boundary condition 

lim <Po(x 1 k) = (21T)~1/2 exp(ikx) 
x .. _ oo 

are known. 

One can show 
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(3) 

(4) 

(5) 
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Clearly 

Xoc,1 k) = <Po (x 1 k) + bo(k) <PaC, 1- k). (7) 

Other quantities which we expect to know for the di
rect problem for Ho are the point eigenvalues Eo;, the 
corresponding proper eigenfunctions i/JOj(x), which we 
require to satisfy the boundary condition 

(8) 

and the normalizations COi which are given by 

(9) 

The eigenfunctions z/!Oi are reaL We also take E Ot < O. 

On can show, using the methods of Ref. 2, with suit
able changes in notation, that the following completeness 
relation holds: 

+ 6 (COi)-l<POi(X)<PO;(x') = 6(x - x ~. 
i 

It is our objective to find the potential V1 (x) in the 
Hamiltonian 
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(10) 

(11) 
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from the appropriate scattering data and discrete spec
trum associated with the potential Vl (x)< 

Let bl (k) be the reflection coefficient and Cli the 
normalizations for the proper eigenfunctions associated 
with the point eigenvalues Eli' The subscript i will in 
general be used to designate a different number of point 
eigenvalues than that subscript used for E oi . Further
more let ~Oi(X) designate the solution of the differential 
equation 

" 
Hoif!oi(x) = Eli if! 0 i (x) (12) 

subject to the boundary condition 

lim ~Oi(X) =exp[(- ElY /2 x \. (12a) 

(We assume that the point eigenvalues Eli are negative.) 
It should be noted that, in general, the functions ~Oi 
are not eigenfunctions of H o, proper or impropeL How
ever, when EOi = Elj (with some ordering of the eigen
values), then ~'Oj = WO i • 

We can now state the generalized form of the 
Gel'fand- Levitan algorithm: Let us define S1(x Iy) by 

S1(xly) = J:i/!t(xl k)if!Hv I k)[bl(k) - boCk)] dk 

+ B ~o i (x) ~Oi (y) _ B -'-.if!,,-,-o i-,--(X--=)-'-.if!O"-!.i-",(;..c.') 
i C li i COi • 

(13) 

We then require the kernel K(xly) defined for x 0>: y to 
satisfy the Gel'fand- Levitan equation 

K(x!~') = - S1(x! y) - i:K(x I z )S1(z I y) dz. (14) 

Then the potential Vl (x) of Eq, (11) is given by 

d 
Vl(x) = Vo(x) + AV(X), AV(x)=2

dx
K(X!X). (15) 

Furthermore the functions Wl (x I k) defined by 

(16) 

are eigenfunctions of the Hamiltonian Hl 

(17) 

and the functions if!li(X) defined by 

(18) 

are also eigenfunctions of H l : 

Hlif!li(X) = Eliif!ti(xL (19) 

Furthermore these eigenfunctions of Hl satisfy the com
pleteness relation (10) with the subscript 0 replaced by 
the subscript 1, i. e" 

i: if!t (x i k)W{(x'l I,) dk + i: if!l (x ]I<)bt(k)if!t (xII k) dk 

+ 6 (C1i)~lif!li(X)i/!li(X') = 6(x - x~, 
i 

(20) 

It follows that the eigenfunctions if!l (x I k) are eigen
functions of the continuous spectrum of Hl which satisfy 
the asymptotic condition analogous to Eq. (8) 
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lim if!1 (x I k) = (21T)-1 /2 exp(ikx), (21) 

and that the functions if!t i(X) are eigenfunctions of the 
Hamiltonian Hl with the eigenvalues Eli and normaliza
tions and asymptotic forms 

(22) 

(23) 

respectively. 

The Gel'fand- Levitan equation (13) and (14) for the 
one-dimensional Schrodinger equation is analogous to 
the Gel'fand- Levitan equation for the radial Schrodinger 
equation of Ref. 3 where part of the scattering potential 
is also included in Hoc In ReL 4 Newton goes into this 
matter in detail. The one-dimensional problem is some
what more complicated in that the continuous spectrum 
of Hand Ho is degenerate (the degeneracy correspond
ing to the two possible directions of momentum of a 
given k 2

). The greater complication is reflected in our 
having to choose ~'o(x I k) and 01 (x I k) to satisfy the bound
ary condition (4) and (21), respectively. Other choices 
of boundary condition would have led to somewhat more 
complicated forms of the weight operator. 

2. DISCUSSION OF THE ALGORITHM 

Before deriving the algorithm, we shall discuss it 
briefly. One of the principal values of the algorithm is 
the possibility of choOSing Ho so that its reflection co
efficient bo(l,) and discrete spectrum approximate closely 
the final reflection coefficient bl (1<) and the discrete 
spectrum of H l , One may then hope that an expansion 
of the Gel'fand- Levitan kernel K(x I y) in terms of 
S1(x h') will converge sufficiently rapidly to enable one 
to approximate the kernel by only a few terms. If the 
approximation is sufficiently good, perhaps even the 
first term would be adequate: 

- K(x I,,) "'S1(x h'), 

d 
tlV(X)"'-2-

d 
S1(xlx). 

x 

(24) 

(25) 

In reconstructing Vl (x) from measurements, for ex
ample, one will, in general, not know bl(k) for all val
ues of 1" particularly for very large values of I" I. If 
one knows a potential Vo(x) which from physical reason
ing can be expected to have a scattering coefficient boU') 
which is essentially identical to bl (I,) for large values of 
11,1, the difference bl(k) - bulk), which appears in the 
Gel'fand- Levitan algorithm, will contribute essentially 
only in the finite domain of real". 

The new form of the algorithm also enables one to 
study the effect of a small error in one's knowledge of 
bl(k) on the potential Vl(x). The quantity bl(l,) - bu(k) 
may be regarded as the error in the reflection coeffi
cient and A Vex) the variation in the potential due to the 
errOL 

Let bl(l,) = bo(ll) , Then the difference in potentials 

tl Vex) = Vl (x) - Vo(x) (26) 

is due entirely to the difference in the characters of 
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the discrete spectra for HI and Ho. This fact, of course, 
can be obtained from the original form of the Gel'fand
Levitan algorithm for the one-dimensional case. How
ever, the present algorithm enables one to obtain fl Vex) 
essentially in closed form, the form being analogous to 
that for the reflectionless potentials of ReL 5. The 
closed form will involve <!J Oi , COl' ~Ol' C li • As a special 
case, for example, one can determine the effect of 
changing the normalization of only one bound state, 

Last, but not least, the general form of the algorithm 
reduces to the original form when Vu(x) = O. 

The form of the generalized Gel'fand- Levitan equa
tion has an interesting" group" or "path" property 
which may, in principle at least, make it easier to find 
the potential VI from bl(k) and the data on the discrete 
spectrum. To illustrate this property, let us assume 
that we are given the reflection coefficient b2(k) and 
data on the discrete spectrum C2 i' E2i , WOI correspond
ing to E2 i' We can find the potential V2 (x) in two ways. 
We can use Eqs. (13) and (14) directly and substitute 
quantities with the subscript 2 for those with the sub
script 1. We shall then calculate flV(x) = V,(x) - Vu(x). 
However, we may also calculate V2 (x) in a~other way. 
We first calculate VI (x) from any reflection coefficient 
bl (k) and discrete spectrum data Cli , Eli and J01 ' We can 
then also calculate IjJI (1jJ I k), <!Ju(x) from the Gel'fand
Levitan kernel K(x I y). One now regards the zero- order 
Hamiltonian as being - JI, dx2 + VI (x). One can then 
calculate fl Vex) = V2 (x) - VI (x) from the generalized 
Gel'fand- Levitan equation by treating quantities with 
the subscript 1 as we previously treated quantities with 
the subscript O. We then have two" paths" to reach 
Vz(x) from Vue,) knowing b2 (k) and corresponding dis
crete spectrum data. One path is the direct path: 0 - 2, 
The second is the indirect path: 0 - 1 - 2, where the 
spectral quantities describing the "state" with subscript 
1 are arbitrary. One might, in principle, prefer the 
indirect path because the quantities associated with the 
subscript 1 might be midway between quantities with 
the subscript zero and subscript 2. Each step in the 
path would represent a smaller change which might be 
significant in a numerical or analytical calculation. 

One can generalize the above process and reach the 
final potential Vz through a sequence of many steps in 
which each step differs from the previous one by a 
small amount as measured in terms of the reflection 
coefficient and discrete spectrum data, Each choice of 
steps between an initial "state" and a final" state" is 
called a "path." The final potential depends only upon 
the reflection coeffiCient and discrete spectrum data 
for the final potential and is thus independent of the 
"path." One can thus choose a "path" which is most 
convenient for calculations. One possible example for 
a path is to consider an initial state with reflection co
efficient and discrete spectrum data g'iven by buCk), 
E ui • COi where i = 1,2. The final state data are b,(I?), 
Efl, Cfl in which only one bound state is assumed. As 
the first step in the path we take bl (I?) = bo(I?), Ell = E 01 , 

Cu = CUI' The Gel'fand- Levitan equation is now a very 
simple one because n(x Ix') is simple; in fact, it can be 
solved in closed form, As a second step in the path we 
takeb2 (k)=b1 (k), En=Efl, C,l=Cfl , Ag'ain a simple 
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Gel'fand- Levitan equation results, Finally we use 
b,(k), Efl , C fl for the final Gel'fand- Levitan equation 
to find fl V(x) = V ,(x) - V2 (x). Clearly, the interval be
tween any two steps could also be broken up into smaller 
steps. Hence a subpath could be formed between any 
two steps of a larger path. For example, it might be 
useful to consider b, to consist of a sum of functions 
of k. Each term in the sum could then be taken care of 
in a step. 

The notion of "path" is treated from a more abstract 
point of view in the Appendix in terms of the operators 
U, Uu of Ref. 2. 

3. DERIVATION OF THE ALGORITHM 

The derivation of the algorithm follows directly from 
the general form of the Gel 'fand- Levitan algorithm of 
Parts I and II of ReL 2 and a modification of Part III 
of Ref. 2 as applied to the one-dimensional problem. 
We shall sketch the derivation by modifying the deriva
tion of the algorithm as given in Part IlL 

First of all instead of defining HJ and (x I Ho, Ao; E, a) 
by Eq. (2.1) and (2.2) of Part III of Ref. 2 we use 

az. 
H~ = - dx2 + Vo(x), 

and define IHu, Ao; E, a) to be a continuous spectrum 
eigenstate of H 0 defined by the asymptotic condition 

lim (x I Ho, Ao; E, a> 

(27) 

(28) 

If Ho has point eigenvalues Eo/> we require the corre
sponding eigenfunctions I Ho; E Oi> to satisfy the asymp
totic condition 

The normalizations of these eigenfunctions are then 
deter mined: 

(29) 

(30) 

[We assume EOi < O. The asymptotic condition (29) as
sures one that the eigenfunctions (x I H 0; E 01> are reaL 1 

The completeness relation (204) of Part III of Ref. 2 
is replaced by 

;S cfa" dEiHu, Ao; E, a) (a I wOc(E) i a)(Ho, Au; E, a' i 
a ,a' 

+6(C ul )-liHo; Eoi>(Ho; EOil = T/(Ho) , (31) 
i 

where the "matrix" (aj wOc(E) la') makes its appearance 
because of the boundary condition (28) in the same man
ner as it appears in Sec. 3 of Part III of Ref. 2, In fact, 
in analogy to Eq, (3.16) of Part III of Ref. 2 

(a/wOc(EJla')=( 1 bt(k») , (32) 

\bo(k) 1 

where I? = (E)l /2. In Eq, (31) T/(H 0) is the identity opera
tor in the Hilbert space, 
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In Sec. 3 of Part III of ReL 2 we replace H by HI 
with 

Hf =H'O + ~ V(x) = - -fb+ VI (x), VI (x) = Vo(x) + ~ V(x). 

(33) 

The representation of the weight operator in the Ho rep
resentation is the same as in Eq, (32) but with the sub
script zero replaced by the subscript one [see Eq. 
(3,16)]. Thus 

Wc=:0 r~dEIHu,Ao; E,a) 
a,a' . 0 

x (a I wlc(E) I a~(Ho, Au; E, a'l. (32a) 

This form of the weight operator for the continuous 
spectrum follows from 

(x I Hlo AI; E, a) 

(34) 

for the continuous spectrum eigenfunctions of HI so that 
we have the asymptotic condition 

lim(xIHl,Al ; E,a) 

= lim (x I Ho, Ao; E, a) 
x __ co 

This asymptotic condition is that which leads to Eq. 
(3< 16) of Part III of Ref. 2. Thus the continuous con
tribution to the weight operator is essentially the same 
as before. 

To get the discrete portion of the weight operator we 
select the point eigenvalues of HI, which we denote by 
El i and the normalizations of the corresponding eigen
functions CliO The analogues of (x iHu; E; of Eq. (5.5) 
of Part III of Ref. 2 are solutions of HQ(x 1 H 0; E; 
= E(x 1 Ho; E; subject to the boundary condition 

Thus the discrete portion of the weight operator is 

=L(C1;)-\xIHo; Eli)(Ho; Elilx,>. 
i 

The eigenfunctions of HI corresponding to the eigen
values El i are given by 

(xIHl; Eli) 

(36) 

(37) 

=(xIHo; E1;)+ .C(xIKlx,)dx/(x/IHo; Eli)' (38) 

The operator n is then given by Eq. (6.2) of Part III 
of ReL 2 where 1)(Ho) is given by Eq, (31) and where 
Ei is replaced by Eli' 

We now set E: = 1 and make the notational changes 

(x IKI x~ =K(x I x'), (x I nix,> =n(x I x'). (39) 
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Also 

i)!o(x II?) = (21 kl)l 12(xIHo, Ao; E, a), 

~ (x II,) = (21 k 1)1 12(X I HI, AI; E, a). 

In Eq. (40) k = a(E)l 12. 

Furthermore, for the discrete spectrum 

WO/') = (x I Ho; E oi ), ~Oi(X) = (x I HI); Eli), 

J1J,) = (x 1 HI; Eli)' 

(40) 

(41) 

In particular, it might be noted that Eq, (31) is the 
same as the completeness relation Eq. (10) which is, 
perhaps, the principal difference between the generali
zation of the present paper and Part III of Ref. 2 

It should also be noted that the proof in Part III of 
Ref. 2 in which it is shown that the potential V is dia
gonal in the x representation goes into the proof that 
~ V is diagonal in the x representation. Furthermore, 
it is given by Eq (15). 

4. A SIMPLE VERIFICATION OF THE ALGORITHM 

The algorithm has been derived in the previous sec
tion. The verification of the algorithm is automatic be
cause it falls into the abstract formalism of Parts I 
and II of Ref. 2. 

However, we shall now give a verification of the al
gorithm which is independent of the abstract formalism 
of Ref. 2 and is closer in spirit to the verification of 
Ref. 3 for the radial Schrodinger equation, though there 
are differences. 

We shall assume the Gel'fand- Levitan equation (14) 
has a unique solution and show that 1'1 (x 1 I,» and J1./') of 
Eqs. (16) and (18), respectively, are eigenfunctions of 
HI with eigenvalues h" and El i' We shall also show that 
they satisfy the completeness relation (20), 

It will be convenient to write 

We note 

HQn(x 11') =H'0n(x I,,). (43) 

Now from Eq, (16) 

HO~1 (x I h) = Hoi)!o(.' I h) + Ho r:K(x I.,' )i)!II(" II?) dy 

= k2~I)(X I h) - ~',K(X I x) 'zi'u(x I h) 

- K(x I x) dd J: o(.' lIe} - ~K(X I x) . 0'0(.' I k) 
X' ax 

(44) 

But also 

(45) 
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On integrating by parts twice the derivatives that occur 
in H~. 

k21/1, (x I k) = k 2 ifio (x I k) - K(x / x) ! I/Jo(x I k) 

+':-K(xlx). ifio(xlk) 
uy 

+ f:H~K(xIY)'ifio(ylk)dY, 
Thus from Eq. (44) and (46) 

d 
(H~ - k2)1/1,(x I k) = - 2 dxK(x I x) '1{!o(x I k) 

+ f: (m-H~)K(xIY) '1{!o<Y Ik) dy, 

where we have used 

a a d 1 -a +-a K(xlx)=-d K(x x). x y x 

We shall now show that 

d 
(H~ - H~)K(xIY) = - 2 dxK(xlx) ·K(x Iy). 

(46) 

(47) 

(48) 

On Substituting Eq. (48) into Eq. (47) it will follow that 

Hf1/1,(xlk) = k21/1, (x 1 k) 

if 

Ll.V(x) =2 d~K(xlx). 

That 1/1,j(x) satisfies l/f1/1,j(x) = E1j1/1,j(x) is proved 
similarly. 

On using the Gel'fand-Levitan Equation (14) and Eq. 
(43) 

(m - H~)K(x 1 y) 

= - m .f..:K(xlz)n(z Iy) dz + J.:K(xl z)Iron(z I)') dz. 

(49) 

Integrating by parts the second derivative in the second' 

integral on the right and carrying out the operation m 
on the first integral, 

(m - H~)K(x ly) 

= Ll. V(x)n(x Iy) - .f..:Jm - H~)K(x 1 z) . n(z Iy) dz. (50) 

Let us write 

(m - H~)K(x Iy) = - Ll. V(x)L(xly) (51) 

as we may always do and substitute into Eq. (50). It is 
seen that L(xly) satisfies the same Gel'fand-Levitan 
equation as K(xly). Since we are assuming that the 
solution is unique, it follows that L(xly) =K(xly) which 
completes the proof of Eq. (48). 

We shall now prove the completeness relation (20). 
In the Gel'fand- Levitan equation (14) we use Eq. (13) 
for n(z I}') and obtain 

K(x I},) = - n(x 1 y) - .r.:dk[b1 (k) - bo(k) lljJt(yl k) 

x J..:K(xlz)ifit(z Ik) dz -6(Clj)_1~OI(V) 
I 

x l:K(xlz) ~OI(Z) dz + .y(C01 )..1/f!OI(Y) 

x .CK(x I Z)1{!ol(z) dz. (52) 

On using Eq. (16) and (18) in Eq. (52) and on defining 
~I(X) by 

(53) 

we have 

K(x I y) = - i: l{!{(x I k)[b1 (k) - bo(k) lljJt(v I k) dk 

In Eq. (54) we now use Eq. (16), (18) and (53) to replace 
I/Jt(v I k), ~ojll') and ifioj(v) respectively. On isolating the 
terms which contain the Gel'fand- Levitan kernel we 
have 

(55) 

But from Eq. (54) the quantity within the curly brackets is simply -K(xlz). Hence for x>y 

.C 1/1,* (x 1 k)[b1 (k) - bo(k) ll{!{(Y I k) dk + B (Clj)-l1/1,I(X)/f!lI(Y) - .0 (COI)_l~1i(X)~ I (") 
I i 

=-K(x/y) - .[:K(x Iz)K(y I z) dz. 

Let us define K(x I),) = 0 for y > x. We can interchange x and y in Eq. (56). The left hand side is unaltered. Hence 
we may write for all x and y 

= - K(x Iy) - K(y Ix) - 'T/(x - y) i:K(xl z)K(y I z) dz - 71(Y - x) i:K(x I z)K(y I z) dz, 

where 'T/(x) is the Heaviside function: 'T/(x) = 1, for x> 0, 'T/(x) = 0 for x < O. We note continuity for x = y. 

(56) 

(57) 
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However, on using Eqo (16), (IS), and (53) and then (10) 

c: <i1 (x I k)ljJ{(v I k) dk + L: ljJ{(x I k)bo(k) if'{(y i k) dk + B (COi)-l ~li(X):it i(Y) 
i 

= L: l)!u(X I k)l)!t(v I k) dk + L: I)!t(x I k) bo(1z) if'Hv 112) dk +:0 (ClI)-1 1)!1Ii(X) J'lIi(:l') + C:'K(x I z) dzZ,C iMz i k)J~(\' 'I Ie) dk 
i 

+C </Jt(z I k)bo(k)I)!t (v lie) dk + ~(COi)_l if'Oi(Z)I)!Oi(ylt +CK(I' I z) dzZ,C u,u(xl h) if't (z i k) dk 
i 

+ C: I)!t(z I k)bo(k)</Jt(u I k) dk + ~ (COi)"l</JOi(Z)if'Oi(U)} 
i 

= 6(x - y) +cxroK(x I z)6(z - y) dz + ,CK(y Iz)6(z - x) dz + (:K(x I z) dz[:K(\' I II) du6(u - z) 

= 6(x - v) +K(xh,) +K(:'» Ix) + 1)(X - Y) ,f.:K(xlz)K(y I z) dz + 1)(1' - x)CK(xl z)K(r !z) dz. (58) 

On adding Eq (57) and (5S) we obtain Eq. (20). 

5. APPLICATION TO THE KORTEWEG-de VRIES 
EQUATION 

Let us consider the potential Vo of Eq, (2), In Ref. 
6 it is shown that if we include a parameter f in Vo, the 
reflection coefficient bu, and the normalization COi such 
that 

boCk; t) = boCk) exp(- iSk3 t), 

COi(t) =C Ui exp[S(- E ui )312tl (59) 

then Vuex-; t) satisfies the Korteweg-deVries equation 

a a '0 3 

at Vo(X; t) - 6VoCx-; t) ilx VoCx-; t) + ax3 VOCx-; t) = o. (60) 

In ReL 6 the initial value problem for Eqo (60) is solved 
from Vo(x; 0) by finding bo(k), COi' and EOj from the di
rect problem of scattering. Then bo(h; t), COi(t), EOi are 
used in the original version of the inverse problem for 
the one-dimensional Schrodinger equation to find VoCx-; t). 

Let us now assume that we have a second set of data 
consisting of a reflection coefficient bl(x; t), point eigen
values El j, and normalizations Cl j(t) such that bl and 
Cli have the same time dependence as in Eq. (59) with 
the subscript 0 replaced by the subscript L Then on 
defining n(xlx'; t) by Eq, (13) in which boehl, bl (Tz) , COi' 
Cli> </JuCx-lk), if'Oi(X), ~Oi(X) are replaced by boCk; I), b1(1,; t), 
COi(l), Cli(t), 1!()(xll?; tJ, J!uJx-; f), JIJJx-; t) respectively, 
where J;o(xlh; il, if'o;Cx-; fl, ~Oi(X; t) satisfy Eq. (3) with 
boundary condition (4), the corresponding equation for 
the point eigenvalue EOi with the boundary condition 
(S), and Eq, (12) with the boundary condition (12a), re
sepctively, but with Vo(x) replaced by Vo(x; t). It should 
be mentioned that if Vu(x; t) is obtained from the inverse 
method using the original form of the Gel'fand- Levitan 
equation for the one-dimensional Schrodinger equation, 
iboex-II?; t), if'Oi(X; I), ~o;Cx-; t) can be obtained from the use 
of the Gel'fand- Levitan kernel acting on (27T)1/Zexp(ikx), 
exp[(- EOi)l 12X 1, and exp[(- Eli)l /2X 1 respectively in the 
usual way. The kernel will, of course, be time
dependent. 

On solving the Gel'iand-Levitan equation with 
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I 
i1(xlx'; il, we obtain L::..V(x; t) from the second of Eq. 
(15). Then 

is also a solution of the Korteweg-deVries equation. 
Eq. (61) is a kind of superposition principle, though, 

(61) 

of course, not a real one, since L::.. Vex; t) does not satisfy 
the Korteweg-deVries equation. However, the proce
dure used to get to Vl(x; t) from blUe), Eli' Cli [or, equi
valently from V l (x; 0) 1 has some advantages as de
scribed earlier in our discussion on the use of paths. 
We shall not go into detail, except to discuss the sepa
ration of the soliton part of the solution in Vl (x; t) from 
the continuous spectrum part. 

Let us choose Vo(x; 0) to be such that boUd = 0, EUi 
= Eli' COi = Cli . Then Vu(x; t) can be solved exactly as 
a sum of solitons, using the inverse scattering method. 
Furthermore, J'u(x \ k; il can also be found exactly. Then 
n(x I x'; t) contains only the continuous part of the data 
for Vl (x; 0): i. e., it depends only on bl (Ie). VI (x; f) is 
thus represented as the sum of the pure soliton solution 
Vo and a continuous contribution L::.. V. 

Another application of the generalized inverse method 
to the Korteweg-deVries equation is to find the form 
of the solution for small times /. Instead of requiring 
Va to be a solution of the Korteweg-deVries equation, 
we take it to be time-dependent. In fact, 

Then 

Also 

n(xlx';t) 

-= j",ro [exp(- is/h) _ l]b o(ldl)!t (x I k) 4't (x' I k) rile 

(62) 

(63) 

+ ~{exp[ - 8(- Ej)3/2fl_ I} 1
I

Oi (xbI)!Oi(X') . (64) 
i Oi 

For very small t, the time-dependent factors become 
proportional to /, as does Q(xlx';tl, Thus for sufficient-
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ly small I, -K(xl.\')~n(xly; t) and 

where 

d 
W(x) = 16 dx F(x), 

F(x) = i f: !?3be(!?)[<P~(x 11?) F df< 

+ 6 (_ E;)3 /2 [<Po;(x) ]2 

; Co; 

APPENDIX. THE CONCEPT OF PATHS IN TERMS 

(65) 

(66) 

OF THE ABSTRACT GELFAND-LEVITAN EQUATION 

In ReL 2 the Gel'fand- Levitan equation was ex
pressed in terms of operators U, UIJ and the weight op
erator W, 

UW=Ut, UO=uoi
, U=I+K, Uo=I+Ko, (Ai) 

where K and Ko are required to satisfy the triangularity 
conditions 

(Ala) 

We shall now adapt this more abstract formalism to the 
path problem. Let us define Hj by 

(A2) 

where Vj(x) are scattering potentials, For simplicity 
we shall assume that the potentials Vj support no bound 
states. The eigenfunctions of the continuous spectrum 
will be denoted by IHj , Aj; E, a>. They are required to 
satisfy the boundary condition Eq, (28) where the sub
script 0 is replaced by the subscript j, 

For the purposes of discussing paths going from the 
potential Vo to V2 , directly and by means of an inter
mediate potential Vi' it is convenient to write three 
GeI'fand-Levitan equations in the form Eq, (Al). To
ward this end we introduce the operators U(1), U (jl)0 

and W(jl) corresponding to U, Uo, and W of Eq. (Al). 

The operators U(1) map eigenfunctions of HI to those 
of H j : 

(A3) 

The operators W (jl) are defined by 

=6 Io~dEIHI,AI; E,a><aiwjc(E)la,)<H1,A/; E, a', 
a,a' 

(A4) 
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where (a I wjc(E) la') is given by Eq. (32) with the sub
script 0 replaced by the subscript j. 

Now the Gel'fand- Levitan equation which takes one 
from He to Hi and Hi to H2 are, respectively, 

The Gel'fand- Levitan equation for the direct path, i. e. , 
from Ho to H?, is 

(A6) 

On using the Eq. (A4), and (A3), the second of Eq, (A5) 
becomes 

U(2i) 6 .fa "'dE!HbA l ; E, a><ai w2c (E) i a')(Hb Ai; E, a'] 
a ,a' 

= U(2iP(lO) 6 .fa '" dEiHo,Ao; E, a> 
a ,a' 

(A7) 

or 

(A8) 

On comparing Eq. (A8) with (A6) we see that 

(A9) 

since for a given W (20) Eqs. (A8) and (A6) have a unique 
solution because of the triangularity properties of the 
U operators (See Ref. 2, Part I). Equation (A9) can be 
generalized to paths having more steps. Perhaps the 
notion of paths is analogous to the concept of stochastic 
processes. 

From Eq. (A9) we can get a relation between the 
kernels of the Gel'fand-Levitan equations involved in 
the direct and indirect paths. On using the third of Eq. 
(Al) 

K(20)(X I y) =K(21 )(x I x) + K(lO/I'lv) 

+ .CK(2i)(xlz)Kao)(ziy)dz, for x 2:.:\', 

(AlO) 
using an obvious notation. 

It would be useful to know the relationship of the 
Gel'fand- Levitan kernels for the case that the roles of 
H1 and Ho were reversed as compared with the original 
formulation of the problem. One readily sees that U (01) 
= U(lO)O or 

K(Ol )(x Iy) =K(10)O(X I y). (All) 

Another relation is given by Eq, (AIO) when we identify 
the subscript 2 with the subscript 0 and use K(oo)(xl.v) 
"'0. 
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(A12) 

which is of the form of an integral equation for K (01) in 
terms of K (10)' 
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Multi-soliton-like solutions to the Benjamin-Ono equation 
R. I. Joseph 

Department of Electrical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 
(Received 24 January 1977) 

We outline a systematic method of obtaining particular solutions to the nonlinear, integroditTerential 
equation obtained by Benjamin and Ono in their study of the propagation of finite amplitude waves in 
fluids of great depth. These solutions have the property of asymptotically breaking up into a series of N 
spatially localized waves of permanent form; we loosely refer to these as "N -soliton" solutions. Detailed 
results for the two-soliton solution are explicitly given. 

L INTRODUCTION 

In his study of internal waves of permanent form in 
fluids of great depth, Benjamin1 discovered a new class 
of stationary wave of finite amplitude. Such waves have 
also been studied by Davis and Acrivos. 2 The key to 
understanding the difference in form between Benjamin's 
solution and the results of conventional shallow water 
theory, characterized by the solution of the Korteweg
de Vries (KdV) equation,3 is the dispersion relation 
between the frequency wand the wavenumber of infini
tesimal periodic waves u(x, I), 

U(x, t) = Ii exp[i(wt - h)}; (1. 1) 

x is the spatial coordinate in the direction of propaga
tion, and l the time, In the shallow water case, the 
KdV theory, the phase speed c(k) = w/k has a smooth 
maximum coat k = 0, that is for waves of extreme 
length. Hence for small enough lz values one has 

(1. 2) 

where f3 is a positive constanL However, in the case of 
fluids of great depth, the Benjamin theory, the disper
sion relation for long waves has leading terms of the 
form 

(l. 3) 

where y is a positive constanL This nonanalyticity at 
k = ° has a profound effect on the form of the governing 
equationo 

Assuming waves which vanish at x=± 00, Benjamin1 

has shown by using the Fourier integral theorem in con
junction with a simple heuristic argument, that a finite 
amplitude wave u(x, t) with dispersion given by Eq. (10 3) 
satisfies the equation 

01l(x, t) c ( t) Oll(X, t) 
-o-t-+ l1X, ~ 

x exp[ilz(x' - x)t (1. 4) 

A more rigorous derivation of this equation is given by 
Ono. 4 C is a parameter characterizing the strength of 
the nonlinearity and is discussed in detail by Stoker5 

and Benjamin. 6 By contrast, the corresponding equation 
for u(x, t) when c(1l) is taken to be in the form given by 
Eq. (10 2) is1 
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the well-known KdV equation. Both Eqs. (1. 4) and 
(1. 5) are special cases of a more general equation 
first proposed by Whitham 7: 

Cll(X, t) + C ( t) i1u(x, t) 
(Jt 11 x, ?x 

(1. 5) 

=- ;7Tf~ f~ dhdx'c(k) au';;,'!) exp[i/.~(x'-x)]; 
(1. 6) 

Eqs. (1. 5) and (1. 4) result simply by substituting for 
c(Jd the expressions given in Eqs. (1. 2) and (1. 3), 
respectively, if one uses the integral representation of 
the delta function, 0(1) = (27T )-1 C exp(ik1). 

The solutions of Eqs. (1. 5) and (10 4) in the form 
u(x, t) =/(x - ct) are well known. 1,3 There are periodic 
solutions, and then there is a solitary wave solution. 
It is with the solitary wave type solutions (solitons) that 
the present paper is concerned. Solitons are in essence 
small wavenumber phenomena and their spectral energy 
content at large wavenumbers is extremely small. One 
therefore has the intuitive feeling that the form of the 
dispersion relation c (k) as k becomes arbitrarily large 
should be irrelevant to their behavior. 8 Such issues are 
discussed in detail by a number of authors, see for ex
ample Benjamino 9 For solutions of the form u(x, t) 
=f(x - ct), it is straightforward to verify that Eq. (1. 5) 
is solved by 

U(x,t)=asech2[(1:~P') 1/2 (x-cn] (1. 7) 

with a = 3(c - co)/C while Eq. (10 4) is solved by 

u(x, t) = a:\2/[(x - ct)2 + :1,2] (1. 8) 

with a =4(c - co)/c =4coylCA, We shall refer to such 
solutions as single soliton solution so If N denotes the 
number of "solitons" characterizing a solution, these 
are denoted N = 1 solutions, 

Considerable progress has been made in obtaining the 
general solution to the KdV equation, Eqo (10 5)0 This is 
based upon use of the inverse scattering technique10 

and is elegantly developed in Gardner et al. 11 N-soliton 
solutions have been obtained for a wide variety of initial 
functions u(x, 0) == uo(xL More recently Hirota12 has 
developed a direct method of finding exact solutions to 
a wide class of nonlinear differential evolution equa-
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tions. The method consists of transforming the evolu
tion equation by u = P / Q and seeking the special bilinear 
differential equations for P and Q, one of which is 
related to a linear differential operatoL One then ex
pands P and Q as power series in a parameter E and 
determines the coefficients by perturbation theory. 

However, in regard to "multi-soliton" solutions to 
Benjamin's equation, Eq. (1. 4), the situation appears 
to be quite different. To the present author's knowl
edge, there appears to be no known analytic solutions 
which exhibit a multi- soliton character. In regard to 
the latter, we are using the word "soliton" quite loose
ly. What we shall here denote as an N-soliton solution 
for this equation is simply any function which satisfies 
it and which asymptotically, e, g., for large x and t, 
breaks up into a series of N spatially localized pieces 
each of which is of the functional form valid for the 
case N = 1, that is, of the general form given by Eq. 
(1. 8). Some information concerning the asymptotic 
characteristics of a general N-soliton solution to Eq, 
(1. 4) can be obtained by using certain conservation 
laws derived by Ono,4 

The purpose of the present paper then is to outline a 
possible method for finding particular solutions to Eq. 
(104) which have an N-soliton character, as defined in 
the previous paragraph. Due to the integral operator 
which appears in this equation, it does not appear 
feasible to fully utilize the techniques developed by 
Hirota,12 However, the idea of writing the solution in 
the form u=p/Q can be exploited, We carry this out 
as far as we can go for the N- soliton solution in Sec, 
2 A; in Sec. 2 B we work out the complete details of 
the solution for the case N = 2, 

U sing a suitably normalized spatial coordinate X, 
the N = 1 case requires for Uo a function of the form 
uoO: (1 +X2)-I, e. g" Eq. (1. 8). For N=2 we shall show 
that in fact there is an entire family of initial functions 
for which we can find solutions, in particular, 
uoO: (1 +X2)/(1 +pX2 +xi), where p is an arbitrary 
constant (greater than - 2). The case N = 1 is included 
as an appropriate limit of the case N = 2. This function 
uo(X) can be of two distinct natures. For p> 1 it is of 
the same general shape as the Uo for N = 1 , that is, it 
has a single peak at X = ° and monotonically falls off 
away from it. However for - 2 < P < 1, this initial func
tion will itself have two peaks. Of particular interest 
is the case p = 2 since here Uo has the identical func
tional form as that for N == L This situation is discussed 
in Sec. 3 and compared to the results which follow from 
Ono's conservation laws. 4 

2. N-SOLITON SOLUTIONS 

A. General remarks 

What we are looking for are solutions to Eq. (1. 4) 
which asymptotically break up into a series of N spatial
ly localized functions, each of these being of the form 
given by Eq. (1. 8). Note that if u(x, t) is a solution, then 
then so must be u(- x, - t). With this in mind and 
motivated by Hirota's technique12 we investigate the 
class of functions 
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P(x, t) 
u(x,t)=A Q(x,n' (2.1) 

where P and Q are bivariate polynomials in x and I of 
degree 2N - 2 and 2N, respectively, We write them in 
the special form 

2.'1_2 
P(x, t) = 6 al(t)xl, (2,2) 

i .0 

.'1-1 

al (I) == 6 al 2J-/ t2J -
I , 

J.«I.l)/2) , 
(2.3) 

and 

2.V 

Q (x, t) = 6 b I (t) Xl , 
1=0 

(2.4) 

b21v = 1. (2,5) 
J=«1'1)/2) 

The symbol < y) here stands for taking the integral part 
of y, Our task is to now see if we can choose A and the 
{a} and {b} so as to make this u a solution of Eq. (1. 4), 
It is considerably easier to work not with Eq. (1. 4) 
directly, but rather with its Fourier transform. Multi
plying Eq. (1. 4) by exp(ikx) and then integrating over 
all x, gives, on using the boundary conditions u - ° 
as :x [ - 00, the result 

ikco(l - y I hi) 

= C~ J ~ dx exp(ikx) u(x, t) - hkC 
-~ 

x {~~ dx exp(ikx) u2(x, t)) I !~~ dx exp(ikx) u(x, flo 

(2.6) 

The conditions imposed on A and the {a}, {b} to make u 
a solution of Eq. (1. 4) are identical to those imposed on 
them by this equation. 

We seek solutions u(x, t) which are real and finite for 
all real (x, t). Hence we assume that Q'* ° for all real 
(x, t). Consequently we can write Q in the equivalent 
form 2.'1 

Q(x, t) = n [x - XI (t)), (2.7) 
! =1 

where the zeros XI(t) of Q must be complex for real t. 
Hence the roots Xl(t) must occur in complex conjugate 
pairs and we adopt the notation 

x,v+J(t)=xj'(t), j=1,2, .. ,,1\', (2.8) 

and assume that 

In1X j (t) > 0, i=1,2, •.. ,N. (2.9) 

With the assumed form of u(x, t) given by Eqs. (2.1)
(2,5) and Eqs. (2.7)-(2.9), the evaluation of the inte
grals appearing in Eq, (2.6) are now straightforward. 
Let 

1n= 2~i f ~ dxexp(ikx)(P(x,O/Q(x,t)]". (2.10) 

We consider the cases I? ~ ° separately, For 1< > 0, con
sider a contour which consists of the real axis from 
x = - R to x = + R closed by the semicircle C. in the 
upper half-plane of radius Ro This contour encloses N 
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complex poles of Q, the xj(t), j = 1,2, .•• ,N. In the 
limit R - 00, the integral of exp(ikx)[P/Q]" over C. goes 
to zero whence we have that In is equal to 21Ti times the 
sum of the residues of the integrand at the N poles 
x j(t). For n = 1 the poles are simple while for n = 2 we 
have poles of order 2. Direct evaluation of these 
residues for n = 1 gives 

(2.11) 

with 

(2.12) 

and 
ZN 

ilxQ(x, t) = Q(x, t) L; 1 
i.l x-x/t) 

(2. 13) 

For n = 2 we similarly obtain 
N 

Nk)O) = L; S;(t) exp[ikx, (t)][ik + 2T,{t)], 
j=1 

(2. 14) 

where 

T (t)= ilxP{xt(t),t) _ ~I 1 
i - P(x/t),t) .=1 Xj(t)-x.(t)' 

(2.15) 

The prime on the summation excludes the term i = j. 

When l? < 0, we use a contour which consists of the 
real axis from x = + R to x = - R closed by the semi
circle C _ of radius R in the lower half- plane. This con
tour now enclosed the N poles x7(t), j=l, 2, ... , N. 
One then similarly finds that 

and 

.v 
I 1(k<Ql = - L; Sj(t) exp[ikxl(t)] 

j·l 

N 

iz(k<Ql = - L; [Sj(t)j2 exp[ikxj(t)] [ik + 2Tj(t)]. 
i.l 

(2.16) 

(2.17) 

Substitution of these results into Eq. (2.6) then gives 
for k> 0 

ikco(l - yk) 

while for k < 0, 

ikco(l + y1<) 

(2.18) 

[ 
N as* IV (ilX* ~ 

= E exp(ikxj) F + il~ E exp(ikxj)Sj F - CASj T'fJ 

- ~CA(ikF t exp(ikxil [SjJ2] /t exp(ikxj)Sj . 
i.l J.l 

(2.19) 

In order that the left- and right-hand sides of each of 
these equations be equivalent for arbitrary k and t, that 
is, that our assumed u in fact be a solution, the follow
ing sets of conditions should be satisfied: 

aSj(t) _ 0 
ilt -, (2.20a) 
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axt(t) _ CAS (t) T (t) = c 
at j j 0, 

(2.20b) 

tCAiS!(t) =coY, (2.20c) 

j=1,2, ... ,N; 

ilS;(t) =0 
at ' 

(2.21a) 

axT(t) _ CAS*(t) T*(t) =c 
at i i 0, 

(2. 21b) 

~CAiS;(t) = - coY, (2.21c) 

j=1,2, ... ,N. 

The conditions imposed by Eqs. (2. 20a) and (2.20c) 
require that all of the Sj{t) be equal and time indepen
dent. Denote this common constant value by S. Then 
Eq. (2. 20c) dictates the value of A in terms of 5, 

A=2coy/iCS. (2.22) 

Equation (2. 20b) then requires that the xj(t) obey the 
equation 

(2. 23) 

If Eqs. (2. 20a) and (2. 20b) are obeyed, then Eqs. 
(2. 21a) and (2. 21b) will automatically be satisfied. 
Finally the condition given by Eq. (2. 21c) will be con
sistent with that from Eq. (2. 20c) if 

Sj(t)=S=-S*, j=1,2, ... ,Nj (2.24) 

that is, if 5 is purely imaginary. We now show that this 
is identically valid by using the following theorem. 13 

Letj(x) denote a polynomial in x of degree n. Denote by 
a. anyone of the n roots of j(x) = 0 so that 

n 
j(x) = n (x - (ll)' 

lei 
(2.25) 

Let cp(x) denote an arbitrary polynomial in x of degree 
m ~n - 2. Then 

(2.26) 

To use this theorem we need only identify j{x) with Q 

[a polynomial of degree 2N in x] and cp{x) with P [a 
polynomial of degree 2N - 2 in x]. Then 

ZN P{x t) 
L; a Qt t) = 0, for all t. (2.27) 
1=1 x xI' 

But by the definition of the S/t), Eq. (2.12), we then 
have 

2N 

L; Sj(t) = o. 
j =1 

(2.28) 

N ow by the previous conditions, Sj (t) = S for 
i = 1, 2, ... , Nand Sj (t) = S* for i = N + 1, N + 2, ... , 2N, 
whence Eq. (2.28) becomes 

N(S + S*) = 0 

or 

S* = - S. 

R.I. Joseph 
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(2.30) 

QED 
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Since 5, (t) == 5, a constant, we can in principal evaluate 
it for any value of t, in particular, the value t == O. 
Further details are considered in the next section. 

B. Detailed results for the two-soliton case (N =2) 

The actual labor involved in carrying out the pro
cedure just outlined is quite considerable. Hence in 
the present section we shall follow it through for the 
specific case of N = 2. The results for the case N == 1 
are already given by Eq. (1, 8). 

To start with, we want the roots of Q = 0 for t = O. 
Denote these values of the x,(t) by Yj and in particular, 
setxl(O)==Yl, x Z(0)=Y2, X3(0)=y{, X4(0)==y!. These 
are then obtained by solution of the quartic equation 

0= l + bzoYz + boo, (2.31) 

We shall see that all of the rest of the members of the 
sets {a} and {b} can be expressed in terms of the two 
parameters bzo and boo, which are taken as our initial
izing parameters, Two cases can occur which yield 
complex roots: 

(i) boo 0, b20 > 0, b~o - 4b oo > 0, 

(ii) boo / 0, b~o - 4b oo < 0. 

For convenience we introduce the notation 

boo ==q4, 

b20 = pq2, q> O. 
(2,32) 

The requirement that u be finite for all real (x, I), e, g" 
Q *- 0, restricts p to values such that p + 2 > O. Then 
for case (i) we have 

. (p + (pZ _ 4)1 / 2) 1/2 . (p _ (p2 _ 4)1/2) liZ 
)'1 == UJ 2 ' ),z = lq 2 

while for case (ii), 

Yl = ~q{'\ + he}, Y2 = ~q{- ,\ + iJl} 

with 

A = (2 - P )1/2, Jl = (2 + P )1/Z • 

(2,33) 

(2. 34) 

(2.35) 

Now, the requirement that 51 (t) == 5z(t) =5 becomes, 
on using Eq. (2.12), 

_ xi + alXl + ao _ x~ + alx Z + ao 
5 - (Xl - XZ)(XI - xi )(Xl - xi) - (X2 - xl)(X2 - xtz)(xz - xt) 

(2.36) 

When t = 0, for both case (i) and case (ii), it reduces 
to 

yi +. aoo == _ (y~ + aoo) 
1'1 \)'z 

(2.37) 

which is satisfied if aoo = - )'IY2 and hence from Eq. 
(2.36), 5=1/2(\'1 +1'2)' Substituting in the values Of)'1 
and )'2 previously given, one finds that for either case, 

5=1/2iq(p+2)t/2, aoo==q2. (2.38) 

Next, we solve Eqs. (2.36) to express the unknowns 
at(t) and aoU) in terms of the xi(t) and 5, 

al (I) = - (Xt + xz) + 5[(Xl - xf)(Xl -x!) 
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+ (xz - xi)(xz - x1")] 

ao(t) == xlX2 - 5[xz (Xl - xf)(Xt - x!) 

+ Xl (xz - x!) (xz - xi)]. 

The coefficients all and a02 can be calculated from 
these expressions by using the fact that 

_ dat(!) I 2 _ dZao(t) I 
all - dt ,aoz - --;pr-t 

toO t= 0 

(2.39) 

(2.40) 

and by making repeated and systematic use of the condi
tions imposed on the dXi(t)/dt by Eq. (2.23). After some 
algebra, one finds for both cases (i) and (ii) that 

al1/cO== - 2[1 +y(p +4)], 

aoz/d = 1 + 2y(p + 4) + yZ(p + 3)(p + 6), 

where for simplicity we have here introduced the 
notation 

Y=y/q(p+2)1/2. 

(2.41) 

(2.42) 

We next turn to the evaluation of the coefficients 
{b}. Since the X ,(t) are solutions of the equation Q = 0, 
or 

0==X4 + b3(t)x3 + b2(t)x
Z + b1(t)x + b'o(t) , 

we may simply write 

4 

- b3(t) == .0 xj(t), 
,=t 
4 

b2(t) == .0 Xi (t)x,(t) , 
i< j;l 

4 

- bt(t)== L. Xi(t) xj(t) xk(t), 
i< j< hi 

Whence we can use the facts that 

b - db 3(t) I 
31 - dt t;O' 

2b _ d
Z
b2(t) I 

22- dT" t=o' 

etc. , 

(2,43) 

(2.44) 

(2.45) 

together with Eq. (2.23) to similarly evaluate the bw 
After considerable algebra, one then finds 

b31 /CO == - 2[2 + y(p + 6)], 

bZ2/C~==6 +6y(p +6) +yZ(p + 6)(p + 8), 

bl1 / Co = - 2q2[p + y(pZ + 5p + 2»), 

b13/d = - 2[2 + 3y(p + 6) + :?(p + 6)(p + 8) 

+ y3(p + 6)2], 

b02 /d =q2[p + 2y(pZ + 5p + 2) 

+ y2(p3 + 10p2 + 30p + 20)], 

b04/C6 = 1 + 2y(p + 6) + yZ(p + 6)(p + 8) 

+ 2y3(p +6)2 + 0(p + 6)2, 

(2.46) 

Consequently, for N == 2, we have a complete specifica
tion of the function u(x, t) of Eq. (2.1). The various co
efficients {a}, {b} which appear in it have all been ex-
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pressed in terms of the two initializing parameters p 
and q. The coefficient A is given by 

A = 4coyq(p + 2)1/2/C. (2.47) 

This function of course represents a particular solution 
to Eq. (1. 4) and is valid only if when t = 0 we assume 
an initializing function 

(2.48) 

thus specifying the particular values of p and q to be 
used. Let us now just briefly look at the shape of this 
class of initializing functions uo(x) for which we have 
found solutions to Eq. (1, 4). For convenience, we shall 
introduce a scaled spatial variable X by x = qX so that 
Eq. (2.48) becomes 

uo(X) = (A/q2)(1 + X 2)/(1 + pX2 + x'). (2.49) 

Note that p is to be restricted to values p> - 2 to 
guarantee that u is finite for all real x and t. It is now 
straightforward to show for p ~ 1 that Uo has an absolute 
maximum at X= 0 with value uol max =A/q2. On the other 
hand, for - 2 < P < 1, X = 0 corresponds to a relative 
minima with absolute maxima of Uo occurring at 

X=± [(2 - p)1/2 _1]1/2 (2,50) 

at which points 

uo I max = (A/q2)/(2 - p)1/2[2 - (2 _ p)1/2). (2,51) 

Hence for p ~ 1, Uo is a function of X which monotonical
ly falls off from its peak value at X = 0 while for 
- 2 < P < 1, Uo first increases as we move off in either 
direction from X = 0, peaks, and then monotonically 

falls off for large IX I. Hence the shape of the functions 
Uo for the class of solutions obtained is quite different 
as p ~ 1 or - 2 < P < 1. 

Before we turn to a detailed description of the com
plete space-time evolution of u(x, f) for the class of 
solutions obtained, let us first consider their asymp
totic behavior. Let x, f be very large but x - cf '" ~ be 
finite, c being a constant as yet undetermined. We now 
replace x by ct + ~ in the expressions for P and Q, 
Eqs. (2.1)-(2.5) with N=2, and retain only the most 
Significant terms (in terms of powers of f). Then 

P = t2(C2 + auc + a02) + O(f), 

Q = f4 (c4 + b31 C3 + b22 C2 + b13c + b04 ) + t3H4c3 + 3b 31C2 

+ 2b22 c + b13 ) + f2[(b 20C2 + buc + b02 ) (2.52) 

+ ~2(6c2 + 3b31 C + b22 )} + OCt). 

If for f» 0 we want u to remain finite, we must impose 
the restriction that the coefficient of the terms in Q 
of order r and [3 identically vanish, otherwise, u is 
of 0(1/t2). Denote the coefficient of the term in r by 
f(c). We then require that 

f(c) = c4 + b31 C3 + b22 C2 + b13c + b04 = 0, 

f'(c) = O. (2.53) 

The first of these two equations yields four possible 
values for c. The second equation is just the require
ment that these roots be double roots, that is, that we 
have two double roots. Whether this can in general 
occur will of course depend on what the particular val-
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ues of the coefficients appearing in/(c) are. Denote 
the two double roots off=O by c. and c •• It now follows 
directly from f = 0 that 

b31 =- 2(c. +cJ, b22 =c; +4c.c. +c:, 
(2.54) 

b13 =-2c.c.(c.+cJ, b04=C;C~. 

Whence we find that there will be two double roots, c., 
c., given by 

c. = ~[- b31 ± [b~l - 16(b13 /b 31 )}112] (2.55) 

if the coefficients satisfy the constraints 

b04 = (b 13/b 31 )2, b22 = ib51 + 2 (b13/b 31 ). (2.56) 

Substituting the actual values of these coefficients as 
previously determined, Eq. (2.46), into Eqs. (2.56) 
we directly find that they are identically satisfied for 
all p and q! Hence for large x and f, our N=2 solution 
breaks up into two localized waves moving at speeds 
given by 

~ =tY{(p+6)±[(p+2)(p+6)]1/2} 
Co 

and are of the form 

u. ==AR/[(x - C.f)2 + An, 
where 

R =.! {1+ [P+2J1/2} 
• 2 p+6 

(2.57) 

(2.58) 

A!=iq2(~:~) {(P+4)+UP+2)(P+6)}1/ 2}. (2.59) 

The maximum value of u. (when x - c.t == 0) is given by 
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FIG. 1. Plot of asymptotic peak amplitudes (Up oak) relative to 
the peak initial amplitude (Uo,p.,.) for the N= 2 solution to the 
Benjamin equation as a function of the initializing parameter 
p (>-2). Also shown is (c.-co)/(c.-co) [=U.,poak/U.,PoakJ• 

R.i. Joseph 2255 



                                                                                                                                    

-, ,(P+6:F[(P+2)(P+6)]1/2) 
= (4coJ'/C) p+4'f[(p+2)(p+6)]1!2 • (2.60) 

To get an idea of how large these asymptotic waves can 
get, in Fig. 1 we show as a function of p a plot of the 
values of 11, I peak normalized by the peak value of the 
corresponding initializing function, Uo [peak' Note that 
this normalizing quantity is different for P? 1 and 
- 2 < P < 1. For all p> - 2, this relative amplitude is 
always less than unity for the slow wave 11_ and greater 
than unity for the fast wave 11 •• When p = ~ the fast wave 
amplitude is twice the corresponding initial amplitude 
and this is as large as this ratio can ever get. Also 
shown in this figure is a plot of the ratio of the slow 
to fast wave peak amplitudes. This curve is of interest 
since it follows directly from Eqs. (2.60) and (2.57) 
that 

U-Ipeak = c_ - Co 
11. I peak - C.- Co' 

(2.61) 

that is, the ratio of peak wave amplitudes is equal to the 
corresponding ratio of the deviation of their wave speed 
from co. 

We now turn to a description of the detailed space
time evolution of II(X, t) and in particular how it ap
proaches its asymptotic character. In describing these 
results numerically it is convenient to introduce a set 
of scaled variables by 

X =x/q, T = cot/q, 

U = (q2 / A) u = [qC/4c oY(p + 2)1/2] U • 

We then write 

U =P;Q, 
where 

U 

P = 1 + (X - VT)2 - (p + 2) yT(X - VT) 

+ t(p + 2)(p + 6) y2T2 
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(2.64) 

FIG. 2. Plot of normalized solution Uto the Benjamin equation 
for N= 2 as a function of the normalized spatial position X for 
various values of normalized time T for the inltializing param
eters p = 2, q = 4y. 
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FIG. :1. Same as Fig. 2 except p = - ~. 

and 

Q = 1 + p(X - VT)2 - (p + 2)2 yT(X - VT) 

+ t(p + 2)(p2 + 6p + 16) :);2T2 

+ (X - VT)4 - ~(p + 2)(p + 6) y2T2(X _ VT)2 

+ 116 (p + 2)2(p + 6)2')I4T4 (2.65) 

with 

V=1+t(p+6)Y. (2.66) 

The parameter V is just the average of the two asymp
totic wave speeds relative to co, 

V = (c. + cJ/2co. (2.67) 

Different ways of regrouping the various powers of X 

and T are of course possible. Figures 2 and 3 show plots 
of U as given by Eqs. (2.63)-(2.66) as a function of X 

for various values of T for y/q =t and p = 2, - ~, re
spectively. These two values of p characterize the two 
kinds of initial u possible, e. g., a single or double 
humped function. For p = 2 we should have that the peak 
value of U for the asymptotic fast wave is t(2 +Vz) with 
an asymptotic speed of t(6 +/2). To get some idea of 
how there asymptotic values are reached as a function 
of time, in Fig. 4 we show the actual peak value of U 
at each T for what we know becomes the fast wave. 
By a dimensionless time T'" 5 we are within 10% of the 
correct asymptotic value. In order to get some idea 
of the "speed" of the wave, we can define an average 
speed <c) at any instant of time as the ratio of the actual 
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FIG. 4. Dependence on normalized time T of certain proper
ties of that part of the N= 2 solution to the Benjamin equation 
which can be identified as asymptotically becoming the fast 
wave. Plotted are the peak amplitude normalized by the peak 
initial amplitude (u.,peak/uo peak) and the average speed of that 
peak (c.) normalized by col<C.)/co=X.,peak(T)/Tl. The figure 
corresponds to the case q= 4y, p = 2. 

location of the peak which becomes the fast wave to 
that value of the time. This is also shown in Fig. 4. 
It is clear that the peak is decelerating from an "initial" 
speed which is about 22% higher than the asymptotic 
speed and that by T;::; 5 we are within 2% of the asymp
totic speed. 

In order to make the plots shown in Figs. 2 and 3, 
we had to specify a value for y/q in addition to one for 
p. One could eliminate the need to pick a particular val
ue of Y/q in such plots by transforming to a new co
ordinate system which moves with the speed V relative 
to the original one, that is, let ~ =.X - VT and by intro
ducing a new scaled time by T = YT. In Fig. 5 we show 
a plot of U vs. ~ for various values of T for the case 
p = O. In this plot the two waves instead of both moving 
off to the right at their respective speeds, appear to 
move off in opposite directions with similar speeds. 

Finally, we now show that the single soliton solution, 
N = 1, is included as a limiting case of the N = 2 solu
tion just presented. This should be apparent from the 
p - 00 limit shown in Fig. 1. Suppose that p - 00 and 
q - 00 but that q /Vp remains finite. Then from Eqs. 
(2.1), (2.47), (2.32), (2.41), and (2.46) we get 

p_q2, 

Q - pq2{q2 /p + ex _ cot[l + y])2}, 

A - (4coyq/CVp) p, 

where y=.yVp/q. Whence we get 

71 - (4Coyq/CVp)/[q2/p + (x - cot[l + Y])2]. 

Now making the identifications 

X2=q2/p , c=co(l+y), 

we can write this as 

(2.68) 

(2. 69) 

(2.70) 

which is exactly the same as Eq. (1. 8) since aX = 4coY/C 
and (c - co)/c o = y = Y/X. 
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FIG. 5. Plot of the normalized solution U to the Benjamin 
equation for N= 2 in a spatial frame of reference moving at the 
average asymptotic speed V relative to the frame (X, T) as a 
function of ~ (= X - VT) for various values of T (=yT) for the 
case of the initialing parameter p = O. 

3. DISCUSSION 

For the two-soliton solutions just discussed, the case 
p = 2 is of particular interest. In this case the uo(x) we 
require is of the form 

(3.1) 

Except for the scale factor of 2, this uo(x) is the same 
as the one required to obtain a single soliton solution, 
Eq. (1. 8), 

(3.2) 

Hence by doubling the amplitude of this initial form, 
instead of finding a single soliton of speed c, we produce 
a two-soliton solution. For the single soliton case, the 
speed c is related to the peak value of uo(x) by 

71 0 I peak = (4coY/qC) = (4/C)(c - co). (3.3) 

For the corresponding two-soliton case, the speeds 
are related to the corresponding peak initial value by 

Uo I peak = (8c oY / qC) = (4/C)(c. - co)(2 - v'2) 

=(4/C)(c_-co)(2+Y2). (3.4) 

For the single soliton solution the peak amplitude of 
the soliton is of course identical to that of uo(x). How
ever for the two-soliton solution being considered here, 
the peak value of the faster moving soliton is larger 
by the factor 1 + t {2 ~ 1. 707 than the peak initial value 
while for the slower soliton, it is smaller by the factor 
1-t/2~0.293. 

Ono4 has developed a number of conservation laws 
satisfied by solutions of Eq. (1. 4). The first two of 
these are at C dXll = 0, at C dxtu2 = 0, and these are 
identical to the corresponding laws satisifed by solu
tions to the KdV equation. These two laws are satisfied 
in general by solution of the more general equation, 
Eq. (1. 6). For this equation, it is straightforward to 
show that a third conservation law is 

(3.5) 

where 
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q (11 (X» = J~ dx' lI(X') G(x' - x). 
.~ 

(3.6) 

f
~ dk 

G(z)== .~ 27T c(Jz) exp(lkz). 

This result reduces to that given by Ono for Eq. (1. 4) 
and to that valid for the KdV equation, Eq. (1. 5), when 
G is suitably picked. A fourth conservation law satis
fied by these equations is 0t(Ot r dxxu)==O. See, for 
example, Miura et al. 14 Assumi~g that a two-soliton 
solution existed, Ono has applied these conservation 
laws to the case p =: 2, obtaining results in exact agree
ment with those just given. 

Finally, it is instructive to compare the case p =: 2 
with what obtains for solution of the KdV equation under 
similar conditions. A single, pure- soliton solution to 
the KdV equations results from the uo(x) given by 
Eq. (1. 7), 

(3.7) 

when the soliton speed c is related the peak value of 
uo(x) by 

uol peak==(3/C)(c-co). (3.8) 

In order to obtain a pure two- soliton solution with the 
exact same initial function form for uo(x), the initial 
function must have a peak value three times larger 
than in the single soliton case, It 

(3.9) 

In this situation the asymptotic speeds of the two soli
tons are related to the peak value of the initial u by 

uol peak == (9/4C) (cfast - co) == (9/C)(cSlow - co). (3.10) 

For the single soliton solution the peak amplitude of the 
soliton is identical to the corresponding value of uo(x) 
while for the two- soliton solution, the peak amplitude 
of the faster soliton is larger by the factor t than the 
corresponding initial peak value, while for the slower 
soliton, it is smaller by the factor t. Note also, that 
just as for the two- soliton solution to the Benjamin 
equation, here also 

CS10W - Co == Us1ow ' peak 

Cfast - Co Ufast, peak 

(3.11) 

e. g., Eq. (2.61). Hence an interesting difference be
tween the Benjamin and KdV equations, is that in order 
to produce two pure solitons one has to double the 
amplitude of the initial u for a single soliton solution 
for the former equation while for the latter equation, 
one has to triple it. 

Still to be discovered, is a method of finding solu
tions to Eq. (1. 4) for an arbitrary uo(x) and of course 
to prove that the solutions obtained in fact give solitons. 
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In regard to this latter point, it is at least clear that 
for the case N =: 2 discussed in Sec. 2 B that we really 
do have true solitons. That is, sinceu(x,t)==u(-x,-t), 
imagine that at some large negative value of t, t == - 7, 
we have as an input to the system two waves of the 
form u. and u., Eq. (2.58), centered at the large nega
tive values of position x == - x., - x., and moving to the 
right with speeds c. and c., respectively. Pick t such 
that (x. + xJ == t(c. + cJ. We then write 

AR AR u - • + -
input - [(X - c.t + <flY #~J [(X - c.t + <flY + .>c:] • 

(3.12) 
The phase factors <p± obey the condition <p. + $.== O. As 
these wave propagate to the right they "interact, " For 
large positive t and x these two waves re-emerge in 
unaltered shape, that is, UoutPllt==u. +u., which is the 
same as Eq. (3.12) except for the absence of the phase 
factors <p. and cP •• The locations of u. and u. with re
spect to each other are reversed. That there really has 
been an "interaction" is simply seen by noting that 

( 
X2 +q'1l ) 

(u.+uJt=o==A X4 +X2q21l(P+4) +q41l 2 , (3.13) 

where 11 == (p + 2)/(p + 6). Except for large Ix I, this 
expression is in general not equal to u(x, t) for t == 0, 
Eq. (2.48). If P _00, they are the same for all x, but 
this just corresponds to the single soliton limit. This 
same idea can be seen in Fig. 4 which directly shows, 
or implies, that for the particular case p == 2, the fast 
wave entering at large negative x and t is accelerating 
from the speed c. up to a maximum speed at t == 0 after 
which time it decelerates down to its original speed c. 
at large positive t. 
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An algorithm for classifying the closed connected subgroups S of a given Lie group G into conjugacy 
classes, presented in earlier papers, is further refined so as to provide us with "normalized" lists of 
representatives of subalgebra classes. The normalized lists contain the subgroup normalizer Nor GS 
(NorGS is the largest subgroup of G for which S is an invariant subgroup) for each subgroup 
representative. The advantage of having normalized lists is that the problem of merging several different 
sublists (e.g .. the lish of all subgroups of each maximal subgroup of G) into a single overall list becomes 
greatly simplified. The method is then applied to find all closed connected subgroups of the two de Sitter 
groups 0(3.2) and 0(4.1). The classification group in each case is the group of inner automorphisms. 

I. INTRODUCTION 

A series of earlier papers has been devoted to the 
problem of classifying all continuous subgroups of Lie 
groups of interest in physics and finding their invari
ants. 1-8 All maximal solvable subgroups of the SU(p, q) 

and SO(p, q) groups have been found, 1,2 as have those of 
all other classical real Lie groups. 9 All continuous 
subgroups of the Poincare group have been listed, 3 
separated into isomorphism classes, and their invari
ants have been found. 6 The subgroups of the similitude 
groups of the four-dimensional4 and three-dimensional8 

Minkowski space (the similitude group is the Poincare 
group extended by dilations) were obtained. All sub
groups of the 0(4,1) de Sitter group were constructed. 5 

A general method for calculating the invariants of an 
arbitrary Lie algebra was developed and applied to find 
the invariants of all real Lie algebras of dimension 
d ~ 5 and all nilpotent Lie algebras of dimension d = 6. 
The invariants thus obtained can be polynomials in the 
generators of the group (these are Casimir operators), 
rational functions of the generators (lying in the quotient 
field of the enveloping algebra), or general invariants 
(arbitrary continuously differentiable functions of the 
generators). 7 Our immediate aim is to provide a list of 
all continuous closed subgroups of the conformal group 
of space-time [locally isomorphic to 0(4,2) and 
SU(2,2)]. A crucial step in this direction is to find all 
the maximal subgroups of the conformal group and to 
classify their subgroups. 

The present article is part of the above program, in 
that we obtain here all the closed continuous subgroups 
of 0(3, 2) and also present some new results on the sub
groups of 0(4, 1). 

alWork partially supported by National Research Council of 
Canada and by NATO. 
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Our interest in the subgroups of Lie groups has been 
motivated earlier, 1-8 both from the physical and mathe
matical point of view. Let us just mention several 
different directions of research for which a classifica
tion of the subgroups of a given group is important: 

1. A systematic study of symmetry breaking in phys
ics. Two recent papers have been devoted to symmetry 
breaking in nonrelativistic quantum mechaniCS, making 
use of the knowledge of the subgroups of the Euclidean 
group E(3) for the time independent Schrodinger equa
tion10 or those of the SChrodinger group Sch1 for the 
time dependent one. 11 

2. Separation of variables and symmetry properties 
of differential equations. 10_18 

3. Construction of specific bases for the representa
tion theory of Lie groups. 19,20 

4. The theory of canonical transformations. 18,20-25 

5. Group theoretical expansions of physical quantities, 
specially scattering amplitudes. 12,26-29 

The de Sitter groups are interesting as two of the 
maximal subgroups of the conformal group 0(4, 2) but 
they are also of considerable interest in their own right. 
They occur in relativistic cosmology as groups of mo
tion of four-dimensional spaces of constant nonzero 
curvature. 30-32 They play the role of conformal groups 
of three-dimensional Euclidean or pseudo- Euclidean 
spaces. They have made their appearance in many 
roles in elementary particle phYSics, the general 
theory of relativity, atomic physics, special function 
theory, and other fields. For a brief review with num
erous references we refer the reader to a previous 
article. 5 

In Sec. II we discuss some relevant properties of 
the groups O(p, q) in general and 0(3, 2) and 0(4, 1) in 
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particular. The principles and methods of classifica
tion of subgroups are discussed in Sec. III, paying 
attention to simultaneous classifications under different 
locally isomorphic groups, to the procedure of finding 
subgroups of semisimple groups, in particular irre
ducibly imbedded subgroups, and to the construction of 
"normalized lists of subalgebras" (containing the nor
malizer of each subalgebra together with the subalge
bra). In Sec. IV we obtain a list of representatives 
of the maximal subgroups of 0(3, 2). All subgroups of 
0(3,2) are classified in Sec. V, where we first classify 
the subalgebras of each maximal sublagebra of LO(3, 2) 
under the corresponding maximal subgroup of 0(3,2) 
and then merge all the lists of subgroups into an overall 
list of subgroups of 0(3,2). Section VI is devoted to a 
summary and extension of previously obtained results 
on subgroups of 0(4,1l. In Sec. VII we discuss the com
pleteness of the sets of commuting operators provided 
by the invariants of subgroups in each of the found sub
group chains and the possible existence and form of 
missing label operators. The conclusions and future 
outlook are presented in the final Sec. VIII. Section III 
is mathematically the most demanding one. Readers 
interested only specifically in the results on the sub
groups of 0(3,2) and 0(4, 1) can skip this section and 
obtain all relevant information from Secs. IV-VII and 
Tables IV -XI. 

II. PSEUDO·ORTHOGONAL GROUPS O(p, q) 

A. The general case 

The group O(p, q) where p and q are integers satis
fying p ? q ? 0, is the closed linear group of all matrices 
M of degree p + q over the field of real numbers lR satis
fying the matrix equation 

(2.1) 

where AIT is the matrix transposed to M and 

(2.2) 

Up is the identity matrix of degree pl. 

The group O(p, q) is thus the group of linear trans
formations of a (p +q)-dimensional real vector space 
V leaving the real quadratic form 

(2.3) 

invariant for x:=: V. 

In topological discussions of the O(p, q) groups a de
cisive role is played by two multiplicative invariants 
that can be formed for each element g:=: O(p, q). The 
first one is the determinant detg, satisfying 

detg = ± 1, detg j g2 = detg j det.li2 (2.4) 

[for any two elements gj and g2 of O(p,q)]. 

The second invariant is the spinor norm. The spinor 
norm of g is defined to be spng = + 1 if g is in the 
identity component of O(p, q) which we denote by 
SOo(p, q) (then also detg = 1), or if detg = - 1 and 
the product of g With the particular member 
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,'VIj = (1 1) (2.5) 

1_1 

of O(p,q) is not in SOo(p,q). Otherwise the spinor norm 
is spng = - 1. This definition is not an arbitrary one, 
since SOo(p,q) is a normal subgroup of SO(p,q) and 
gJI!j can hence be replaced without ambiguity by ''V!jg or 
even by any product gM or Mg with M in the same coset 
modulo SOo(P, q) as :'I1j • This definition already makes 
it evident that the elements g of spinor norm spng = 1 
form a normal subgroup OJ(p,q) of O(p,q). 

If q=O, then SO(p,q)=SO(p) is compact and connected 
and in this case the spinor norm is always 1. If both 
p and q are natural numbers, then SO(p, q) is not con
nected and elements of spinor norm - 1 exist. It was 
already known in the nineteenth century33 that every 
element of O(p, q) is a product of reflections, i. e., of 
involutory mappings leaving a (p + q - 1)-dimensional 
space invariant. Each reflection p:=: O(p, q) transforms 
a vector XE: V=lR(~+q)Xl according to 

1_ 2 (TD ) x -x - (TD ) U p,qX U, 
U p,qU 

(2.6) 

i. e., it is a linear transformation Pu depending on an 
anisotropic element u:=: lR(P+q)Xl (with uTDp,qu '* 0). The 
element 11 is determined uniquely by the reflection up to 
a factor of proportionality. The sign of uTlJp,qU is thus 
uniquely determined and the reflection is said to be 
positive or negative, depending on the sign of uTDp,.u. 

Note that ",v!j is a negative reflection if q> O. 

The multiplicative character of the spinor norm and 
also the role of M j is elucidated by the theorem that 
the spinor norm of a matrix g is equal to (- 1) to the 
power given by the number of negative reflections oc
curring in some presentation of g as a product of 
reflections. 

We have thus Obtained an algebraic criterion for a 
topological property, but we &till do not have a simple 
method for calculating the spinor norm. Such a method 
has been obtained some time ago34

,35 when Lipschitz'S 
theorem was reproven and it was shown that the spinor 
norm of g is equal to the sign of the determinant 
det( g + I p+.) if this determinant is not zero, 

spng=sign det(g+Ip+q )' (2.7) 

If, however, the matrix g + Ip+q is singular, then a 
minimal exponent JJ. exists for which the matrices 
Up+q + g)IJ. and (Ip+. + g)1' +1 have the same rank, We can 
then decompose the (p +q)-dimensional column space 
into the direct sum 

IR(P+q)X1 =R
1 

+R2 (2.8) 

of the eigenspace of g corresponding to the eigenvalue 
- 1, 

R1 =ker(g+Ip+.) (2.9) 

and the orthogonal space 

R2 = 2-1' (Ip+. + g)IJ.IR(P+q)Xl. (2.10) 

An IR-basis v11'"'' Vj". (j = 1, 2) can be computed for 
J 
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FIG. 1. Groups locally isomorphic to olp,q) (descending lines 
indicate subgroup inclusions). 

each of these two spaces using well known methods of 
linear algebra. 

The discriminant of R1 is the number 

d(R1) = det(v{;Dp •• V1k), (2.11) 

which is uniquely determined up to a square factor and 
is nonzero because of the orthogonality of the decompo
sition given above. 

Both linear spaces RI and R2 are invariant under g 
so that the determinant of g restricted to R2 can be 
evaluated by means of the action of g on the lR- basis 
v21' ••• ,v2n2 of R2• The following formula holds for the 
spinor norm of g: 

spng = sign {d(R I ) det(Jn2 + g I R2 n 
or in more detail, 

(2.12) 

spn if = sign{d[ker (I + g)~ 1 det[J + g 1(1 + g)" lR(P •• )xl n. 
(2. 13) 

As an example, consider the 0(3,2) element 

In this case we have JJ. = 1, the discriminant of ker(1 + g) 
is d(R 1 ) = - 1, and 1 + gl R2 restricts to a linear trans
formation of (1 + g) lR 5x1 with identity matrix. Hence we 
have spng=sign{d(R I ) detI}=-1. 

For all natural numbers p and q the corresponding 
orthogonal groups O(p, q) are closed lR-linear groups 
with four components forming a Klein 4-group as a 
factor group over the identity component of SOo(P, q). 
There are precisely five closed subgroups of O(p, q) 
that are locally isomorphic to O(p, q). They form the 
Hasse diagram36 of a Klein 4-group (see Fig. 1). The 
three subgroups of index 2 can be characterized as 
follows: 

(a) 8O(p,q) consists of all elements g of O(p,q) with 
detg= 1. 

(b) 01(P,Q) consists of all elements g of O(p,q) with 
spn~'= 1. 

(c) O2 (p, q) consists of all elements g of O(p, q) with 
(detg)(spng) = 1. 

The elements of 8Oo(P, q) are characterized as the 
elements g of O(p,q) with detg=l and spng=1. 

Many and perhaps all of these groups are of phYSical 
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significance. Indeed, consider, e. g., the proper ortho
chronous Lorentz group SOo(3, 1). If we extend this 
group by parity P we obtain 0 1 (3,1), if we extend it by 
time reversal T we obtain O2(3, 1), and if we extend 
it by the PT operation we obtain SO(3, 1). If all these 
operations are included we obtain the group 0(3, 1). 
Similar comments could be made for the de Sitter 
groups 0(4, 1) and 0(3,2), as well as the conformal 
group 0(4, 2). 

For p > q the group O(p, q) is the largest linear group 
of degree p +q normalizing SOo(P, q). In the special case 
when p =q the normalizer of SOo(P,p) is larger, namely 
it is the semidirect product of the group of order 2 gen
erated by the involutory matrix 

K 2P = 
[ 

1 

1 1 IJ (2.14) 

of degree 2p with the group O(P,p). This group can be 
characterized by the fact that it leaves the square of 
the quadratic form x2 = xi + ... + x; - X;.1 - ••• - x~p in
variant. Indeed the matrix K 2P itself changes the sign of 
this form, 

(2.15) 

so that timelike vectors are transformed into spacelike 
ones and vice versa, while lightlike vectors are carried 
into lightlike ones. 

The factor group of the extended group (K2P ) ~O(p, q) 
over its identity component SOo(P, q) is a dihedral group 
of order 8. 

B. The de Sitter group 0(3, 2) 

Everything said above for O(p, q) groups naturally 
also holds for 0(3,2). For further convenience we shall 
make some general statements more explicit. The Lie 
algebra of O(p, q) will be denoted LO(p, q) and consists 
of real matrices X satisfying 

XDp •• +Dp •• XT = O. (2.16) 

In particular an element of LO(3, 2) satisfying (2.16) 
with P = 3, q = 2 can be written in the for m 

b 
-a 0 c g 11 [0 a 

X= - b - c 0 
e fJ 
j 1< 
o d 

(2.17) 
e g j 

f h 1< -d 0 

where a, b, ••• , k are real parameters. A convenient 
basis for this Lie algebra consists of the ten matrices 
A, B, C, D, E, F, G,H, J, and K obtained from (2.17) 
by specializing respectively a, b, c, d, e ,f,g, h,j, or k to 
be equal to 1, and all other parameters equal to zero. 

A different but equivalent realization of LO(3, 2) is 
obtained by introducing the matrix 

K,~ 0 ~ ~ ~ D (2.18) 
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TABLE 1. Commutation relations between 0 (:1,:2) generators in 
the D:l ,2 realization. 

A 
B 
C 
D 
E 
F 
C; 

H 
J 
/( 

A 

o 
C 

-B 
o 
G 
II 

-E 
-F 

o 
() 

B 

-C 
o 
A 
o 
J 
K 
() 

o 
-E 
-F 

and requiring 

c 
B 

-A 
() 

o 
o 
() 

,J 
K 

-G 
-H 

X Kl\\ +- !\,XJ: = o. 
We have 

D E 

o - G 

o -J 
o 0 
o -F 
F 0 

-E -D 
}{ -A 

-G () 
/( -B 

-J 0 

1\., 0-0 ZD3,2Z-1, X K = ZXZ-1 

with 

Z~= ~(~ r ,:~ 1'2 o 1 0 
1 0 0 

o 
- 1 
o 
1 
o 

F G H 

-H E F 
-K 0 0 

o -J -K 

E -H G 
D A () 
() 0 A 
() () D 

-A -D 0 

o - C 0 
-B 0 -C 

A general LO(3, 2) matrix in this realization is 

(

-r 1 1/1 J/ 0) 
jl -g (j 0 -/1 

X K = r s 0 -(j-III 

I 0 -s 'f -1 
o -t-1'-jl( 

J 

o 
E 
G 

-K 
B 
o 
C 
o 
o 

-D 

/( 

o 
F 
H 
J 
o 
B 
o 
C 
D 
o 

(2.19) 

(2.20) 

(2.21) 

(2,22) 

where again all entries are real numbers and we intro
duce a basis F, G, L,;11, N, P, Q, R, S, and T as in (2.17). 

The commutation relations for each of the bases are 
given in Table I and II. 

The involutory matrix /(" of degree 5 (2.18) does not 
belong to 0(3,2) and does not normalize 800(3,2). It 
does however transform an LO(2, 2) subalgebra of 0(3, 2) 
into itself and can thus playa useful role. 

C. The de Sitter group 0(4, 1) 

An element X of LO(4, 1) satisfying 

XLJ 1,l + LJ1,lXT = 0 (2.23) 

TABLE III. Commutation relations between 0 (4,1) generators 
in the D4,l realization. 

A 

A 0 
B C 
C -B 
D E 
E-D 
F 0 
C; II 

H -G 
J 0 
K 0 

B 

-c 
o 
A 
F 
() 

-D 
J 
o 

-G 
o 

c 
B 

-A 
o 
o 
F 

-E 
o 
J 

-H 
o 

can be written as 

D 

-E 
-F 

o 
o 
A 
B 
K 
o 
o 

-G 

E 

1J 
o 

-F 
-A 

o 
C 
() 

K 
o 

-H 

e lz 

F G 

o -H 
D -J 
E 0 

-B -K 
-C 0 

o 0 
o 0 
o -A 
K -B 

-J -D 

d ~) 
f j • 
o I? 
k 0 

H 

G 
o 

-J 
o 

-K 
o 
A 
o 

-C 
-E 

J K 

o 0 
G [) 
H 0 
() C; 
o H 

-K J 
B D 
C E 
o F 

-F 0 

(2.24) 

A convenient basis of the considered five-dimensional 
representation again consists of the matrices A, B, •. , K, 
this time obtained from (2.24) by'setting the corre
sponding small letter equal to 1 and all others to O. 
The corresponding commutation relations are given in 
Table III. 

III. PRINCIPLES AND METHODS OF 
CLASSI FICATION 
A. General comments 

In order to classify the closed subgroups of a Lie 
group G it is necessary to construct a representative 
set R 1(G) of the G conjugacy classes of closed sub
groups of G. This task can be reduced to the following 
tasks: 

A. To establish a representative set R(G) of the C; 

conjugacy classes of the closed connected subgroups of 
G. 

B. To establish a representative set RD(H) of the H 
conjugacy classes of discrete subgroups of H for certain 
Lie groups H attached to C. 

The tasks A and B are resolved as follows. 

For each member S of the set R(G) we form its nor
malizer in G: 

(3.1) 

TABLE II. Commutation relations between 0 (3, 2) generators in the K5 realization. 

F 
C; 

L 
M 
JV 
P 
Q 
R 
5 
T 

2262 

F 

() 

() 

L 
M 
N 

-p 
o 

-R 
o 

-T 

G 

o 
o 

-L 
o 
N 
p 

Q 
o 

-5 
-T 

L 

-L 
L 
o 
o 
o 
F-G 

-i1l 
5 
o 
o 

M 

-M 
o 
o 
o 
o 
Q 
N 
F 

-L 
-5 
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N 

-N 
-N 

o 
o 
o 
() 

o 
-Q 

Jil 
F+G 

p 

p 

-p 
-F·G 
-Q 

o 
o 
o 
o 
R 
o 

Q 

o 
-Q 

M 
-N 

o 
o 
o 

-p 
G 
R 

R 

R 
o 

-5 
-F 

Q 
o 
p 

o 
-T 

o 

s 
o 
s 
o 
L 

-11/ 
-R 
-G 

T 
o 
o 
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T 

T 
T 
o 
S 

-F-G 
o 

-R 
o 
o 
o 
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a closed subgroup of C containing S as a normal sub
group and such that the factor groupH=Norc (S)/5 is a 
Lie group. 

Each member T of RD(H) consists of certain cosets 
of Norc (5) modulo 5, the union of which is a closed sub
group 51 of C with 5 as its identity component. All 51' s 
derived from all subgroups 5 in the list R(C) form the 
derived list Rl (C). Indeed, if two entries 51 and 5f of 
Rj(C) are C conjugate, then so are.their identity com
ponents 5 and 5'. But 5 and 5' are by construction mem
bers of R (C). Since they are C conjugate it follows that 
they are equal. Hence the element g of C for which 
g5 jg- j = 51 belongs to Norc(S). By construction Stl5 and 
5f/S are H conjugate members of RD(H). Hence they 
are equaL 

In other words, any two C conjugate members of 
R1(C) are equal. If, on the other hand, for any closed 
subgroup 5{ of C its identity component 5' is C con
jugate to some member S of R(C), say gS'g-l = 5, for 
some gc. C, then T' o=gSig -1 Is is a discrete subgroup 
of H = Norc(S)IS. Hence T' is an H conjugate of some 
member T of RD(H), say 

JiT'k-1
0= T 

with Ii =hIS, hE Norc(S). Hence the C conjugate 
hg5{(hg)-1 of 5{ belongs to R 1(C). 

The task of establishing a list R(C) of the C conjugacy 
classes of closed connected subgroups of C is equivalent 
to the task of establishing a representative set R(L, C) 
of the C conjugacy classes of subalgebras X of the Lie 
algebra LC of C. However, only those subalgebras X 
should be included for which the connected subgroup 
(expX) of C, generated by the exponentials of the ele
ments of X, is a closed subgroup of C. Indeed, if R(C) 
is given, then any member 5 of R(C) can be written 
in the form (expLS), where L5, is the Lie algebra cor
responding to the closed connected subgroup 5 of C. 
Note that any closed subgroup 5 of C is a Lie group with 
a Lie algebra L5 interpreted to be a subalgebra of LC. 
For any elementg of C we have L(g5g-1)=gL5g-1• 

The situation can be summarized as follows. The 
representative set of Lie algebras 

R(L, C) ={LS ISc. R(C)} (3.2) 

is a subset of all IR Lie subalgebras of LC and consists 
of real Lie algebras X with the following properties: 

(a) The Lie group S = (expX) is a closed connected 
subgroup of C. 

(b) Two members of R(L, C) are C conjugate only if 
they are equal. 

(c) Any IR subalgebra Y of LC for which expY is 
closed is C conjugate to some member of R(L, C). 

The converse is also true and follows directly from 
the rule 

g(expX) g -1 = exp(gXg -1) 

for gE C and X an IR subalgebra of LC. 

The symbol R(L, C) in this article denotes a repre
sentative set of subalgebras of the Lie algebra LC, 
classified up to conjugacy under the group C. In cases 
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when more than one Lie group C corresponds to the 
algebra LC, the classifying group C must be further 
specified (see below). 

Let us stress here that ill subalgebras of LC may 
exist for which the corresponding connected Lie groups 
are not closed. Indeed this happens for the de Sitter 
group 0(3, 2) and actually for all O(p, q) groups with 
p ~ q? 0 and p ~ 4 or q ~ 2. Indeed, consider, e. g., the 
one-dimensional subalgebra generated by 

X=A+dD (3.3) 

in the notation of (2.17). If d is a rational real number 
then expX is a closed connected one-dimensional Lie 
group. On the other hand, if d is irrational, then expX 
is not closed and its C closure is the two-dimensional 
compact Lie group corresponding to the two-dimensional 
Lie algebra {A, D}. Notice that both generators A and D 
correspond to compact subgroups of 0(3,2) and that they 
commute. 

More generally we state without proof the foUowing 
theorem. 

Theorem: The connected subgroup (expL) of GL(n,<r) 
generated by the exponentials of the matrices of an ill 
Lie subalgebra L<rnXn is closed relative to CL(II, <r) in 
the natural topology precisely if the IR dimension of a 
maximal Abelian compact subalgebra 5 of L coincides 
with the maximal number of rationally independent 
weights of its natural representation of degree 11 over 
<r. Note that all maximal Abelian compact subalgebras 
of L are conjugate under <expL). 

For a proof we refer the reader to lecture notes. 36 

B. Classification of subalgebras when conjugacy is 
considered under different but locally isomorphic groups 

In Sec. I we discussed the five different groups local
ly isomorphic to O(p, q). It would be impractical to pro
vide subalgebra lists R(L, C) corresponding to conjugacy 
under each of these groups separately. This gives rise 
to the problem of providing a subalgebra list R(L, C) for 
one of these groups in such a manner that the classifi
cation for any of the other groups can be easily read off 
from the given list. 

A very general and widely applicable principle of 
classification can be stated as a lemma. 

Lemma 1: Given a permutation representation TI of 
the group C on the set }\;], a representative set R(G, TI) 
of the C orbits of At and a subgroup G1 of C, a represen
tative set of the C, orbits of Ai is derived from R(G, II) 
in the form 

R(C1, TI I C1) = {rr(x) 11111 c. R(C, rr) and xc. R[C mod(C1, cull}. 

Here cu={glgc. C and rr(g)1I=u} denotes the stabilizer 
of 11 in C; (Cl , C u) denotes the double module of C formed 
by the two subgroups C1 and Cu, and R(C mod(C1, Cu)) 
denotes a representative set of the double cosets 
C1xCu such that 

C= U C1xCu 
xER[G mod(C 1.c u) 1 

and such that the nonemptiness of the intersection 
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GjxGu r~1 Gj yG u 

(X, Vc: RlG mod(Gj , Gu)]) always implies x = y. 

Proof: If 1Ij and Vj are two Gj conjugate elements of 
R(G j , rr IG j ), then the equations 

1Ij=rr(x)1I, l!j=rr(y)v=rr(J5j)Uj 

with U,I' in R(G, rr),x,y in G,gj in Gj hold. Hence 

l'=ll(y-jgjx)u, 1',lIcR(G,rr) 

and hence by construction v = 11, y-jgjX c::: Gu, y c GjxG u 

and thus -" = x. Conversely, any element I' of i'VI is of 
the form rr(g)lI for some g of G and 11 of R(G, rr). The 
element g is of the form gjxh with some 
xc:: R(G mod(G j , G)), gjC Gj , and hE Gu ' Hence 

l' = l1(gj) I1(x) lI(h) 11 = lI(gj) rr(x) 11 

with rr(x) 11 in R(G j , n IG j). Thus R(G j, rr I Gj) is indeed a 
representative set of the Gj orbits of M and Lemma 1 is 
demonstrated. 

As an application of Lemma 1 set G = 0(3, 2), G1 

=SOo(3,2), let M be the set of all IR subalgebras 
X of LG for which expX is closed, and let rr be the 
permutation representation of G on ,"vI that maps the 
element X of AI on gX!ci·-j for gE G. Then the repre
sentative set R(G, rr) coincides with R(L, G), and 
R(G j , rr IG j) coincides with R(L, Gj). We observe that 
in this case the stabilizer Gx is the normalizer 

NorGX={l?lg=: G and gXg-j=Xr 

of X under G, a closed subgroup of G. We also observe 
that (;j is a normal subgroup of G so that any double 
coset of G modulo (G j, Gx ) is a right coset of G modulo 
the subgroup Gj G x of G containing Cj . 

There are only five such subgroups in the case under 
consideration; consequently there will be at most five 
distinct double coset representative lists 
Rlc mod(G j , Gx)]. In fact, since - 15 is contained in all 
normalizers only two distinct cases must be considered: 

Case I. SOo(3, 2)NorGX=0(3, 2) 

In this case RlG mod(G j , Gx)] consists of the identity 
matrix 15 only for all classification groups. 

Case II. SOo(3,2)NorGX=02(3,2) 

In this case RlG mod(G j, Gx )] consists of 15 for Gj 
=0(3,2), SO(3,2) and OJ(3, 2). It consists of 15 and Alj 

for (;j =SOo(3, 2) and O2(3, 2), where ;Uj is the diagonal 
matrix 

(",,-J 
(with deLHj = - 1, spnMj = - 1). 

In order to complete the classification task for 
RlL,0(3, 2)] in such a way that it can be used with a 
minimum of additional effort to obtain the four derived 
lists for SO(3, 2), OJ(3,2), O2(3,2), and SOo(3, 2) it 
suffices to indicate after each member X of R[L,0(3, 2)J 
to which of the above cases it belongs. If it is case I 
then X will figure in the same manner in all five lists. 
In case II, X will be replaced by two entries, namely 
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X and Alj X;vlj j in RlL,Oj(3, 2)J and RlLSOo(3, 2)J, but 
figures only as X in R[L, SO(3, 2)] and R[L, O2(3, 2)1. 

On the other hand, we can start the classification by 
providing the complete list RlL, SOo(3, 2) J, using con
jugation under the connected group only. The list can 
be organized into subsets of singlets (single members) 
and doublets (ordered pairs). The singlets indicate case 
I whereas the doublets are of the form X, .1IjX;lIj-

j and 
correspond to case II. The singlets figure in the same 
manner in all five conjugacy lists. The doublets figure 
in the SOo(3, 2) and OJ(3, 2) lists, but the second term 
should be dropped in the O2(3,2), SO(3,2), and 0(3,2) 
lists. If a subalgebra X depends on a parameter or 
parameters, then the range of these parameters may 
depend on the conjugating group. All the above comments 
apply in this case too. Thus, in the singlet case the 
range will be the same for all five groups, in the doublet 
case the range will be cut in half for the groups 
O(p,q), 02(P,q), and SO(p,q) but will remain the same 
for OJ(p,q) las for sOo(p,q)l. 

C. Classification procedure for semisimple Lie algebras 

When classifying the subalgebras of a semisimple 
Lie algebra LG we are usually interested in determin
ing the conjugacy classes of subalgebras of LG under 
some group S of automorphisms of LG. Our first step 
is to establish a list of representatives of the S con
jugacy classes of all maximal subalgebras of Le;. This 
makes it possible to make use of already existing clas
sifications of subalgebras of lower dimensional Lie 
algebras. 

To find representatives of all maximal IR subalgebras 
of the given semisimple Lie algebra LG we make use of 
a convenient finite dimensional faithful matrix represen
tation of LG. For the classical real semisimple Lie 
algebras this would usually be the defining representa
tion, e. g., for LO(p,q) the (p+q)-dimensional real 
matrices X, satisfying (2.16), or for LSU(p, q) the com
plex (p + q )-dimensional matrices X satisfying 

XV +D X+=O p,a p,q (3.4) 

(X+ is the Hermitian conjugate of X), etc. 

In the chosen representation the subalgebras of L C; 

will be of two types, namely imbedded reducibly or 
imbedded irreducibly. The two types will be treated 
separately and differently. It should, however, be 
stressed that there is no fundamental difference between 
the two: The reducibility or irreducibility characterizes 
the chosen representation rather than the subalgebras 
of LG. 

7. Reducible subalgebras 

These leave invariant a certain nontrivial linear sub
space of the representation space. To find all reducible 
subalgebras of LG it is sufficient to classify all vector 
subspaces into orbits under the group G, to choose a 
convenient representative for each orbit and then for 
each representative to find the algebra of matrices 
leaving invariant the representative. 

We are aided in this endeavor by the Witt mapping 
theorem31 for quadratic spaces which enlarges conven-
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iently on the earlier Sylvester theory. It is summarized 
as follows. 

A quadratic space (L,{) over a field F not of charac
teristic 2 is defined as a linear space Lover F equipped 
with a symmetric bilinear formf. 

Any F-linear subspace S of L is a quadratic space 
relative to the restriction f I S x S of { to a symmetric 
bilinear form on S. This is a subspace of (L,j), 

Examples: (1) f= 0: L is called an isotropic quadratic 
space. 

(2) dimF L=l, L=Fu, U'FO, f(~u,T/u)=Y~T/ 
(~, T/ c=: F; Y is a constant of F). 

(3) dimF L = 2, L = FUj + FU2, f(~lUj + ~2u2' T/jUl + T/zu2 ) 

= ~jT/l - ~2T/2' L is called a hyperbolic quadratic space. 

(4) dimFL=n<oo, L=FlIj+Fu2+···+Fu., 

f(,Z'Ll~illl' ZZ=j T/kUk) = L,k O'lk~iT/k (~i' T/I E. F; 
i,k= 1 ,2, ... ,n), where A = (O' ik) =AT E. Fnxn is a symmet
ric matrix of degree n over F associated with j (relative 
to the basis 111. ••• ,un)' Its determinant is said to be a 
discriminant of fo If another F basis vk=Zi.jalkui [k 
= 1, 2, .. 0' n; S= (a ik ) E: GL(n, F)] of L is chosen then 
the matrix B = calk) = STAS is associated with j relative 
to it. Its determinant is equal to the determinant of A 
multiplied by a nonzero square element of F that can be 
chosen freely. There is always a basis for which B is 
diagonaL 

(5) L is called a core space if it contains no isotropic 
subspace * O. If F = lR and L is finite dimensional with 
diagonal matrix B = (flii 0lk) associated to j, then L is a 
core space precisely if all Pi; are nonzero and of the 
same sign. L is said to be positive definite or negatil'e 
definite depending on the sign. 

Two quadratic spaces (Xl' fj), (X2, tz) are said to be 
isomorphic if there is an F-linear isomorphism 8 of 
Xj onX2 for whichj2(8x, 8y) =fj(x, y) (x,yc:Xj ). The 
theory is concerned with the classification of the 
quadratic spaces up to isomorphy over F. 

For each subset X of a quadratic space L the subset 

is a linear subspace (UX perp") often called the linear 
subspace of L orthogonal to X. The quadratic space L 
is said to be nondegenerate if L ~ = O. 

The factor space of a quadratic space Lover L ~ is a 
nondegenerate quadratic space with respect to the f
induced symmetric bilinear form f defined by setting 
f(xIL\yIL~)=f(x,y). L is the direct sum of L~ and a 
representative subspace }'"I of Lover L ~ which is iso
morphic to LILJ. no matter how M is chosen. For any 
nondegenerate finite dimensional subspace S of L there 
holds the direct decomposition L=S+~. Here ~ is 
said to be the orthogonal complement of S in L. Con
versely, if for any subspace S of L we have L =5 +-~, 
then S is nondegenerate. If L is nondegenerate finite 
dimenSional, then the mapping of 5 on 5~ is an involutory 
correlation of the subspaces of L. 

Isotropic subspaces of dimension greater than 0 are 
degenerate. The zero-dimensional isotropic space is 
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said to be nondegenerate by definition. A finite dimen
sional quadratic space is nondegenerate precisely if 
its discriminants are nonzero. Hyperbolic spaces are 
nonctegenerate. 

Witt's mapping theorem 36,31 states that any isomor
phism between two subspaces of a finite dimensional 
nondegenerate quadratic space (L,j) can be extended to 
an automorphism of (L,j) 

As a consequence of this basic theorem any nondegen
erate finite dimensional quadratic space L is the direct 
sum of a finite number a of hyperbolic spaces and a core 
space which is unique up to an automorphism of (L, f). 
Hence also a is unique. 

If F = IR and B = (flii 0ik) is a diagonal matrix asso
ciated withf, then TII=1 {311 * 0, and the number p of posi
tive signs, q of negative signs among the signs of the 
n diagonal coefficients flii adds up to 11 so that a=q 
=min(p,q) and the core form is positive definite 
(forp>q). 

For all these statements on quadratic spaces there 
are corresponding statements for symplectic spaces 
and Hermitian symmetric spaces, but without restric
tion on the characteristic of F. 

Let us briefly summarize the implications of Witt's 
theorem relevant for the purposes of this article. Con
sider the algebra LO(p, q) acting on (p + g)-dimensional 
real space Ai (the defining or natural representation). 
The following statements hold: 

1. A subspace .11r C lVI of dimension Y < P + q can be 
spanned by r vectors mutually orthogonal with respect 
to the form 

Put 

(3.6) 

where r., Y., and ro are the numbers of positive, nega
tive, and zero length vectors [with respect to (3.5)], 
in this baSis, respectively. These numbers are inde
pend~nt of the choice of basis. Any two subspaces Mr 
and i'vIr for which r., r., and ro coincide are mutually 
conjugate under the group O(p, g) [and also under 
SOo(p,g)]· 

2. Let }vIr be a subspace invariant under a subalgebra 
A of LO(p, q). If ro? 1, then there always exists an ro
dimensional isotropic (lightlike) subspace of Mr that is 
itself invariant under A. 

3. If r.=r.=l, then there always exists a one
dimensional isotropiC subspace of AI, invariant under 
A. 

4. If Mr is invariant under A, the orthogonal space 
M: is also invariant. If Mr is nondegenerate, then M/ 
is its orthogonal complement. 

2. Irreducible linear Lie algebras of finite degree and 
zero characteristic 

In studying the subalgebras of one of the linear Lie 
algebras attached to the fundamental groups, e. g. , 
SU(2,2), often the question comes up which are the ir-
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reducible ones. Here LSU(2, 2) is defined as a Lie 
algebra of dimension 15 over the real number field, but 
the representation is of degree 4 over the complex 
number field. Most generally we ask what are the Lie 
algebras L over a field F of zero characteristic that 
are irreducibly embedded into the Lie algebra LEnxn of 
finite degree n over some field extension E of F. 

Here irreducibility means that the n-column space 
E nxl over E serving as representation space for L acting 
on E nxl by multiplication on the left contains no E -linear 
subspace invariant under L other than the trivial sub
spaces E nxl and O. 

According to Ref. 36, any nilideal of the linear Lie 
algebra EL over E is null. For example [EL, Rad(ELll 
is a nilideal. Hence [EL, Rad(EL)] = O. Since Rad(L) 
c;: Rad(EL) it follows that [L, Rad(L)] c;: [EL, Rad(EL)] and 
hence 

[L,Rad(L)]=O, (3.7) 

[Rad(L) denotes the radical of L, i. e., the maximal 
solvable ideal of L.] We see that Rad(L) belongs in this 
case to the center CL of L (for L irreducible). By 
Levi's theorem it follows that 

L=CL+DL, (3.8) 

where CL =Lo is the center of Land DL is a semi
simple Lie algebra. By the first structure theorem of 
Cartan-Killing 

DL=LL,L]=6
8 

L;, 
; 01 

(3.9) 

where L 1, •.• ,L8 are the minimal ideals of DL. They 
are finite dimensional simple Lie algebras over F. 

According to Schur's lemma the centralizer algebra 
of L in E nxn, 

CEnxn(L)={xIXc:c:Enxn and 'ft Y(Yc:c:L=XY=YX)} 

= C Enxn(EL), 

is a finite dimensional division algebra over Ein. It con
tains ELo + Ein' If it is larger than EIn, then it contains 
a maximal finite extension El of Ein of degree m> 1. 
The E-linear space E nx1 also is an E 1-linear space, 
but of dimension n/ m less than n. Since El commutes 
elementwise with L acting on E nxl it follows that L 

also is irreducibly embedded into the full linear Lie 
algebra of degree n' = n/ mover El so that a degree 
reduction is obtained when making the transition from 
E to E 1. Because of the maximality of El we have 

(3.10) 

This condition is tantamount to the absolute irreduci
bility of the E 1-linear Lie algebra ElL. In particular 
we have 

Lo' E1In • 

The obvious relations 

[L;, L k ] = l3;kL; (1"" i"" 1?"" s) 

imply the relation 

[ElL;, EtL k] = l3;k ElL; (1 "" i "" lz "" s) 
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(3.11) 

(3. 12a) 

so that 

ElL =E1LO + 6 8 
ElL;, 

;01 

D(E1L) = 6 ElL;, 
;01 

(3. 12b) 

(3. 12c) 

(3. 12d) 

and the E-linear algebra D(EL) is semisimple and 
absolutely irreducible. 

If s> 1, then the natural representation Ll of EL over 
E is equivalent to the Lie-Kronecker product of s abso
lutely irreducible representations Lll' Ll2, • .• , Ll8 of EL 
of degree n; over E such that 

11; > 1 (1"" i ~ s), 

8 

n'= n n 
101 t, 

Ll j (E1L k )=0 if 1?*i (i,k=I,2, ... ,s). 

Thus the general discussion comes to an end. 

(3. 13a) 

(3. 13b) 

(3.13c) 

In practice we have to consider mainly the three cases 

I. F=E=(f; 

II. F=IR, E=(f; 

III. F=E=IR. 

Moreover, the problem arises in conjunction with the 
classification of subalgebras of certain semisimple Lie 
algebras. Since a semisimple Lie algebra always coin
cides with its derived algebra, it follows that all 
matrices of a semisimple linear Lie algebra are of 
zero trace. Thus we make the additional request 

TrX=O (3.14) 

for all X of L. Under these circumstances we find 

Lo = 0 in cases I and II, 

Lo = 0 or Lo is compact of dimension 1 over IR in 

case III. 

In case Lo is one-dimensional over IR the matrices of 
Lo commute elementwise with L so that the square of 
each nonzero element of Lo is of the form negative 
real number times identity matrix and L is not abso
lutely irreducible. 

Let us consider several special cases. 

a. Application to de Sitter algebras LE = LO(3, 2) or 
LO(4, 1): Here we have F=E=lR. We observe that n=5 
is an odd prime number so that the natural representa
tion of L is absolutely irreducible and s = 1. Also 
Lo = O. In this case L is of dimension less than 10 over 
IR and must be a simple absolutely irreducible linear 
Lie algebra of degree 5 over lR. Hence L = C@ L is a 
simple Lie algebra of dimension less than 10

R
and of 

degree 5 over C. It can only be of type Al so that either 
L"" LO(2, 1) or L"" LO(3). But in the latter case L leaves 

IR IR 
invariant only one quadratic form up to a factor of pro-
portionality and that is bound to be positive definite. 
However L also is contained in LG so that L leaves 
invariant an indefinite quadratic form in five variables. 
Thus we need to discuss only the case L '" LO(2, 1). 

IR 
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Denoting by ..:l3 the natural representation of LO(2, 1) 
we see that ..:l3CS..:l3 ~..:l1 EB..:l3EB..:lS' where..:lt is the null 
representation of LO(2, 1) of degree 1, ..:l5 is an irreduci
ble representation of LO(2, 1) of degree 5 over IR. Hence 
..:la:5 ..:l3 leaves invariant a quadratic form of signature 
(2' 2 + 1,2 0 1 + 2' 1) = (5, 4), ..:It EBA3 leaves invariant a 
quadratic form of signature (2,2), A5 leaves invariant 
a quadratic form of signature (3,2). 

Result: There is preCisely one proper IR subalgebra 
of LO(3, 2), up to conjugacy. It is IR isomorphic to 
LO(2,1). There is no proper irreducible IR subalgebra 
of LO(4, I). 

b. Application to LO(2, 2): In this case we proceed 
"structurally," We have 

LO(2, 2) ={xlxr=: IR4x4 and XTD +DX= O} 

for 

D~ C' -, _,) 
The matrices X of LO(2, 2) are of the form 

X= (_Ob ~;O· ~;) (b,c,g,h,j,kEIR), 
g j c 
h k - c 0 

spanned over IR by the six independent matrices 
B, C, G,H, J,K which are obtained by specializing 
b, c, g, h, j, k to be 1 in turn, all other parameters O. 
Choosing the new basis 

At = (J + H)/2, A2 = (G - K)/2, A3 = (B + C)/2, 

B1 = (J - H)/2, B2 = (G + K)/2, B3 = (B - C)/2, 

we verify by direct computation that 

[Ai' Bkl = 0 (i, I? = 1,2,3) 

and that 

LO(2, 2) =A 'fi B, 

A =lRA l + lRA t + lRA3 '=-B =lRB j + lRBz + IRB3 

~ LO(2, 1) ~ LSL(2, lR) 

We use the Goursat twist method38 and represent the 
0(2,2) conjugacy classes of semisimple subalgebras 
of 0(2, 2) by 

(1) LO(2,2), 

(2) A, 

(3) lR(A1 + B l ) + lR(A2 + B2) + lR(A3 + B3) '=- LO(2, 1), 

(4) lR(A1 + B1) + lR(A 2 - B2) + lR(A3 - B3) ~ LO(2, 1). 

Of these (1) is absolutely irreducible semisimple, not 
simple; (2) is reducible simple with two equivalent 
constituents; (3) and (4) are reducible simple with two 
constituents of degree 1 and 3, respectively. Applying 
the Goursat method we obtain another subalgebra 
A Ell lR B 3 which is irreducible and not absolutely 
irreducible. 

Result: There is precisely one proper irreducible lR 
subalgebra of LO(2, 2), up to 0(2,2) conjugacy. It is 
lR isomorphic to LO(2, 1) (p LO(2). Under 80(2,2) con-
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jugacy there are two such subalgebras, the second one 
being IRA3 EB B. 

Thus, methods exist for finding all maximal subalge
bras, both the irreducible and the reducible ones. Once 
we have a list of representatives of all maximal subal
gebras of LG we proceed to find their subalgebras. For 
those maximal subalgebras that are semisimple we pro
ceed in the same manner as for the original algebra. 
For the nonsemisimple maximal subalgebras we use a 
classification algorithm, making use of cohomology 
theory, presented in an earlier publication. 3 We thus 
obtain lists of representatives of all subalgebras of 
each maximal subalgebra LH

j
, each classified under 

the Lie group H j generated by the corresponding maxi
mal subalgebra. 

Two tasks still remain. The first is to further reduce 
the representative lists of subalgebras of each maximal 
subalgebra LHj , this time making use of conjugation 
under elements of G, not contained in H j • This is not 
hard to do. It is very helpful to construct the eigenvalues 
and eigenspaces of the matrices corresponding to each 
subalgebra. If the eigenvalues for different subalgebras 
of the same dimension coincide and the eigenspaces can 
be mapped into each other by a g transformation, then 
such subalgebras must be investigated for conjugacy, 
The second task is to merge all the different lists of 
subalgebras for each LH j into a single list for LG. This 
involves finding all conjugacies between the different 
lists and thus making sure that in the final list each 
subalgebra is represented .i ust once. This task is great
ly facilitated by producing "normalized lists of 
subalgebras. " 

D. Normalized lists of subalgebras and the merging of 
several lists into a single one 

Let us again consider an arbitrary Lie group G and 
its Lie algebra LG. We first seek a representative set 
Roo(L, G) of the G conjugacy classes of maximalIR 
subalgebras of L G up to G conjugacy. Each of the ma..xi
mal subalgebras LH j will either be self-normalizing, 
i. e., we have L Norc(LH) = LH j for LH j in Roo(L, G), 
or its normalizer will be the entire group G (this is 
not possible if G is simple). By induction over the di
mension we base the construction of the list R(L, G) on 
the assumption that the lists R(L,Hj ) are already known 
or at any rate easier to deal with than the list R(L, G) 
would be by a direct approach. We must, however, now 
face the problem of the mutual overlapping of different 
lists, It can and does happen that one and the same IR 
subalgebra X is G conjugate both to a member Xl of 
R(L,H1) and to a member X 2 of R(L,H2 ), where LH j 

with j = 1, 2 are two different G nonconjugate ma..ximal 
subalgebras of LG. The problem now is to find all such 
conjugacies and choose the one single most appropriate 
representative. 

In order to alleviate the task of partially merging 
several smaller lists into one comprehensive list we 
make use of a normalized list of representatives. 

Definition: The representative set R(L, G) of the 
conjugacy classes of lR subalgebras X of LG under a 
Lie group G such that expX is closed in G is said to 
be normalized if the normalizer 
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NorLGX={alaELG and [a,X]C;;:X} 

of X in LG occurs in R(L, G) jOintly with X. 

We make use of the following lemma. 

Lemma 2: For any Lie group G a normalized list 
R(L,G) exists. 

Proof and method of construction: Our immediate goal 
is to produce a well-ordered list of representatives of 
the self-normalizers in LG under G conjugacy, say the 
list Ro(L, G). Its first member will be LG. Before we 
proceed with the construction of Ro(L, G) we produce a 
well-ordered list of representatives of the G conjugacy 
classes of maximal subalgebras of LG that are not 
ideals of LG, say the list R.I/(L, G) [if LG is simple, 
then R.I/(L, G) =Roo(L, G)]. 

Any maximal subalgebra ;'VI of LG that is not an ideal 
of LG is a self-normalizer in LG. Moreover, it is the 
Lie algebra associated with Norc(M). By induction over 
the lR dimension, we may take for granted that for 
each member ;'vI of R.If(L, G) we have available already 
a well-ordered list of representatives Ro~vl,Norc(JJ)) 
of the Norc(Al) conjugacy classes of the self-normalizers 
in L Norc(ivI). 

The desired list Rn(L, G) is obtained as a partial 
merging of LG with the lists Ro~11 ,Norc(M)), as follows. 
For the first member of RM(L, G), say Mu drop from 
the list Ro~l1l' NorCe'l l )) all those members which have 
a normalizer larger than themselves in LG. Among the 
remaining members of the list drop all those that are G 
conjugate to earlier ones. The remainder is joined to 
LG to form the new initial segment of Ro(L, G). If R\f(L, 
G) had just one member, then we have completed our 
task. 

If there is a second member of the list R.I/(L, G), 
say.112 ' then we drop again all members of the list 
Rn(M2' Nor c(M2)) which do not self-normalize in LG. 
But among the remaining members of the list we drop 
all those that are G conjugate to earlier members of 
R oCH2' Nor c (M 2 )) or to any member of the initial segment 
of Ro(L,G). What remains of R oC112 ,Norc (11 2 )) is joined 
to the initial segment of Ro(L, G) forming a new larger 
initial segment of Ro(L, G), since at least M2 itself will 
have survived. Going through the whole well-ordered 
list RM(L, G) our screening and partial merging method 
produces the desired self-normalized representative 
list Ro(L, G). 

We observe that each member X of Ro(L, G) is the Lie 
algebra associated with Norc(X). By an induction argu
ment over the dimension we assume that there is al
ready available a normalized representative list R (X, 5) 
of the 5 conjugacy classes for each closed subgroup 5 
of G such that X = LS ~ LG. Let X either be a member of 
Ro(L, G) that is distinct from LG or let X be a proper 
lR ideal of LG such that expX generates a closed sub
group of G. Let 5= (expX). 

Our next goal is to produce a normalized sublist 
Rl (X, G) of R (X, S) representing the G conj ugacy classes 
of the subalgebras Y of X which are connected with X 
via the LG normalizer chain 
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(3.15) 

formed by the higher normalizers of X in LG. 

Note that an lR ideal of X is S conjugate only to itself. 
Thus the additional work involved in computing R1(X, G) 
is substantially less than we had to do to find R(X,S). 

We achieve our goal upon removal from R(X,S), at 
step (1), all members Y*X for which NorLC(Y) ~X, at 
step (2) all members Y*X of the reduced list for which 
NorLc(Y) does not belong to the reduced list, and sub
sequently we continue as at step (2). After a finite num
ber of steps the desired sublist R1 (X, G) emerges. It 
is normalized because R(X,S) was normalized to begin 
with. 

Now we form the desired list R(L, 0) as the direct 
union of LG, of all lists R1 (X, 0) for the proper lR ideals 
X of Le;, and of all lists R,(X,C;) for the members X 
of Ro(L, C;) distinct from LG. Since the application of the 
conjugation by an element g of G to (3.15) produces the 
conjugate LG normalizer chain 

gr:!;-l=!;Yl!;-l -NorLC (gy1 !;-1) 

(3.16) 

it is clear that no two distinct members of R(L, G) are 
o conjugate. On the other hand, any subalgebra Yof 
LG either is LG in which case it does itself occur in 
R(L,G), or we have Y'LG and in that case there is an 
LG normalizer chain (3.15) such that either Xis a pro
per ideal of LG or else Xis a self-normalizer *LG. In 
the first instance Y is a g conjugate (for some element 
g~ G) to a member of Rl(X, G). Hence gl"g-l belongs to 
R(L,G). In the second instance Xis g conjugate (for 
some element g~' G) to a member gXg- 1 of R,,(L , G). 
Because of (3.16) there is an element s of S =\expX) 
such that Y is s conjugate to some member of R(L, S ) 
which survives the screening so as to occur also in 
R(L,G). 

IV. MAXIMAL SUBALGEBRAS OF LO(3, 2) 

Following the algorithm discussed in Sec. III we 
proceed to construct a representative list of 0(3,2) 
conjugacy classes of maximal subalgebras of LO(3, 2). 
Since LO(3, 2) is a simple Lie algebra, each maximal 
subalrrebra is self-normalizing. We consider the defin
ing fi~e-dimensional real rep;esentation of LO(3, 2) 
and make use of botl) realizations discussed in Sec. II B. 
Thus, we have a real five -dimensional vector space with 
an invariant quadratic form 

(x ,.II) = (xD 3 ,2Y) = XLVI + X2,'2 + X3)'3 - \',1,L, - "y, (4.1) 

or 

(x,), )K= (,K5y) = XIY5 + X 2Y4 + X 3Y3 + '4.1'2 + X 5Yl' (4.2) 

Realization (4.2) is convenient when we are dealing 
with lightlike (isotropic) subspaces, otherwise we use 
realization (4.1). 

A. Reducibly imbedded subalgebras 

Let us first find all reducibly imbedded subalgebras, 
leaving (by definition) a certain linear vector space 
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invariant. We make use of Witt's theorem and charac
terize the subspaces simply by their dimension rand 
signature (r., r_, ro) (with r==r.+r_+ro). Here r., r_, 
and ro are the numbers of positive length (spacelike), 
negative length (timelike), and zero length (lightlike or 
isotropic) vectors in any orthogonal basis for the sub
space and the length (x,x) is defined by the form (4.1). 
Let us choose a convenient representative for each type 
of subspace and run through all the possibilities. 

1. One-dimensional subspaces 

Ai' Timelike [signature(-)]: We choose the basis 
vector T in the form 

(4.3) 

The condition X{ T} C;;; {T}, where {T} is the vector space 
spanned by T and X is given by (2. 1 7), implies e = g = j 
= d = O. We thus obtain the LO(3, 1) Lie algebra of the 
homogeneous Lorentz group. The usual basis for this 
algebra consists of the three rotations 

Ll=-C, L2=B, L 3 =-A, 

and three boosts (generators of proper Lorentz 
tr ansfor mations) 

They satisfy the commutation relations 

(4.4a) 

(4.4b) 

(4.5) 

A 2 • Spacelike [signatllye (+)]: We choose the basis 
vector 5 in the form 

(4.6) 

The condition X{S} C {S} implies b = c = j =" == 0 in (2.17) 
and we obtain an LO(2, 2} algebra. Making use of the 
isomorphism LO(2, 2} ~ LO(2, I} EP LO(2, I} we can choose 
a basis in the form 

H-E F+G A+D 
A 1 =-2-' A ---, A ---, 2- 2 3- 2 

H+E F-G A-D 
B 1=-2-' B2=-2-' B3=-2-

The commutation relations are 

[Au A 2] = -A3' [A3 ,A I l =A2' [A2,A31 =Au 

[BI ,B21 = - B3, [B3,B1l =B2, [B2,B31 =BI , 

[ApBkl=O (i,k=1,2,3). 

(4.7a) 

(4.7b) 

(4.8) 

A3. Lightlike [signature (O}l: In this case we use the 
realization (2. 22), corresponding to the quadratic form 
(4.2). A lightlike vector can then be chosen in the form 
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(4.9) 

The condition X K{L K} C;;; {L K} implies p = r = t = 0 in 
(2.22). We obtain a seven-dimensional subalgebra, 
namely the Lie algebra LSim(2, 1) of the similitude 
group Sim(2, 1) of three-dimensional Minkowski space 
(i. e., the six-dimensional Poincare group extended by 
dilations). A convenient physical basis consists of the 
rotation L 3 , two boosts Kl and K 2 , time translations 
Po, space translations P, and P 2 , and the dilation F. 
In terms of the two matrices (2.17) and (2.22) we can 
identify the generators as 

, Q-S -L+N 
F, L3 = c:; = v'2 ' PI) = D + E = 2 .' 

Q S ;\1 
K =J= - - , P1=-B+K=--;= 

1 vi 2 V 2 

L+N 
Kz=G, P 2 =-A+H=--2-

(4.10) 

(the matrices F and G figure in both realizations). The 
commutation relations are 

[K1,K2 )= -L 3 , [L 3,KI)=K2 , [L 3 ,K21= -K1, 

[L 3 ,Pol=0, [L 3 ,P1]=P2 , [L 3 ,P2 ]= -P" 

[K1,PO]=P1, [K1,PI1=Pa , [KI ,P2 ]=0, 

[K2 ,PO]=P2 , [K2 ,P1l=O, [K2 ,pzl=po, 

[F,L 31 = [F,KI1= [F,K2 j= [p~ ,pJ = 0, 

[F,p"l=-P~ (J.1.,v=0,1,2). 

2. Two-dimensional subspaces 

(4.11) 

B 1 • Timelike [si{{nalure (- - )]: We choose the space 
in the form 

(4.12) 

where t and II are real, - 00 < I, II c~ ex). The condition 
X{TTt;;::{TTt implies e=/={{=Iz=j=!?=O in (2.17) and 
we obtain the Lie algebra LO(3) LO(2) generating the 
maximal compact subgroup of 0(3,2). A convenient 
basis is 

(4.13) 

B z• SpaceZike [si{{naIIlYe (+ +)): We choose the space 
in the form 

(4.14) 

where y and z are real, - 00 < y, z < ex). The condition 
X{SS}C;;;{SS} implies a=b=g=j=lz=k=O in (2.17) and 
we obtain the algebra LO(2) EP LO(2, 1). A convenient 
basis is 
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(4.15) 

B3. Lightlike [signature (00)]: We use the (2.22) reali
zation of 0(3,2) and choose the space in the form 

(4.16) 

The condition X K{LL }K ~ {LL}K implies r = s = t = 0 in 
(2.22). We obtain a seven-dimensional Lie algebra 
generating a group that we shall call the "optical 
group," Opt(2, 1). The reason for this terminology is 
that when 0(3,2) is considered as the conformal group 
of a (2 + 1) -Minkowski space, then Opt(2, 1) is the sub
group that leaves a lightlike vector space in Minkowski 
space invariant. 39 

The structure of the Lie group Opt(2, 1) is 

Opt(2, 1)- {D~ SL(2 ,Rn=:J Wu (4.17) 

where D is a dilation transformation and W l is the Weyl 
group in one dimension (its Lie algebra is isomorphic 
to the algebra generated by a linear momentum p = 
- ia/ax, a coordinate x and a constant). The symbol 
LJ in (4.17) indicates a semidirect product with the 
invariant subgroup on the right-hand side. A convenient 
basis for the Lie algebra LOpt(2, 1) expressed in terms 
of the generators X K and X of (2.22) and (2.17) is 

F+G F-G 1 
W= --2-' K l "'-2-' 1'vl= ff (B -K), 

L+P E+H 1 
K 2 "'-2-=--2-' Q= v'2(C-J), 

L-P A-D A+D+E-H 
L 3"'-2-=-2-' N= 2 

The commutation relations in this basis are 

[K l ,K2 ]= -L 3 , [L 3,KlJ=K2, [L 3,K2]= -Kl , 

[lVl,Q]=-N, [M,N]=[Q,N]=O, 

[KuM]= -~lvl, [Kl,Q1=~Q, [K"N]=O, 

[K2,M]=~Q, [K2,Q]=~M, [K 2 ,N1=0, 

[L3,M]=-~Q, [L3,QJ=~M, [L 3,N]=0, 

[W,Kl ]=[W,K2J=[W,L3J=0, [W,M]=~M, 

[W,QJ=~Q, [W,N]=N. 

(4.18) 

(4.19) 

The subalgebra {K"K2 ,L3,M,Q,N} generates the Schro
dinger group Sch" i. e., the invariance group of the 
one-dimensional time dependent Schrodinger equation. 11 

Thus, we have obtained six maximal subalgebras of 
LO(3,2), all imbedded reducibly in the considered 
representation. It is easy to see that these are the only 
ones. Indeed, as stated in Sec. III C, if a two -dimen
sional subspace of signature (+ -), (+ 0), or (- 0), or 
a three-dimensional subspace of signature (+ + 0), 
(+ - 0), or (- - 0) is invariant under some subalgebra, 
then the same subalgebra also leaves a one-dimensional 
subspace with signature (0) invariant. The corresponding 
subalgebra is hence not maximal but a subalgebra of the 
similitude algebra S. If a (+ + +), (+ + -), or (+ --) 
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subspace is invariant, then its orthogonal complement 
is invariant. The corresponding subalgebras coincide 
with those considered earlier. A (+ 00) invariant sub
space leads to a subalgebra of the algebra leaving a 
(00) space invariant. Similar comments hold for all 
possible four -dimensional invariant subspaces. 

B. Irreducibly imbedded subalgebras 

It was shown in Sec. III C that the LO(3, 2) algebra in 
the considered representation has one irreducibly im
bedded subalgebra, namely LO(2, 1). In the (2.17) 
realization the generators of this subalgebra can be 
written as 

(4.20) 
To summarize: The algebra LO(3,2) has seven 0(3,2) 

classes of maximal subalgebras represented by formulas 
(4.4), (4.7), (4.10), (4.13), (4.15), (4.18), and (4.20). 

Our next step is to classify the subalgebras of each 
maximal subalgebra, this time with respect to conjugacy 
under the Lie group, generated by the corresponding 
maximal subalgebra. To simplify the final merging 
into one list of representatives of 0(3,2) classes of 
subalgebras we shall produce normalized lists of sub
algebras. A further simplification is achieved by an 
appropriate ordering of the maximal subgroups. 

The ordering we shall use is: 

(a) the similitude group Sim(2, 1), 

(b) the optical group Opt(2, 1), 

(c) the maximal compact subgroup 0(3)::0(2), 

(d) the group 0(2) YlO(2, 1), 

(e) the group 0(2,2), 

(f) the Lorentz group 0(3,1), 

(g) the irreducible subgroup 0(2,1). 

Thus, we first list representatives of all subalgebras 
of LSim(2, 1). By construction, each of them leaves a 
lightlike vector invariant. Some subalgebras may have 
higher normalizers lying in another maximal subalgebra. 
In the final listing these will be removed from the 
LSim(2, 1) list to the list containing the higher normal
izers. Next, we consider subalgebras of the algebra 
LOpt(2,1). In the final list we must omit those sub
algebras, that are also contained in LSim(2, 1) and also 
those that have a higher normalizer in a maximal sub
algebra that has not yet been considered. Thus we pro
ceed through the entire ordered list. 

A general element of the optical algebra LOpt(2, 1) can 
in the realization (2.22) be written as {! I '" 

II 0) P -g If 0 -n 
X- 0 0 0 -q - III . (4.21 ) 

o 0 0 (T -/ .-' 

0 0 0 -i) f 
The element X will also be contained in LSim(2, 1) if 
X leaves a lightlike vector invariant. The condition for 
this not to happen is that the matrix 
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y=(-f l ) 
P -g 

should have no real eigenvalues 

,_ -f-g±[(f_g)2+4lp]1/2 . 
1\ - 2 

A necessary condition for this is that lp <::: O. By inspect
ing the subalgebras of GL(2,R) (the matrix y) we see 
that there are exactly four subalgebras containing 
elements for which lp< D. In the notations of (4.18) 
these are {W,Ku K 2,Ls} generating GL(2,R), {KUK2,L3} 
generating SL(2,R), {L3} generating 0(2), and {L3 + aW} 
with a* 0 generating a covering group of 0(2). All sub
algebras of LOpt(2, 1), the intersections of which with 
GL(2,R) do not coincide with one· of the above four 
algebras, should be eliminated from our final ordered 
list [since they are already contained in LSim(2, 1)]. 
The only exceptions are those subalgebras that have their 
normalizer in LOpt(2, 1) and not in LSim(2, 1). Subalge
bras of LO(3) EB LO(2) and of LO(2) EB LO(2, 1) should be 
considered next and those already contained in LSim(2, 1) 
or LOpt(2, 1) eliminated by inspection, as well as those 

TABLE IV. Subalgebras of the similitude algebra. 

Name and 
range of Isomorphism 

with normalizers elsewhere. The subalgebras of LO(3, 1) 
and LO(2,2) already leave a timelike or a spacelike 
vector space invariant, respectively. Those imbedded 
reducibly in LO(3, 1) or LO(2, 2) will leave some addi
tional space invariant and thus already be contained in 
the previously considered maximal subalgebras. Hence 
the only subalgebras that will figure in the final list are 
those imbedded irreducibly in the corresponding four
dimensional representation. Of these LO(3, 1) has none. 
LO(2, 2) just one-the previously established LO(2) 
EB LO(2, 1) subalgebra of LO(2, 2). The maximal sub
algebras LO(3, 1) and LO(2, 2) themselves of course 
survive in the list. Finally, all nontrivial subalgebras 
of the irreducible LO(2, 1) are imbedded reducibly in 
LO(3,2). Hence they have already been classified. 

It follows from the above discussion that we need a 
complete classification of the subalgebras of the first 
maximal subalgebra in our ordered list and only partial 
lists of all the other ones. However, since each of the 
maximal subgroups of 0(3,2) is in itself of phySical 
interest, we shall classify all subalgebras of each 
maximal subalgebra and only in the end eliminate the 
overlap. 

Maximal 
parameters Generators class Normalizer Invariants subalgebras 

a1,1 F;Kl,K2,Ls,PO,Pl,P2 LSim(2,l) self (K1 P 2 -K2P j- L 3P OJ'j ae,1,a6,2,a!),7, 
(Pa-pr-PP a4,4 

aG,j ;Kj,K2,L3, LE(2,l) a1,j pij-pr -P~, as,l,a4,3,a3,24 
P O,Pj ,P2 K jP 2 -K2P j - L 3P O 

a6,2 F,K2; FDA~'3o self none as,1,aS,2,aS,3' 
Kt -L3,PO, P 1,P2 ag,4,as,5,aS,6 as,s 

a 5,1 K 2;L3 -Kj , 
P O,P1,P2 

A~,30 a6,2 pij-pr -P~ a4,1 ,a4, 7, a4,14 

a5,2 F-K2; A;!30 a 6,2 P O-P2 a4,2,a4,7,a4,13 
-Kt +L3,PO' P j 'P2 

a5,3 F+K2; A,30 a 6,2 (P~-Pr-P~)j a4,2,a4,7,at12, 
-Kj +L3,PO,Pj'P2 (Po -P2) a4,j8 

~,4 F+aK2; AI/a as,2 (P0-P2)2I(1+alj a4 t 7, at::1Q. a~,15' al,16 (a:::= ~) 5,30 
a>'O,±l -Kj +L3,PO,Pj'P2 (P5- P r -P~) 

a 5,5 F,L3 -Kj ; 

P O'PI>P2 
Ag,32 126,2 (Pij-Pr-PP/ 

(Po - P 2)2 
a4,7,aJ,S,a4,9. {14,14 

a 5,6 F,K2;PO, Af,~~1/2 self (Pij - Pf - p~)j pi a4,1,a4,2,a4.S' 
P 1,P2 a4,6' a4, 9' at10 

a5,1 F,L3;PO'Pt , P 2 A~:~5 self (Pij - Pt - p~)j pij a4, 3, a4, 9, a4,11 , 

a4,17,a3,5 

a5,8 F,K2;L3 -Kj• A 5,36 self [(l,3 - KI)Pj/ a 4•5 ,i24,5,a4,1:3' a4,lh 
Po -Pz, PI (P0-P2)]+K2-F li4,14,at15' Q4,18 
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TABLE IV. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

a4,1 P I83 41 ttl A 3,4 as,s PI,Pb -P~ a:3,1 ,a:), 2' a 3,1:3' a1,U 
{K2;PO,P2} 

a4,2 p o-P283 AI El:J A¥.5 a5,s P O-P2, a3,1,a;J,G,a:l,7' 
{F-K2;PO +P2,PI} {Po+P2U pl a3,lG,a~t17 

a4,3 P Ottl{L3;PI ,P2} A I83Al,6 a 5,7 po,pl+p~ a:3,l' a;J, 21, a~,22' a2,:J 

a4,4 FEl:J{;KI , K 2, L 3} A I\:jjA3,8 self F,Kl+K~ -L~ a 3,.3,a3, 24' az, 7 

a4,5 {K2;PO _pJ83 A 2@A2 self none a3,2' a3, 3,a 3,4' a 3,'l' 

{F-K2;PI} a:), 10, a3,l~' a:l,U;' ~,18 

a~.5 {F;P o -PJEB{F A2t±7 A2 self none ll3,2,a 3,;J,a:3,4' a'l,7,a:I,10' 

-K2,L3 -KI} 
...., - .we 
a3,15,a:J,lC' a3,19 

a4,6 {F+K2;PO-PJt±7 A2wA2 self none a l,:l,a'l,~;,a:lt12' 
{F-K2;PO +P2} (l:),L3,~,20 

a4,7 L 3-KIo P O+P2; A 4,1 ae,2 PO-P2'P~ € -
a:3,1 ,a~1,8' a 3,25 

Po -P2,PI -pl-p~ 

ats F+E(L3- K I); A 4,4 a 5,5 {Po - P 2)2/ (P5 -pi - P~), a3,1 ,a~,9 
E=l [E = ± 11 P o,lf'P2 {Po -P2)€exp(Pl/ (P2 -po)J 

a4,9 F;PO'PIo P z AI,I 
4,5 a 7,1 PI/PO, P 2/P O a3,1,a3,10, 

a3,11 ,a:1,12 

as 10 F-bK2; AI!O-b), (l+b)/O-b) as,s Pi! (Pij -pi - p~), a, I a'l l'(b = 2) 

b >0, '" 1 P O,PI ,P2 
4,5 

plb(Po - P 2)/ (Po+ P 2) 
ab' ' ;~bU 

:1,19, '1,20 

at 11 F+ bL3: Al/b,1! b a s,7 P5! (Pi I- pl), {Pi + p~)b a'l 1,a~ ')'j, 4,6 
b > Orb '" oj P O,PI ,P2 {PI' ip,)i {PI - iP2)-i t a~:1~7 

atl2 F+ K2 + E (Po+P2); A4,7 as,3 none at17,a3,25 
E=l*[E=±lJ -KI+L3,PO -P2,p! 

a4,13 F-K2: A 4,8 a s,8 P O-P2' (Po-P2) (F - K2) a3,7,a3,7,a3,25 
P O-P2, -KI +L3,PI -PI (-KI +L3) 

a4,14 K 2,P!: At9 a5,8 none a3,2,a~,3,a3,10' 
:-- KI+ L 3,PO -P2 a3,25 

a4,14 F, -KI +L3; At9 
,.,. -I; .... -

a 5,8 none a:3,2, a:{, 9, a,~, 1 0' a 3, 25 

P I ,PO-P2 

at!5 O<lbl<l F+bK2: -K! +L3' Al9 a 5,8 none a 3,15(b 0 - 2) ,G'l,15(b ~ -}), 
h:b,lbl<l 

b ;:'b -

[b "0 ,± 11 P O-P2,P! 
h = b-!, I b I > 1 

a:l,lS,aJ,lS,a.l,25 
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TABLE IV. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

at16 F+~K2;-Kl +L3 Al/ z a 1/ Z none a~,S,a~,IS' a1;f9 4,9 5,4 
€=1*[€=±11 +dPo+Pz), P O-PZ'P1 

a 4,17 F,L3;Plo P Z A 4,IZ self none a 3,11,a3,Zl> 
~,Z3,aZ,7 

a4,IS = b4,5 F+Kz; -Kl +L3, Al,s b7,1 none a3 • .!.6,a 3,16' 
Po -PZ,Pj a 3,Z5 

a3,1 P O,P1,PZ 3A1 a7,1 PO'PloPZ aZ,2,a2,h a Z,5 

a3,Z P1El:i{Kz;~o-pJ A 1EBA z a4,5 PI ;;2,1 ,aZ,2' a2,l1' 
a!,IZ 

a 3,z -Kl +L3 EB A 1EBAz a4,5 -Kl +L3 aZ,l' Q:Z,2' a2,1!' 
{F; Po -pz} atlZ 

a3,3 FEB {Kz; -Kl +L3} Al EB A z self F aZ,l,aZ,6,aZ,10' 
a~,14 ,a~,15 

a3,3 K zEB{F;P1} A 1EBAz self K z llz, 1, az, 6' li 2, 10' 

aq,14,a2,15 

a3,4 F-KzEB A 1@Az self F-Kz az 6,aZ s,az 11' 
{F+Kz;Po -pz} '... 'd ~ --

a2,11 , aZ,18' 02,21 

a3,5 L 3':B{F;Po} ~EBAz self L3 az 3,aZ r,az 13' , q' , 
a ,17 

a3,6 Po-Pz@ A 1EBAz a4,6 Po-Pz aZ,5 ,az,s, a~,19' 
{F-Kz;Po+Pz} 1iz,zl 

a3,7 Po -Pz@ 
{F-Kz;P1} 

A 1EBAz a4 .5 Po-Pz aZ,2,a2,8,a2,15' 

a~,16 

a3,7 P O-P2 A 18Az a4,5 Po-Pz - -1 a Z,2 ,a2,g,aZ,15' 
{F- Kz; -KI +L3} a~,16 

a'3,S -Kl +L3 +E (Po+Pz), A 3,1 aY,a Po-Pz aZ,2 ,~,9 
E = 1 * [E = ± 11 P 1;PO-PZ 

a3,s K z - EP1; A 3,z a4,14 (Po-Pz)"" exp{(-K1 - , 
aZ,Z,aZ,IZ 

E = 1 [E = ± 11 -K1+L3,PO-PZ + L 3)/ (Po -pz)} 

a3,s F+ E (-K1+L3); A 3,2 a4,14 (Po-Pz)~' -, 
aZ,2,aZ,12 

E=l [E = ± 11 Ph Po -Pz exp{P1/ (P 0 - P z)} 

a3,10 K z; -Kj +L3' A 3,3 a 5,s (-K1 +L3)/ aZ,2' aZ,10' a2, 11 
Po-Pz (Po -Pz) 

a3,10 F;PhPO-PZ A 3,3 a 5,s P 1/(Po-PZ) az,z ,aZ,10,aZ,1l 

a 3,1l F;Plo P 2 A 3,3 a4,17 P 1/PZ aZ,4,aZ,10 

a3,IZ F;Po,Pz A 3,3 a4,6 Po/Pz aZ,5' a2,to, liz, 11, 
a2,13 

a3,13 Kz;Po,Pz A 3,4 a 5,6 P~-P~ a Z,5,aZ,1l 

aj,14 K z - EP1;PO'PZ A 3,4 a4,1 Pij-p~ aZ,5,a~,IZ 
E = 1 [E = ± 1 J 

a 3,15 F-2Kz;P1, 
Po-Pz 

A 3,4 a4,5 PI (Po-P2) a2,2, a2~ 14 ,n'2; 18 
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TABLE IV. (continued) 

Name and 
range of 
parameters 

a~,17 
E ~ 1* [E = ± 11 

a~,18 
E = 1 [E = ± 11 

ag,19 
c7'O,±1,-2 

~,19 
C7'O,-L±l 

a3,zo 
c>O,C7'l 

a3,Zl 

a~,22 
E = 1 k=±lJ 

~,23 
C >0 [c 7' oj 

a3,24 

a3,Z5=b3,2 

a2,1 

a2,1 

a2,2 

<1 2,2 

a2,3 

°2,4 

a2,5 

a2,6 

aZ,7 

a2,8 

ats 
E = 1 [E = ± 11 

Generators 

F-~K2; 
-K1+L3,PO-P2 

F+K2;P1 , 

P O-P2 

F+K2; -Kl +L3,PO-P2 

F+Kz +E (Po +P2); 
Po -PZ,P1 

F+~K2; -Kl +L3 
+ E (Po+P 2),PO -P2 

F~ cKZ;P1, 
P O-P2 

F+cKz; 
-K1+L3,PO -P2 

F + cKz;Po, P z 

L 3;P1,PZ 

L3+ EPO;P j ,P2 

F + cL3;P lo P z 

;K1,K2,L3 

-Kl +L3,P1: 
P O-P2 

F, -Kl+L3 

K 2,P1 

P 1,PO-P2 

-Kl +L3, 
P O-P2 

L 3,PO 

P 1,Pz 

Po,Pz 

F,K2 

F,L3 

F-K2 , 

P O-P2 

L3 -K\ + E(PO+P2)' 

P O-P, 

Isomorphism 
class 

A1I2 
~,5 

Ail 3 
3,5 

A~,5 h Cc 1 + c, - 2 < c < ° 
h = (1 + c)-I, C < - 2 or c> ° 

Ah3 _ h = _c_, c > _ ~ 
,J c+ 1 

c+l 1 
h=-C-,C<-2 

A (1"",) /(1+e) 
3,5 

A 3,e 

A 3,e 

AY,~ 

A 3,s 

A 3,1 

2Al 

2Al 

2Al 

2A 1 

2Al 

2Al 

2Al 

2Al 

2Al 

2A\ 

2A\ 
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Normalizer Invariants 

self 

a4,5 

a4,G 

a5,7 

a 4,3 

a4,17 

a4,4 

b7,j 

rl 3,3 

a3,3 

as,2 

be, '2 

a3,5 

a 5,7 

a5,6 

self 

self 

a3,4 

at1S 

(-Kif LYI 
(Po-P2) 

(Po -pz)/t- K j + 1_, 
+dPo ,pz)j3 

(poePz) 
(Po- P2)<-1+e)/ll+c) 

Pr+P~ 

Pr+P~ 

(Pi + P~)C 
(PIC iPz)i (Pj - iP2)-i 

Ki+K~-Li 

P O- P 2 

F, -K1 +L3 

KZ,P1 

P 1,PO-P, 

-Kl "-L3, 
P O-P2 

L 3,Po 

P 1,P, 

Po,P, 

F,Kz 

F,L'J 

F-K2 ,PO-PZ 

L:1-K\ + t{Po-P), 
P O-P2 

Maximal 
subalgebras 

a2,r,,{/~, 18 

a Z,4,a1,10 

a2,4r ai, li 

((2,1,0'1, 

az, 1 0' at, 1 0 

a2,2,112,2 

a1,1,a1,2,at4 

al,h al,2,af,4 

al,2,al,l1 

al, '2, at,lt 

at,:>, ate, atriO 

al,2 

a1,2,a1,3,a1,11 

al,1,a1,l,af,8' 
al,12 

al,l' af, 7, at,t 0 

at ~,al,l1 ,al,12 

at 5' a1,11 

Patera et al. 2274 



                                                                                                                                    

TABLE IV. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

aZ,tO K2; -Kt +L3 A2 a3,3 none Qt,1,£ll,2 

a2,to F;Pt A z a 3,3 none a1,l,al,2 

a2,l1 K 2;PO-PZ A z a4,5 none at,t,at.11 

aZ,!! F;PO-P2 A z a4,5 none a1,1,al,l1 

a~,IZ K 2-EP!;PO-PZ A z a 3,z none ai,4. a1,11 
€ = 1 [E = + 11 
-e F+d-K!+L3J; A z li 3,2 none at,4 ,a 1, 11 a2,12 
E ~ 1 [E = ± II P O-P2 

a2,t3 F;Po A2 a3,5 none a1,1,a1,3 

a~.14 F-dK2; A2 a 3,3 none - a a 1t 2,al,B 
d>O,d"'l [d"'O,±11 -Kl -I L 3 

aq,14 F-dK2;P1 A2 a3,3 none a 1, 2 tat 8 

d>O,d"'l [d",0,±11 

a2,t5 F-K2;P1 A2 a4,5 none al,2,al,12 

a~,15 F-EK2; A2 a4,5 none ai, z, al,t2 
E = 1 [10 = ± 1 J -Kl +L3 

a~,t6 F-K2+ d.PO-P2J;Pl A2 
E = 1 * [E = ± 1 J 

a3,7 none al
t
2, af, i1 

-e F-Kz+ dPO-P); -K\ +L3 A2 li 3,7 none - e a 2,16 al,2. at,9 
E = 1 * [E = ± 11 

t4,17 F+dL3;PO A2 a3,5 none all:~,a1,7 
d>O [d",ol 

at18 F+dK2;PO A2 a3,4 none a1,8,a 1,11 ° " I d I <1 [d '" ° , ± 1 1 -P2 

a~,t9 F-K2 -I dPo -P2); A2 a3,6 none ai,O,at.11 
E = 1 * [E = I II ;Po +P2 

a~,20 F+§K2; -Kl A z self none af,5,al!a2 

E=1 [E=±11 +L3 -IdPO+P2) 

aZ,Zt =b2,4 F+K2;PO-P2 A2 b5,1 none at,l1,al,t2 

at,t F At a4,4 F 

al,l K2 At -a4,4 K2 

at,2 P t Al a 5,6 P t 

al,~ -KI+L3 At -a5,6 -Kt -lL3 

al,3 Po At a5,7 Po 

at4 F+d-KI +L3J AI a 2,1 F+E(-K1 +L3J 
E = 1 [10 = ± II 
-, 
al t 4 
E=l k=±11 

K 2-EPt Aj il2,t K2-EPI 

at, -KI +L3 Al a~,j8 -Kj +L3 
E=1*[<:=±11 +dPO+P2J +dPo-lPzJ 

at6 L3+ EPO Al a Z,3 L3~EPO 
<=1 k=±11 

at7 F+ eL3 At a2,7 F+eL3 
e >0 [e '" 01 

af.B F+eKz At a 2,6 F~eK2 

0" e <1 [e> 0] 
al.s F-K2 Al a2,8 F - Kz + E (Po -P2) 
E=1 [€=±11 +E{PO -P2J 

al.l0=t4.,1 L3 Al d4,l L3 

at, 11 = bt ,4 Po-Pz At b7,l P O-P2 

at,12 = bl ,5 F+K2 A! b4,2 F+K2 

2275 J. Math. Phys., Vol. 18, No. 12, December 1977 Patera et al. 2275 



                                                                                                                                    

T ABLE V. Sl.lbalgebras of the optical algebra LOpt(2 ,1). 

Name and 
range of 
parameters 

Oa - a!1+a)/(j-al 
5,6 - 5,4 

a'" 0, + 1 

05,9 = a5, S 

b4,1 

b4,2 

b4,3 

bL 
h ). 0 * ll:> "" oj 

b4,5 =a4,18 

b4,s=a4,1 

04,7 = a4,2 

"" b4,7~a4,2 

Generators 

W;K1, K 2 , L 3, 
M,Q,N 

;K1 ,K2,L3, 

M,Q,N 

W,K1;K2+L3, 
M,Q,N 

{;K1,K2,L3} 

EB{W;N} 

W +K1;K2 +L3, 

M,Q,N 

K1;K2+L3, 

M,Q,N 

W,K2+L3; 

j'vl,Q,N 

W+aK1;K2+L3, 

M,Q,N 

W -KI ;K2 tL3' 

M,Q,N 

w,Kl;K2~L3,M,N 

W,K1;M,Q,N 

N@{;K1,K2,L3} 

WiC:! {;K1,Kz,L3} 

L3;Q,M,N 

W+bL 3;Q,M,N 

W;Q,M,N 

MtB{W+Kl;K2 

I L3>N} 

N tB {K1 ;K2+ L 3, }\1} 

K2 + L 3tb{W;M,N} 

Isomorphism 
class Normalizer 

LOpt(2,1) self 

self 

A 3,3d) A2 self 

A 5,31 self 

At30 bG,2 

A:i;30 0 6,2 

Ai,30 0 6,2 

A (j-all<1+a l 
5,30 bs,2 

Ag,32 be, 2 

AV.~~1I2 self 

A 5,36 self 

A 1C:bA 3,s b5,1 

A 1d)A 3,8 self 

A 4,10 bs" 

AY.~1 b5,2 

A1,9 b7,1 

A 1@A 3,4 b5,s 

Altt;AV.~ 05,8 

A @Al/2 
1 3,5 b5,s 
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Maximal 
Invariants sl.lbalgebrus 

~[MQK1 +~ (K2 -L3)M2 b S,1,08,2,b5,1 

-~ (K2 + L3)Q2] sym + Kr + K~ - L~ b5,2 

[MQK1 +~(K2-L3)]l.f2 b5,4,b4,hb4,3 

- ~(K2 + ~)Q2]sym + N(Ki + K~ - L~),N 

none b5,3' b5,,!> b5,5' 

b~, G' bo,I' ;;5,8' O,.s 

Kr+Kl-L3 

(Q2~Af2 +4NL3)/N 

JHZ ~ 2N(K, I L 3) 

N 

2 (K2 + L 3) + M'/N 

[111'2, 2N(K2 +L3)JN'-1 

L1J 2 I 2N(K2 '" Lll1/,\'2 

iK2-L3lN/M' 

[QM + MQ - 2KI (W", 2KjlJ/N 

N,Kf+K~-L3 

W,K! IKj- L1 

N, iiI2 + Q2 + 4L3N 

none 

none 

M,N(K2+£:) 

N, (K2+L3)/M2 

K,+L 3,AI'/N 

- - -
b"IO, b"i~j:j, b4':17' 
/'4,IS (a" - :',l 

b4,5,b4,s, /)4,15' 

b4,jG,~,17 

b:3,:3,b:"s,fJ 2,1 

b'J,:l,7j'J,7,b 2,2 

b:>,'L' b2,l 

b'3,2' b~, J 

b:3,~, Ii,), 8~ b 3, 9, 

b'3,t ~h b:r, 20 

Ii,}, 4; b:)~8' b:J.~' 
b::ltlD,b~,:!.o 
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TABLE V. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

04,8 = a4,5 {W+KI;N} A2EBA2 self none b3,5,03,B,b3,1> 

S{KI;M} 0 3,9,03,12, 

b3,IS, b3,19' b~, 22 

1)4,8 ~ a4,5 {W +KI ;K2 +L3} A2EBA2 self none b3,5,b3,6,b,,1> b3,s,b3,12' 

EB {W;M} b 3,IS' b3,IS' b~,22 

D4,9~a4,6 {Kt :K2 ~L3} A 2GA2 self none b 3,7' b3,z, b3,8' 

ci7 {W;N} b3,s, °3,15' b3,tB' b~,22 

b.I,10 = a4, 7 K 2+L3,Q;M,N A 4,t 0 6,2 N,M2 +2N(K2 +L3) b 3,2,b3,4,b3,10 

b 4,l1 ~ a:j!8 IV-Kt+Q: A 4,4 0 5, Z Nexp(-M/N), b 3,4, b 3,l1 
K2+L3,M,N I.2N(K2 - L 3) +1'v12)jN' 

b4,12=a4,9 IV-KI: AI,I 
4,5 aZ,1 M/N, (K2 +L3)jN 03,4, b 3,1" b 3,12' 

K 2+L3,,1l,N 
b 3,13,03,14,03,15 

~,13 = a 1~~/(b+1l IV-bK1: AIl;\i'+1l/2 b5,s NC1+b)/2jM,N'/ (K2 + L 3) b 3,4' b3,18(b = - 3), ~,23 
O<lhl<l K 2+ L:j , JlI,N /;3,18 (b = - ,D, b3~22' b~, 22, 
[n "0, ± 11 

btl.1 =al,12 IV+E"(K2+ L 3); A 4,7 b5,3 none b 3,2,0j,20 

E=1*k=±11 l1J,Q,N 

71.1,15 -a4,13 K1;M,Q,lv' A 4,8 0 5,9 N, Qll;[ +MQ +4NKI b 3,2' 0 3,9 

7i4,IC -a 4,14 IV+K1"U:Q,N A2,s b 5,9 none b 3,2,b3,5,b3,1!' 

03,12 

~,110 "'J,ibj/U+b) IV - bKl :,lI,Q,N A~,-J')/C1+b) 0 5,9 none b 3,2,03,18 (b = 3), hf. 22 

" >0 ,n T 1 

b.I,18 ~ a:j!16 IV-~KI; A¥,~ b-l/ 3 none - 0 -1/3 

K2 +L.) + Q,kl,P,l 
5, G b 3,IO, 3,21," 3,22 

b"l L,<±{W;N} A1EBA2 self L3 "2,1> "2,2' "t 3, b2, ,I 

b3,2 =a3,25 Q,M;N A 3,I bz,1 N b2,B 

03,3= "3,1 ;KI ,K"L3 A 3,8 e B,1 Kf~K~ - L~ [;24,01 6 , ~. 

03,4~a3,1 K2 + L3,Jll,N 3A1 a7,l K2 +L3,,11,N 112, B, b2, 6' b 2, 7, 

b3,5 = a3, 2 Me;; {W+K1;N} A 11SA2 

112,!,b2,8 

114,8 AI b2,5' b2,c, b 2,13' b2,14 

b3,5~a3,2 Md:;· {W+Kl: A1EBA2 b4,8 
~ 

AI b2,5' b2, S' b 2, 13,1)2,14 

K 2-cL3} 
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TABLE V. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

03,6~a3,3 W+KIEB A I EBA z self W+Kl 0z", ° 2, 9,02,IZ, 

{W-Kl ;M} btlS' O2,17, 

b2,17 

03,7~a3,4 W EEl{KI ;K2 + L 3} AlEElAz self W b2,4' b2, 9, b2,10' 

~ '" 
~2,13,D2'13' 
b~,19 

b3,7 =a3,4 KIEB{W;N} A I EBAz self Kl bZ,4, bz, 9, b2,10, 

b 2,13,bt19 

° 3,8 =a3,6 NEEl {Kl ;K2 + LJ Al EEl A2 °4,9 N b2,4' b2,8' b"IO, 

ot20 

b 3,8 ~a3,6 K2 + L3 EEl {W;N} Al EEl A2 b4,9 K z +L3 b 2,4' b2,s, b2,10, 

bj,20 

03, 9=a3, 7 N@{Kl;M} Al EEl A2 ° 4,8 N h2,6, 0Z,IO' °2,17' 

btls 

b 3,9 ~ as, 7 K2 + L3 EEl {W;M} AIEBAz h4,8 K z +L3 bz,,!, bZ,10, b2,17' 

btls 

li3,IO ~a'j~s K z + L3 + Q,M;N A 3,I b-l13 
5,6 N b 2,6' b2,11 

03,11 ~a3~9 W+KI+M;Q,N A 3,2 b4,17 Nexp(Q/N) b2,o, b2,14 

li3,12 =a3,10 W-Kl;M,N A 3,3 b 5,s M/N h Z,6,b2,12' b2,13 

b3,12 ~a3,10 W-KI ;K2+L3,M A 3,3 ~b5,9 (Kz+L3)jM bZ,6' bz,12' h2,IZ, 

/)2,13 

li3,13 =a3,11 W-KI;Kz +L3+ N ,M A 3,3 a 4,17 (K2 + L3 + N)/l\! b 2,7,li2,IZ,hz,12 

b 3,14 ~a3,12 W-K1>K2+L3- N ,M A 3,3 ~a4,6 (K2 +L3 - N)/M b2,B,bz,12' h2,IZ, 

hZ,;?,02,15 

[;3,15 =a3,12 W-KI;K2+L3,N A 3,3 b4,9 (K2 + L 3)/N b2,8' b2,IZ, b2,13, 

bZ,13' b 2,15 

03,16 = a 3,13 W+Kl ;Kz +L3,N A 3,4 li5,8 N(K2+ L 3) !2,8, b2,13' !2,13 

03,17 ~a3!14 W+KI +M;K2+L3,N A 3,4 °4,6 N(K2+ L 3) b2,8,b2,14' bZ,14 

b s,I8 =a3,15 W+3KI ;M,N A 3,4 0 4,8 NM b2,6,/;:;;16 hl,19 

b3,18 ~a3,15 W +~KI ;K2 + L s, l\! A 3,4 b4,8 M(K2+L3) " ,,-1/3 /;-10 2,6, 2,16, 2,19 

D3,19=a3,16 W;M,N A1I2 3,5 °5,8 M 2/N b 2,4,b2,6,I'2,17 

b3,19 ~a3.16 K I ;K2+ L3,M A1I2 3,5 °5,8 M 2/(K2 + L 3) 112 4> bz, 6' h2,17 

~ ~ ~ 

O"3,zo =a~,17 W + E (Kz + L 3); A¥.~ b4,7 M 2/N bz,6' h:;:1B' h!, zo 

(=1* k=±lJ M,N 

b3,20 ~a3,17 KI + EN;K2 + L 3, M A1I2 
3,5 °4,7 M 2/(K2+ L 3) bz•o, btl8' b!, ZO 

E=l*k=±lJ 

b 3,21 ~a'j!18 W-~KI;K2+L3+ Q,N AY,! self (K2 + L3 +Q)3/N °Z,l1 , hl;ls b Z,21 
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TABLE V. (continued) 

Name and 
range of 
parameters 

o~, 22 ~ cf.f;l(Cc-O 
c;<O,k,±l 

~ _ J,1-cl/U+C) 
V o,22- 3,rs 
c;<O,±1,-3 

bt23 = cf.}:2~/(1'Cl 
O<lcl<l [c;<O,±l] 

b2,1 

b2,2 

bb 
d>O[d;<O] 

b2,4 = a2,21 

b2,4~a2,21 
b2,5=a2,1 

~2,6 ~a2.2 

b2, 6 = a2,2 

b2,1 =a2,4 

b 2,B ~a2,5 

b2, B = a2, 5 

b2,9 = a2,6 

b2,IO= a2,B 

b2,10 ~a2,B 

b2,11 ~a2!9 

b 2,12 =a2,10 
"" 
b 2,12 ~a2.l0 

b2,13 =a2,l1 

b2,13 ~a2,l1 

Generators 

L3,N 

W,L3 

W+ dL3;N 

W;N 

K I ;K2+L3 

W+KI,M 

K2+L3,M 

M,N 

K2+L3+ N ,M 

K2+L3-N,M 

K2+~,N 

W,KI 

K1,N 

W,K2+L3 

K2+L3+Q,N 

W-K1;M 

W -KI;K2+L3+N 

W+KI;N 

W-Kl;K2+L3 

Isomorphism 
class 

h 2c 1 
A 3,5 h = c -1' -1 < c <" 

c-1 1 
h='iC' c>" or c<-l 

h c+1 
A 3,5 h=-2-' -3<c<1 

h=_2_ c>l or c<-3 
c+1' 

A~,5 

2Al 

2At 

A2 

A2 

A2 

2AI 

2Al 

2Al 

2At 

2Al 

2Al 

2AI 

2Al 

2At 

2AI 

A2 

A2 

A2 

A2 
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Normalizer Invariants 

b3,1 L 3,N 

self W,L 3 

b 3,1 none 

b5,1 none 

~ b5,1 none 

b 3,6 W+KI,M 

~b6,2 K2 +L3,M 

b 6,2 M,N 

a5,7 K2+L3+ N ,M 

~b5,B K2+L3-N,M 

b 5,B K 2+L3,N 

self W,K1 

"" b3,1 K 1,N 

b 3,1 W,K2+L3 

b3,20 K2+L3+Q,N 

°3,6 none 

~b3,6 none 

~4,B none 

b 4,B none 

Maximal 
subalgebras 

b1,t> b1,2' b1,4' 

b1,6 

bf,3' b1,5' b l ,6 

bd b lt~' 1,4 

b l ,4, bl ,5 

bl ,4' bl ,5 

b l ,1' bl,B, bl ,10 

b1 4, b1 B.bl B , , , 

b l ,4' ~I,B 
bl,B' b1,B 

b1,4,b1,B,b1,B' 

bl ,9 

bl,4' 01,4' bl ,8' 

b1,9 

b1,5,bl ,5,bl ,1' 

bf,12 

b1,4,bl ,5,01,13 
"" b1,4' b1,5, b1,13 

b1,4, bl ,lI 

b1,1' ~l,B 
bl ,1, bl,B 

bl,4' bl ,1 

bl ,4> b l ,1 
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TABLE V" (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

'5"2 t3 ~a2 11 W+Kt ;K2+L3 A2 b4,8 none [,t,4,Ot,7 , , 
b2,14 ~att2 W+Kt+M; A2 b3,5 none h b 1,4, 1,10 

K2+L3 

b2,t4 ~ ai!t2 W+Kt +M;N A2 b3,5 none bt,4> bt,to 

b2,t5= a 2,13 W-K1, A2 ,...., a3.5 none b t ,7,Ot,9 

K2 +L3 -N 

bd - it.-t+<D/(1+d) 2,t6 - 2,t4 W- dK1;M A2 b3,6 none bt,s, bl,12 

o <Idl <1 [d>" O,± 1J 

~2,t7 =a2.t5 Kt;M A2 b4,8 none bt,5' bt,s 

b2,t7 ~a2,t5 W;M A2 b4,8 none bt,5,bt ,s 

0tts =a~,t6 Kt+EN;M A2 b3,9 none b1,s,b1,13 

€=1* [€=±lJ 

b!,t8 ~a~,t6 W - € (1(2 + L 3) ;M A2 b3,9 none bt,s, br.t3 

€ = 1 * [E = ± 1 J 

02,t9 ~al?,i1/(1+d) W-dKt;N A2 b3,7 none -d 
bt ,4' "1,12 

d >0,;< 1 

b2,t9 ~ a~t,lI(1+dJ W - dKt ;K2+L3 A2 b3,7 none - -d 
b1,4, "1,12 

d>O,>"l [d>"O,±lJ 

0t20 = a~,t9 Kt + €N;K2 + L3 A2 b 3,s none bt ,4,Ot,t3 

E = 1 * [€ = ± 11 

b!, 20 ~ a~,t9 W+€(1(2 + L3);N A2 b3,s none b1,4,bf,13 

€=l*k=±lJ 

b 2,2t = a:;!20 W-~Kt; A2 self none b t ,l1' b\;112 

K2+L3+Q 

bt,t L3+ N At b2,t L3 1N 

bt ,2 L3- N At b2,1 L 3-N 

br,3' e> Ole >" oj W+ eL3 At b2,2 W+eL 3 

bt ,4 =at,l1 N At b7,t J..V 

[,t,4 ~ at,l1 K2+L3 At ~b7,t K2+L3 

bt ,5 =at,t2 W At b4,2 W 

bt ,5 ~ at,t2 Kt At ~ b4•2 Kt 

b1,s= et,t L3 At e4,1 L3 

bt ,7=at,1 W-Kt At a4.4 W-Kl 

b1,8=at,2 M At b5,8 Jl1 

bl,s~at,2 K2+L3+ N At ~ b5,8 K2+L3+ N 

b1,9=at,3 K2+L3- N At a5,7 K2+L3- N 

/)1,10 ~ai:4 W+Kt+M At b2,5 W+Kt +1\[ 

bt ,l1 ~ai!5 K2 +L3 +Q At "3,20 K2 cL3+Q 

Or,t2 = dl.-r/(1+~ W-eKt AI b2,9 W-eKt 

O<e<l [e>O, >"lJ 

~t,t3=ai.9 Kt+N At !2,tO Kt+N 

br,t3 = at 9 W+£ (1(2 +L3) At b2,tO W+£(K2+L3) 

£=1 k=±lJ 
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T ABLE VI. Subalgebras of LO (3) EEl LO (2). 

Name and 
range of Isomorphism 
parameters Generators class Normalizer Invariants 

c4,l DEEl{;A,B,C} A t EElA3• 9 self D, AZ +B2+ CZ 

c3,l ;A,B,C A.,9 C4.1 A Z +B2 + C2 

cZ,l D,C 2Al self D,C 

c1•1 D Al C4.1 D 

Cf,2 D+eC Al C2,l D+eC 

e >0.7' 1 

Cl, 3 ~ lit ,1 C Al d4,l C 

cl.4 = el.1 A+D Al e4,l A+D 

TABLE VII. Subalgebras of LO(2) EEl LO(2,l). 

Name and 
range of Isomorphism 
parameters Generators class Normalizer Invariants 

d4,l C EB{;D,E,F} A 1EElA 3•S self C,D2_E2_F2 

d 3,l ;D,E,F A 3,s d4•1 D2 _E2 _F2 

(f3, 2 = a 3,5 C@{F;D+E} A1EBA2 self C 

d 2,1 =a2,7 C,F 2Al self C,F 

d'2.2 =a2,3 C,D+E 2Al d3,2 C,D+E 

dz,3 = c2,! C,D 2At self C,D 

dz•4 =a2,13 F;D+E A2 dS,2 none 

dL=at17 F+dC;D+E A2 d3•2 none 
d>O [d7'01 

d1,t C Al d4,l C 

d1,2 =cl,l D Al C401 D 

df,3 = ef,2 D+eC Al d2,3 D+eC 

e > 0 • 7' 1 [e 7' 0, ± 11 

d1,4 =a1,1 F AI a4,4 F 

dl ,5 =al ,3 D+E AI a5,7 D+E 

df,s=aY,7' e >0 F+eC Al a2,7 F+eC 

di,7 =af,s C+E(D+E) Al a2.3 C+dD+E) 

€=l[E=±11 

dr.8 ~ el.! D+EC Al ~e4,l D+EC 

E=l [E=±11 

TABLE VIII. Subalgebras of LO (2,2). 

Name and 
range of Isomorphism 
parameters Generators class Normalizer Invariants 

eS,1 {;A(,A2,A3} A 3,8 EBA3,8 self Ar+A~-A~, 

@{;Bh B 2,BJ Br+B1-B~ 

e 5,( =b5,1 {A 2;A( -A3} A 2EElA 3•8 self Br+B~ - B§ 

EEl {;B1, B 2, B 3} 
'" {;A1> Az, AJ A3,8 EElA2 e 5•1 self At +Al-A~ 

EB {B2 ;B1 - B 3} 

e 4 ( A3 EEl LB(, B z, B 3} A t EBA3,8 self A 3,Br + B~ - B~ 

e 4,l {;A1 ,A20A3} EEl B3 A 3,8 EEl Al self Ar+Al-A~,B3 
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Maximal subalgebras 

Maximal 
subalgebras 

dZ,4, dl ,2 

dZ,l' 1l2,2' 1l2,4' ~,5 

d1,!> Ill, 4, dr,6 
d1,!> 1l1,5, iii, 7 

d1,1' ~,2' dr,3,di,s 

d1,4' Ill, 5 

1l1,5' (its 

Maximal 
subalgebras 

-
e5,1 t e 5, 1 t e4, 1, e4,1 ,e3 t S 

e3,9 

e4, 2t e4,3' e4,4, e3,4 

- ~ ~ ~ 

e4,2' e4,3t e 4,4' e3,4 

e3,1' e3,4t e2, 6 

e3,1' e3t 4' e 2,6 
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TABLE VIII. (continued) 

Name and 
range of 
parameters 

e3,1 = b3,3 

e3.1 

e 3,2 =a3,4 

e3,4 = b3•1 

e3,4 

e 3,5 =as,12 

e\ 7 = cfl;tt(1+Cl 

O<lel<l lc>'O,±l] 

e2,1 =a2•5 

e2" =aZ,6 

e2,~ = a2,8 

e2,3 

e2,4 = b2,1 

-
eZ,4 

e2 5 = b2 2 
~ t , 

eZ,7 = b2,4 

e2,7 = b2,4 

e2,3 ...... aZ,10 

Generators 

{Az;Al -A3} 

EB{Bz;Bl -BJ 

(AI -A3)EB 

(;BI , B 2 , B 3} 

{;AI ,Az,A3} 

EB(BI -B3) 

AzEB {;BhBz, B 3} 

{;AI ,Az,A3}EB B z 

;Bl ,Bz,Bs 

;A j ,Az,A3 

B zEB{A 2;AI -A3} 

(AI -As)Ef) 

{B2;BI -Bs} 

(BI-BiIl 

{Az; AI -A3} 

BsEB{A2;AI -As} 

A3 EB {B2;Bl -B3} 

A2 + B 2;AI -A 3 , 

B I -B3 

A z -B2;AI -As, 

BI-Bs 

;AI-Bj , 

A 2+ B2,As - Bs 

;Al +BI ,Az+B2, 

As+Bs 

AI- A S,BI- B 3 

A 2,Bz 
B2,AI -A3 

A 2,BI -B3 

AI-A S,B3 

A 3,BI -Bs 

A 2,B3 

A 3,B2 

As,B3 

A2;AI -A3 

B 2;BI -B3 

A 2 +Bz; 

-AI +As -BI +B3 

Isomorphism 
class 

At, 
h=e,lel<l 

h=l/e, lel>l 

A 3,s 
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Normalizer Invariants 

self none 

self A2,Br+B~-B~ 

self Ar +A~ - A~, B2 

eG,1 Br+B~-B~ 

eG,1 Af+A~-A~ 

self B2 

self A z 

self Bs 

self A3 

e4,2 (AI -A3)/(BI - B 3) 

e3,4 

self 

self 

self 

(AI -B1F + (A2 +B2)2 

- (A3 -B3)2 

(AI + BI)2 + (A'2 + B2f 

- (A3 + B3F 

A I -A3,BI -B3 

A 2,B2 

B"A1 -A3 

A20 BI -B3 

AI-As,Bs 

A s,BI -B3 

A"Bs 
A 3,B, 

A 3,B3 

none 

none 

none 

Maximal 
subalgebras 

- ~ - ~ 

e3,Z, e3,2t eS,3, e3
t
], 

eS,S,e3,6,li,7 

e3,1, e3,S,eZ,4 

~ ~ - -
e3,1,e3,3,eZ,4 

'" -e3,1. e3,2, e2,5 
~ 

eS,h e3,2, e2,5 

eZ,77 el,1 

e2, 7' el,1 
- - - -
e2, 2, e2,3' e2, 7, e2,10, 

~,11 - ~ - -
e2,2. e2,3. ez, 7, e2,10, 

~,1I 
e2,1' e2,3' ez, 7, e~,13 

- - - -
eZ,1' e2,8' e z, lh e2,10. 

e2,IO 

- -c ~c 
e2,1,e2tl1te2~11 

- -" - ~ 

el, 3, el,4' el,IO' el. 1 0 

el, " ef,s. el,lI' ~1.11 
el, s. el,IO' el,l1 

el, 6' el,IO, el,l1 

el,l' el. 7. el,S, el,10 
c::::: ~ ~ 

el,1' el, 1, el,8, eh 10 

el,1' ef. 9, el,l1 

el,1' ~t9' ~ltl1 
el,1' el,1' er,12' el t i3' 

el,I4 

el,10' el,l1 
!::::! '.:::! 

el,IO, el,l1 

e1,2' el.3 
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TABLE VIII. (continued) 

Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

-
eZ,9 --=a2,1:l A2 +B2; -AI +A3 A2 a3,5 none cl,2' cl,4 

+BI- B 3 

e2,lO = (12, 11 A2 + B 2; -At +A, A2 a4,5 none Cl,2' cI,lO 

e2,10 A 2+B2;-Bj +B, A z ......... a4,5 none el,2,cl,10 

eq, 11 = dl,iil (1 +d) Az ' dB2; -Aj +A3 A2 e3,~ none -d -
e1,5' e1,I0 

d>O,7"1 

""d 
cZ,11 A 2+dB2; -Bj +B3 A2 "" -d "" 

e3,2 none 17 1,:) ,CI,IO 

d > 0, C'" 1 

eq,12 = bQ,3 A2 - dB3; -Aj +A3 A2 e 3,4 none ct~,el,10 
d>O [d" 01 

""d e2,12 B2 - dA 3; -BI +B, A2 "" e3,4 none ('Pt 9' Ct,IO 
d >0 [d / 01 

etj3- a tl3 B 2+dA3-AI); A2 e 3,3 none el ,6' el,IO 
E ~ 1 k' ± 11 B I -B3 

etl3 A2 + c(B3 -Bt ); A z e 3,3 "" none el,G' el,IO 
E = 1 lE=±11 AI- A 3 

cI,1 A3 AI e 4,1 A3 

ej,l B) At e4,1 B3 

c t ,2 :-::al,l A z +B2 AI a4,4 A2+B2 

cl,:j ......... al,2 -AI +A3- B I+B3 AI ~a5,G -AI +A3 -BI + B3 

-
et,4 ~al,3 -All A 3+Bt -B3 AI a s,7 --AI -l-A3 'BI -B3 

ef,5 ,- de,-se)/(1+e) , 0 < (' < 1 Az L eB2 AI e2,2 A2 -I eB2 
[e > 0, T 11 

el,G :::-ai,9 B2 -AI +A3 AI e 2,3 B2 -AI +A3 

el,G A 2-B j +B3 At e 2,3 A2 -Btl B3 

('1,7 "bl,1 -At +A3 I B3 At e2,4 -At +A3 +Bj 

cl,7 -BI +BJ,t A3 At e2,4 -Bt +B3+ A 3 
-
"t,8 b, ,2 -AI' AJ-B) At e2,4 -A j l-A)-B3 

el,8 -Bt +B3- A 3 At e2,4 -Bt +B3- A 3 

ei,3 :- hI, j, (' >0 A2 - eB j At e Z,5 A2 - eB3 

('-1.~,('>O Bz-eA j At c2,5 B z - eA3 

cI,lO = "t,4 -At-l-A j AI b7,t -At"A j 

~t,tO = bl ,4 -Bt +B3 At ~b7,1 -B j +B3 

e t,11 = bt,5 A z At e 4,4 A2 

~t,11 = bl,s Be Al c4,4 Be 

eT,t2 - cjt;l/(l-cJ ,0 < I e I < 1 A,+eB3 At e2,6 A3 " eB j 

[(' " 0,11 ) 

et,t:l- Cl,t Aj-Bj At C4,t A 3-B3 

et,t4~dt,1 A:l+B3 At d4,t A3+ B 3 
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TABLE IX. Subalgebras of LO P .1~. 
Name and 
range of Isomorphism Maximal 
parameters Generators class Normalizer Invariants subalgebras 

I S,I ;LjoL2,L3,K1, LO(3,l) self L2 - K2, (L, K) 1.;,1.1;,4,13,5 
K 2,K3 

14,1 =a4,17 K1,L1; A 4,12 self none 11,I,h,2.1f,3,h,2 
Lz -K3,L3 +K2 

13,1 =a3,l1 K1;L2 -K3,L3+ K2 A 3,3 14,1 (L2-K)I(L3 I K2) 72,1.12,3 

13,2 =a3,ZI L 1;Lz -K3,Ls +Kz A 3,G a5,7 (L2-K3)' + (L3+K2)2 7z,!,li,1 

If,3=a~,z3 K1-cL1;Lz -K3, Ay'~ 14,1 [(L2 _K)2 72,!,/r,4 
c>O [c'"0] L3+ K2 -'- (L3 + K2)2]C 

x(L2 -K3 - i(L3 +K2,i 
L2 -K3 +i(Ls + K2) 

j3'4~a3,24 ;K2,K3,L1 A 3,s a4,4 Ll-K~ -K5 lz,],li,1 

h,5 = c3,! ;L1,L2,L3 A 3,s c4,1 Lr +L~ + L~ li,l 

h,l = a2,4 L2 -K3,L3+K2 2Al a 5,7 L 2 -K3,L3 "1 K2 li,3 

lz,2 =a2,7 L 1,K1 2Al self L 1,K1 h,l,li,2,Ji~,j 
h,Soc UZ,10 K1;L2 -K3 A2 a 3,3 none h,2,ft.3 

fl,l =d1,1 Ll AI d4,! Ll 

h,2 =al,1 Kl AI a4,4 Kl 

11,3=al,2 L 2-K3 AI a 5,l-i L z -K3 

h~4 =af,7 ,e >0 [e '" 0] K1-eLI AI h,2 K1-eLI 

TABLE X. Subalgebras of the irreducibly embedded LO (2,1). 

Name Generators Isomorphism class Normalizer Invariants 

g3,1 ;K1,K2,L3 A 3,s self 

g2,1 ~at20 K2;K1 -L3 A2 self none 
, 

L3 AI ~c2,1 gl,l f'V Cr,2 
- I 
gl,2 ~al,5 Kl- L 3 AI ~al"18 
- 1/2 
gl,3~al,8 K2 AI ~a2,6 

TABLE XI. All proper subalgebras of LO(4,1). 

Name and 
range of Ismorphism 
parameters Generators class Normalizer Invariants 

a7,1 G;LI , L 2, L 3,P1 ,P2,PS LSim(:l) self (L,P)2/p2 

a6.1 ;LIo L 2, L 3,P1,PZ,P3 LE(3) a7.1 (L,P),p2 

a 5,! G,L3;PIo P 2,P3 A~:15 self pV(Pf+p~) 

a4,1 {L3;PI ,pJ EB P 3 A (lilA 
3,6 1 a 5,1 P3,pr+P~ 

a4,2 {;L!, L 2, L 3} EB G A 3, sCLe AI self G,L2 

a4,3 {G;P1,P2,P3} Al,l 
4,5 a7,1 P!IP3,P2/P'l 

at4 ,h > 0 L 3+bG;P1,P2,P3 Ab,b 
4, G as,1 

P~ 2 2 (Pj C iP2)iO 
Pr+pr(PI'P2) Pj-iP, 

a4,5 G,I'3;P1,P2 A 4,12 self none 
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Table XI. (continued) 

Name and 
range of 
parameters Generators 

a3,1 P lt P 2,P3 

a 3,2 {C;P 3}EB L3 

a 3,3 C;Plt P 2 

a3,4 L 3;PI ,P2 

a~,5,E=h L 3+rcP3;PI ,P2 

~,6 ,c>O L 3-'-cC;PI ,P2 

a3,7 ;Llt L 2,L3 

a2,1 P!,P2 

a2,2 L 3,P3 

a2,3 C,L3 

a2,4 C;P3 

at5 ,d >0 L3 +dC;P3 

{{I,I P 3 

al,2 C 

af,3,€=1* L 3+EP3 

at4,e >0 L 3+eG 

b4•1 {;C,P 3, C3}d:J L3 

b3,1 ;C,P3,C3 

b2•1 P 3 -'-C3,L3 

bl,l L3 

hl,2,£' >0* P 3 + C 3+ eL3 

cG,1 ;LI ,L2,L3,PI +C1, 

P 1 "- C 2,P3 + C3 

ctl.€=l* {;LI +i(P1 + CI),L2+i(P2+C 2), 

L 3+i(P3 + C3)}@(L3-i(P3+ C )) 

C!,I,E=l* Li +i(Pi +C i),i=1,2,3 

d 61 ;LltL2,L3,PI-CI,P2 

-C2,P3-C3 

V. ALL SUBALGEBRAS OF LO(3, 2) 

A. Subalgebras of the maximal subalgebras 

Let us now consider the subalgebras of each of the 
seven maximal subalgebras of LO(3, 2). Denote a maxi
mal subalgebra M j (i = 1, ... ,7) and the identity com
ponent of the corresponding Lie group GM;. In Tables 
IV -X we present a respresentative of all GM; con-
i ugacy class es of subalgebras of Mi for i = 1 , . , . ,7. The 
maximal subalgebras are ordered as in Sec. IV. 

In the tables the columns ordered from left to right 
give the following. The first column introduces a name 
for each subalgebra and presents the range of values 
of the parameters (if any) on which the algebra depends. 
Thus ai .", bio", ... ,gio" are subalgebras of the simili
tude algebra, the optical algebra, LO(3) EB LO(2), 
LO(2)iPLO(2,l), LO(2,2), LO(3,1), and LO(2,1), res-
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Ismorphism 
class Normalizer Invariants 

3AI a7,1 P I ,P2,P3 

A2EB Al self L3 

A 3,3 a4,5 P I/P2 

A 3,6 a 5,1 Pr+Pj 

A 3,6 a4,1 Pr+Pj 

A~,7 a 4,5 (P2 P2)(PI +iP2 yc 
1+ 2 PI - iP2 

A 3,9 a4.2 L2 

2AI a 5,1 P I ,P2 

2AI a 3,2 L 3,P3 

2Al self C,L3 

A2 a3,2 none 

A2 a 3,2 none 

Al a 5,! P 3 

Al a4,2 C 

Al a2,2 L3 + EP3 

Al a2,3 L3+ eG 

A 3•SEBAI self P 3C3 + C 3P 3 - 2C2, L3 

A 3,s b4•1 P 3C3 + C3P 3 - 2C2 

2Al self P 3+C 3,L3 

Al b4,1 L3 

At b2•1 P 3+ C 3+ eL3 

LO(4) self L2+ ~(P+ C)2, (L, P+ C) 

A 3,sEB Al self L 3-i(p3+ C3)f+ ~(P+CJ 

A 3,9 c~,1 

LO(3,1) self 

pectively. The first subscript gives the dimension of the 
subalgebra; the second enumerates the subalgebras of 
the same dimension. For each dimension we first list 
decomposable subalgebras, then indecomposable ones. 
If a subalgebra has a superscript, e, go, a!.8 or ~.ll' 
then the algebra depends on a parameter. The range of 
the parameter is given in the same column in the follow
ing manner, If only one range is given (e. g., b > 0, '* 1 
for ~.1O)' then the range is the same under 0(3,2) and 
under the identity component of the corresponding 
maximal subgroup [in this case 8im(2, 1»). If the range 
under the appropriate maximal subgroup is larger than 
under 0(3,2), then this larger range is given in square 
brackets (e.g., for a~.8 we indicate E = 1 [E =± 1], mean
ing that a;!8 is conjugate to a!.8 under 0(3,2) [and even 
800 (3,2)] but not under the identity component of 
8im (2, 1). An asterisk after the range under 0(3,2) (as 
in a~.12 or bt4) indicates that the range should be doubled 
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if conjugacy is considered under SOo(3, 2) [or 0 1 (3,2)], 
rather than under 0(3,2) [or O2 (3,2) or SO(3, 2)] 0 Thus 
E = 1 * indicates that E =± 1 under SOo(3, 2), b > 0* in
dicates that b * 0, - cO < b < 00 under SOo(3, 2). If the 
symbol of an algebra has a "tilde" on it, e.g., a4 • 14 , 

then it is conjugate under 0(3,2) to the algebra with 
the same symbol but without a tilde [e. g., (14.14 is 0(3,2) 
conjugate to a4 • 14 ]. Note, however, that two such sub
algebras are not mutually conjugate under the corre
sponding maximal subalgebra (if they were, then one 
of them would not be listed at all). 

If the symbol of an algebra has a bar on it, e. go, 
(/4,IS' then in the final list of 0(3,2) conjugacy classes 
of subalgebras of LO(3, 2) this subalgebra will be as
sociated with a different maximal subalgebra. This can 
occur for one of two reasons: 

1. Its normalizer or one of its higher normalizers 
(i. e., a normalizer of a normalizer, or its normalizer, 
etc.) in LO(3, 2), lies in a different maximal subalgebra. 
This is always indicated in column 1. e.g., we have 
a4 IS = b4 5' meaning that these two algebras are equal 
(a: 01S - b:. 5 would indicate that they are 0(3,2) con
jugate] and that the normalizer is in the "b" list (list 
of subalgebras of the optical algebra). 

2. The algebra is self-normalizing in 0(3,2) and has 
already occurred in an earlier list of our ordered set. 
Thus ""56 • 2 = a6 • 2 is self-normalizing and could thus be 
listed in the final a or b list. By choice we define it to 
belong to the list in which it first occurs. 

In column 2 we list the generators of each subalgebra. 
Those to the right of a semicolon also lie in the derived 
algebra. Column 3 presents the isomorphism class of 
the subalgebras. We make use of the claSSification of 
real Lie algebras of dimension d ~ 5 due to 
Mubarakzyanov40 and reproduced in a modified form in 
a previous article. 7 The commutation relations char
acterizing each isomorphy class of algebras are given 
in Ref. 7. For d>- 6 no such classification is available, 
so we either give the name of such an algebra [e.g., 
LE (2,1) 1 or indicate that the algebra is a semidirect 
product (e. g., F rJ A~.30 indicates a semidirect produc't 
of the dilation subalgebra F with a five -dimensional 
ideal of isomorphy type A~.30)' 

The normalizer in LO(3, 2) of each subalgebra is 
given in column 4. We recall that the normalizer NorLX 
of a subalgebra XcL is an algebra satisfying [NorLX,X] 
~ X and X ~ Nor LX ~ L. Since the list is normalized, for 
each algebra that stays in the final list (L e., for all 
"untilded" and "unbarred" subalgebras) the normalizer 
is itself in the list. For tilded subalgebras this is not 
necessarily so, e. g. , the normalizer of a3016 is not 
equal to as•6 but only 0(3,2) conjugate to as•6 ' The in
variants of the algebras are given in the fifth column. 
Notice that we include polynomial invariants (Casimir 
operators), rational invariants, and general invariants, 
as defined and calculated earlier. 7 The maximal sub
algebras of each subalgebra are given in column 6. 
Their classification is again under the relevant maxi
mal subgroup of 0(3,2). 

The derivation of the results in Tables IV - X is a 
straightforward application of the classification methods 
presented earlier3

-
s and developed further in Sec. III. 
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The subalgebras of LSim (2,1) (Table IV) were classified 
earlier;s here we present for the first time a normalized 
list and present additional information on the subalge
bras. Table V is new, however the subalgebras of the 
Schrodinger algebra itself have already been listed. 11 

The classification of the subalgebras of LO(3)$LO(2), 
LO(2) fB LO(2, 1), and LO(2, 2) - LO(2, 1) if) LO(2, 1) was 
performed via the Goursat method3s•3

•
4 for direct sums 

of Lie algebras 0 The subalgebras of LO(3, 1) and 
LO(2, 1) have been classified a long time ago12 (see also 
Ref. 41). 

When constructing the maximal subalgebras of sub
algebras in one of the lists (columns 6) it proved to be 
very helpful to make use of a recent classification42 

of subalgebras of all real Lie algebras of dimension 
d~ 4. 

B. Final list of 0(3. 2) conjugacy classes of 
subalgebras of LO(3. 2) 

Tables IV -X have been so arranged that it is a sim
ple matter to merge them into one final list of repre
sentati ves of all 0(3,2) classes of subalgebras of 
LO(3,2). Indeed, all we have to do is take these lists 
and omit all subalgebras that have a bar or a tilde on 
the symbol in columns 1. Notice that Table IV of sub
algebras of LSim(2, 1) remains essentially as it stands. 
The only "barred" subalgebras to be included else
where are (14.lS' a3 •2S ' ~.21> aloll , and alol2 (all go into 
the "b" list of Table V), and ablO (which goes into the 
"d" list of Table VII). The tilded entries must just be 
dropped, 

Relatively few algebras from the other lists will 
figure in the final list, From Table V these are b7 • l , 

b6 .1' b5 • 1 , bS • 2 , b4d ,,··,b4 • 5 , b3 .1> b3 • 2 , b2 .1'··o,b2 •4 , 

bIoI> 0", and b1 • 5 , Table VI contributes C4 • l , c3.l' c2 .1> 

C 1 • 1 and CL2' Table VII only d4 .l' d3 • l , and dldo Table 
VIII contributes e6 .1> the irreducible subalgebra e4 .1> 

and its subalgebras e3 • 1 and e1d • Tables IX and X con
tribute only f6.1 and ga.l' respectively, In all tables the 
"unbarred" algebras, that survive in the final list, 
precede the "barred" ones. 

Notice that a closed Lie group corresponds to each 
Lie algebra in our lists. The only exception is in Table 
VI where the subalgebra Ci.2 is an algebra for any e, 
but generates a closed Lie group only if e is rational. 

VI. SUBALGEBRAS OF LO(4. 1) 

The subalgebras of the de Sitter algebra LO(4, 1) have 
already been classified. 5 Without going into any details 
we shall just present a normalized list of representa
tives of 0(4,1) conjugacy classes of LO(4, 1) 
subalgebras. 

A basis for LO(4, 1) is introduced in (2.24); the com
mutation relations are in Table III. For our purposes 
a more convenient basis is one adapted to the simili
tude subalgebra LSim(3), 
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In (6,0 G generates dilations, L; rotations, P j transla
tions, and C

i 
special conformal transformations. The 

commutation relations are' 

[Lj,Lk]=EikZLI' [LpPk]=EikZPp [Pi,Pk]=O, 

[G,L;]=O, [G,Pj]=-Pp 

[LpCk]=E!kZC p [cpCkl=O, [G,C;l=C j (6,2) 

[CpPt]=2(E;kZLz-6;kG), i,k=I,2,3, 

The maximal subalgebras of LO(4, 1) are: 

(a) The similitude algebra LSim(3): {G, Lp Pi} 
i=I,2,3; 

(b) LO(2,1)GLO(2): {P3 ,C3 ,G}qJ{L3}; 

(c) LO(4):{L;,P;+C;}, i=I,2,3; 

(d) LO(3, 1): {Lj ,Pi - Ci }, i = 1,2,3, 

All subalgebras of LSim(3) have normalizers in 
LSim(3), except for {L3} whose normalizer is b4d 

= LO(2, 1),B LO(2). The "b" list for LO(2, I)EB LO(2) 
provides five new subalgebras, the" e" list for LO(4) 
provides three, the" d" list for LO(3, 1) just one, For 
the individual lists and mutual inclusions we refer to 
our earlier paper, 5 

An overall list of LO(4, 1) subalgebras is given in 
Table XL The ordering is the same as in Tables IV-
X. The range of parameters is given considering con
jugacy under SOo(4, 1) and under 0(4,1). As discussed 
in Sec. III this automatically also provides us with con
jugacy under the other locally isomorphic groups 0 1 (4,1) 
O2 (4,1), and SO(4, 1). 

VII. MISSING LABEL OPERATORS 

One of the motivations for a subalgebra classification 
is to define bases for the representations of the Lie 
algebra in question, The bases are to correspond to 
the different chains of subalgebras found; they will be 
the simultaneous eigenstates of the invariant operators 
of all the algebras belonging to the chain concerned 
(these are listed for each subalgebra in Tables IV-XI). 

For most chains of maximal subalgebras the bases 
are determined uniquely in this way, but in a few cases 
there are remaining degeneracies which may be re
solved by the introduction of additional commuting op
erators, the so-called missing label operators, 

With plausible assumptions about the number of 
labels required to determine a basis, Racah's method 
of counting, valid for semisimple algebras, can be 
extended to arbitrary Lie algebras. 43.44 Then the num
ber of missing labels at a stage G::J H of a subalgebra 
chain is 

n=1(re -le -rH -lH )+l', 

where r e , r H are the dimensions and le, lH are the 
number of invariants of G,H respectively; l' is the num
ber of G invariants which depend on H elements only. 
Then it can be shown44 that the number of available 
missing label operators (H invariant functions of G 
elements which are independent of each other and of 
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G and H invariants) is 2n, Le., twice the number 
actually missing. The missing label operators are 
found by solving certain partial differential equa
tions;7.44 for semisimple algebra subalgebra pairs other 
methods may also be used .19 

In maximal subalgebra chains of LO(4, 1) there is 
just one missing label, at the step LO(4,1)::JLO(2,1) 
Ell LO(2), In maximal subalgebra chains of LO(3, 2) there 
are two missing labels at the step LO(3,2)::JLO(2,1) 
and one at each of the steps LO(3,2)::J LO(3)EBLO(2), 
LO(3, 2)::J LO(2, 1) 8 LO(2) and b~.4::J b~.3' 

The algebra bt4 and its subalgebra bt3 are sub
algebras of LOpt(2, 1) and appear in Table V. Two 
functionally independent missing label operators are 
(Q2 +M2)/N2 and N 2b(Q _ iM)i(Q + iM)-i. 

The other missing labels all involve semisimple sub
algebras of LO(3, 2) or LO(4, 0 and the missing label 
operators may be copied, mutatis mutandi, from the 
known operators for the corresponding subalgebras of 
LO(5) 0 Thus for LO(3, 2)::J LO(3)EB LO(2) the elements 
of LO(3, 2) decompose into three LO(3) vectors and 
one scalar, The vectors may be denoted by [see (4,13)] 
Ll = C, L2 = B, L3 = A [the elements of LO(3)], V1 = - F, 
V2=H, V3=-K, and V1=-E, V2=G, V3=-J; the 
scalar is the LO(2) element D, Corresponding com
ponents of V and V transform like the l' - and 2' -com
ponents of a vector under the rotations generated by D 
about a 3' axis, The missing label operators may be 
chosen as 19 

~ E jJk{ Vj VJLk}.ymmetrl •• d and {(~ VjL j)2 

+ (~ V;Li)'.ymmltrlz.d' , 

The missing label operators for LO(3,2)::JLO(2,1) 
EB LO(2) and for LO(4, 1)::J LO(2, 1)EB LO(2) have a simi
lar form. 

For LO(3, 2)::J LO(2, 1) there are two misSing labels, 
and four available missing label operators, An integrity 
basis for the parallel problem LO(5)::J LO(3), of interest 
in connection with quadrupole nuclear vibrations, has 
been worked out, and is to be published. 45 The details 
are rather complicated and are not reproduced here. 

Sometimes nonmaximal subalgebra chains are of 
interest; perhaps because of broken symmetry, some 
of the algebras in a chain are not physically relevant 
to a particular problem. If an algebra with l independent 
invariants is discarded, there are at most l new miSSing 
labels, and tWice as many corresponding missing lable 
operators. Of the new operators, half are just the in
variants of the discarded algebra; the others are really 
new and may be the physically relevant ones. They can 
be determined by the standard methods, 

VIII. CONCLUSIONS 

The general result of this article is a significant re
finement of a previously presented subgroup classifica
tion algorithm. 3.5 The refinement is the provision of 
normalized ordered lists of subalgebras and greatly 
simplifies the task of merging several sublists into one. 
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The specific result contained here is a complete 
classification of the subalgebras of both de Sitter al
gebras LO(3,2) and LO(4, 1) and hence a classification of 
all closed connected Lie subgroups of these two de 
Sitter groups. 

The ground is now well prepared for the final article 
of this series, namely a classification of all closed 
connected subgroups of the conformal group 0(4,2). 
Work is in progress on applications of the classifica
tion of subgroups, in particular on invariant equations 
for each subgroup. 
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Finite and infinite measurement sequences in quantum 
mechanics and randomness: The Everett interpretation 

Paul A. Benioff 

Chemistry Division. Argonne National Laboratory. Argonne. Illinois 60439 
(Received 3 November 1976) 

The quantum mechanical description of both a finite and infinite number of measurement repetitions, as 
interactions between copies of an object system and a record system, are considered here. States 
describing the asymptotic situation of an infinite number of repetitions are seen to have some interesting 
properties. The main construction of the paper is the association of states to sequential tests for 
randomness. To each such test T and each positive integer m one can associate states e~ m and e ooTm 

corresponding respectively to those length-n and finite outcome sequences which pass test T at the 
significance level 2-m

. Following the methods of Martin Uif, a universal sequential test V, which 
includes an infinity of sequential statistical tests for randomness, is given and the corresponding states 
e~ m and e=Vm are discussed. Finally, a possible use of these states in the Everett interpretation of quantum 
mechanics is discussed. 

I. INTRODUCTION 

In many discussions of the measurement process in 
quantum mechanics a measurement is (partly) described 
as an interaction between an object system and an ap
paratus system in isolation from the surroundings. The 
corresponding object + apparatus system state evolves 
under the action of a unitary operator from an initial 
to a final state. n repetitions of the measurement can 
be described by a product state for n copies of the ob
ject + apparatus systems each undergoing one inter
action. The state describing n repetitions of a measure
ment of a discrete observable can be given as a sum 
over components, each component corresponding to an 
outcome sequence of length n. 

A natural requirement on the outcome sequences ob
tained from measurement repetitions is that they be 
(initial segments of) random sequences, Corresponding 
to this is the question of the existence of states de
scribing measurement repetitions but which correspond, 
in some sense, to random outcome sequences only. 

This question, which is the concern of this paper, is 
nontrivial. At first thought it might seem that such a 
question has an obvious answer. Construct a state cor
responding to an infinite number of measurement repe
titions as a sum over components each corresponding 
to an infinite outcome sequence and restrict the sum to 
the random sequences. The difficulty with this is that 
the state so constructed is, in general, the zero vector. 

A related problem is the following. Definitions of 
randomness (for infinite sequences) are given in terms 
of sets of measure zero with respect to a product mea
sure-a sequence is random if it does not lie in any set 
of measure zero with the set restricted to be of a cer
tain type. Now it is possible to construct states e~ cor
responding to an infinite number of repetitions of mea
surements (Sec. II) as well as the states en correspond
ing to n repetitions, This suggests that one exclude 
from e'" and en all components corresponding to infinite 
sequences lying in the sets of measure zero. 

However, this is not possible-for no n does en con
tain such components and e'" cannot be represented in 
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a form suitable for such an exclusion. In fact (Sec. II) 
eo<> is orthogonal to the Hilbert space spanned by all 
renormalized infinite outcome sequence component 
states, 

Still another problem is the following: DeWitt1 has 
considered a particular test for randomness and has 
constructed states which correspond, for each n, to 
those sequences of length n which pass the test, He has 
stated without proof that the construction can be extend
ed to any finite combination of the infinite number of 
tests for randomness. However, it is not clear how 
these states are to be constructed. 

The main point of this paper is to show that if one 
uses the statistical idea of failing a test for randomness 
at some significance level, then some of the above 
problems can be taken care of, In particular, one can, 
for each significance level 2-m, construct states e~m 
and e"'Ym which include respectively, component states 
for exactly those length - n and all finite outcome se
quences which pass, at level 2-m

, an infinity of tests for 
randomness. One can also associate to e"'Ym exactly 
those infinite outcome sequences which pass at level 
2-m all the tests for randomness, 

The essentials of the construction use the methods 
of Martin-Lof2 as follows: 

Each set D of measure zero in a definition of random
ness corresponds to a sequential test for randomness. 
Each such test T corresponds to a prescription, for 
each Significance level 2-m with m = 1, 2, ' .. for reject
ing sequences as being nonrandom, For each m, T gives 
a set T m of finite sequences such that any sequence with 
an initial segment in T m is rejected as failing T at level 
m (or, equivalently, at significance level 2-m

). By a 
canonical correspondence, each set T m corresponds to 
an open Borel cover W(T m) of D of measure :5 2-m such 
that Dr;;, W(T m)' Following Martin- Lof, 2 one then con
structs for the infinity of tests in the randomness defi
nition, a universal test V which includes all the tests, 

The properties of sequential tests are such that for 
each m one can construct a correspondence between 
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the sets T m and quantum states corresponding to just 
those finite sequences in T m The application of this 
correspondence to the universal test gives a sequence 
of states x~m with JI = 0,1, ... and x~Vm which corre
spond respectively to all sequences of length II in V m' 

The desired result is obtained by defining the states 
~!~m = E\ _ x~m and OroVm = ~)oo _ X ooVm [Eqs. (20) and (21) \. 
For each III the sequence of states 8~m with II = 0, 1, . 
and OooVm correspond respectively to all sequences of 
length /I and all finite outcome sequences which pass the 
universal test for randomness at level 111, OooVm can 
also be associated with exactly those infinite sequences 
which are random at level Ill. 

In Sec, II some preliminary results are given. The 
properties of sequential tests and universal sequential 
tests are given and discussed in Sec. IlIA, and in Sec. 
III B the correspondence between tests and states is 
given and discussed. In Sec. IV A some further aspects 
of the construction are discussed. Section IV B con
cludes with an application of the results obtained to the 
Everett3 interpretation of quantum mechanics. 

II. PRELIMINARIES 

Let H be the Hilbert space for a single object system 
and /, the Hilbert space for the record system Then 
H =H<'i9 A is the overall system space. Consider the 
measurement of an observable A which is assumed to 
be purely discrete. If a is the eigenvalue set of A, then 

A=6 (lp a, 
aC::o 

where P a is the projection operator corresponding to 
eigenvalue (f 

One now assumes the existence of a unitary operator 
U acting on H such that for any state 1'a (~ P aH and for 
each (I in a 

Here <Po is the input state of the record system and ¢a 
is the final record system state corresponding to out
come a. One also has for each a, a' E a, 

(G'>u,¢a)=O, (cba,cba,)=oa,al , 

For a general system state~.', one has by linearity, 

U,l:,; ¢II= B PaJ/2; <Pa, 
a:::- cr 

where P a acts in H. 

(1) 

(2) 

(3) 

The extension of the above to a fixed, finite number 
of repetitions is well known and won't be repeated here. 
For an infinite number of repetitions one considers the 
preparation of an infinite number of copies of the object 
and recording systems. (It is not necessary to consider 
copies of the measurement apparatus; one such sys
tem, interacting with successive copies of the object 
+ record system will suffice. ) 

The initial object + record system state is 

00=2) (J{j)>!J <Po(j)), (4) 
j=1 

where ~!(j) = J Hand ¢ uV) == Q I) E A for each j. The state 
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8 n corresponding to II completed repetitions is given by 

(5) 

with4 ,5 

07, ='6J (de?; rf) O)k' (6) 
k>n 

One also has for each II, 

(Om On) = (00,80) = 1. 

Note that (')n is the same as the state tt: given by 

(7) 

where an is the set of all eigenvalue sequences of length 
II. 0: is a sum over orthogonal component states, each 
corresponding to a possible outcome sequence lJ n in a", 

The state () 00 corresponding to an infinity of measure
ment repetitions is then given by extension as 

(8) 

Note that, as for tin' 

Before discussing some properties of 0
00 it should be 

noted that the overall Hilbert space for an infinite num
ber of copies of object + record systems iS2)jE,vHj, the 
complete tensor product4 of countably many copies of 
H. "NH j is spanned by the set of all product vectors 
&; /' j with A j c f( and is nonseparable even if H is two
dimensional. However the essentials of the discussion 
can be given, for the most part, in the subspaces H" 
and Hoo of (.cNH j • H O is spanned by all product vectors 

A j with A j = J:b ~) u for all but a finite number of j 
values. j! 00 is spanned by all product vectors A j with 
Aj ='\',acca(PaJ'b <J a) for all but a finite number of j values. 
H 00 and H II are separable if H is, and are orthogonal to 
one another (Eq. 2). It is clear from the definitions of 
H() andH~ that OncHIJ for each /l and eoor/Ho (O~ is a 
product state in H 00) • 

For each infinite outcome sequence lJ, let Ov be a 
product state of norm 1 given by 

where J;(j)=Pv(j l;pv(j)~'II, LetHN' be the subspace 

(9) 

of 2l iE NH j spanned by all vectors Ov with lJ 'cc aH, the set 
of all infinite outcome sequences. Clearly HNI is non
separable and is the space of states interpretable as 
linear combinations of infinite- outcome-sequence states 
each of norm 1. 

F or any lJ E aH one has (ov, ~) "') = nj (J': (j) q)v:j), 
LacaPaJ@ i~a) =nj(J), P V (j)4,)1/2 = ° for most J'. Thus in 
general 0 00 lies in a subspace orthogonal to HN'. It fol
lows from this that, in general, it is JlO/ possible to 
represent the asymptotic situation by a sum over com
ponent states each corresponding to an infinite outcome 
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sequence v. Except for the trivial case with (I/!, Pal/!) = 1 
for some a, the state LvEcr"VCZ! j (P v (j )I/!@ <Pv (j») is the zero 
vector. The asymptotic state differs in this respect from 
the state en, Eq. (5) which is the same as e:, Eq, (7), 
8~ can be characterized as having, for each finite out
come sequence e of length l(e) a nonzero component 
state Xoro provided that (I/!, Pal/!) > ° for each a in a. How
ever, it is not an orthogonal sum over all such compo
nents, To see this define Xo~ by 

1 (0) 

X o
ro =@ (Po(J 

j =1 

with 8t!{l) given by 

(10) 

81~(o)=;; (6 Pa.l/!@ <Pa.). (11) 
j=l (0)+1 ajEa J J 

Xoro is the asymptotic state inHro corresponding to all 
finite outcome sequences containing e as an initial 
segment. 

One has for each finite e, (Xo~, 8ro) = (Xoro, Xoro) 
= D~ g) (I/!, Po (j )I/!) 2- 0. The desired result follows from 
the fact that for each state I/! there exist sequences e 
and e' with e an initial segment of e' such that (Xo~, Xo";) 
= (Xo":, x;.) > 0. 

Define e and e' to be orthof{ollal if e is not an initial 
segment of e' and e' is not an initial segment of e. If 
each pair of finite sequences in a set S of finite se
quences are orthogonal, then S is a set of pairwise 
ortlzof{onal sequences. If e and e' are orthogonal, then 
(Xgro, Xo":) = 0. If S is a set of pairwise orthogonal se
quences such that every finite sequence has an initial 
segment in 5, then e~ = LoE sXg~. Thus there are many 
decompositions of 8~ into orthogonal sums over some 
X g":. 

III. STATES CORRESPONDING TO THE SET OF 
RANDOM OUTCOME SEQUENCES 
A. Sequential tests 

From now on, to avoid some complications, the ob
servable A is restricted to be a question observable. 
Then a={O, 1} as ° and 1 are the only outcomes possible. 
Also the object state I/! is restricted to be such that 
(I/!, P11/!) [and (I/!, Pol/!)] is an effectively computable2 real 
numbero That is, there must exist an effective proce
dure6 for computing successive approximations to the 
value of (I/!,P1 </!)o For example, any real number r be
tween ° and 1 has a binary expansion L;':l ai2~i with a j 

= ° or L r is computable iff there is an effective pro
cedure6 for enumerating the ai' 

Let a<N and aN denote the respective sets of all finite 
and infinite 0, 1 sequences with N the set of positive in
tegers and P(a<N) andB(cf) the respective sets of all 
subsets of a<N and all Borel subsets of ef. Define 
W: P(a<N) -B (ef) by 

W(E) = u Bo 
OEE 

for each subset E of a(,v. Here Bo is the set of all in
finite 0, 1 sequences having e as an initial segment. 
(The variables e, e' denote finite 0, 1 sequences and 
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(12) 

v, v', . .. denote infinite 0, 1 seq uenc es.) F or each 
E, W(E) is a Borel set and is open in the usual product 
topology on ON • 

Let P e be the probability measure onB(ef) which 
gives the statistics of the measurement repetitions as 
given by the states en' That is for each e of length l(e), 
PeBo is the probability that in any state 8 n with 11 2-l(e) 
the first l(e) record systems have e(l), •. 0, e(l(e» as 
outcomes. For the case at hand 

and 

1 (0) 

PeBe=D (~',Pg(j)1!), 
j=l 

(13a) 

PeW(E) = B PeBe. (13b) 
eEE 

Following Martin-Lof, 2 a P e sequential test T is de
fined here as a subset of NX a<N such that the}}) slices 
of T defined by T m ={ e I (JII, e) E T} satisfy To = a(,'V and 

(1)T1dTzd. """Tmd.,,·, 

(2) e (cc T m - e * e' E T m for all e' E a<N 

(3) PeW(T m) < 2~m, 1J/ = 0,1,2, .. " 

(4) T is recursively enumerable. 

Here e * e' is the finite sequence obtained by adjoining 
e' to the end of e. The fourth condition means that there 
exists an effective procedure6 for listing or enumerating 
the elements of T. By an obvious selection process, for 
each 111 such a procedure gives also an effective listing 
of T m' W(T m) is called a critical region for the test and 
2-m the corresponding Significance level In what follows 
the Significance level is often referred to as "level 111." 

For each v E (j'V the critical l'alue IJIT (v) is defined by 
1JiT (v) = max{m I v (cc W(T m)}. 

As a statistical test for some property Q of infinite 
sequences such that Pe{v I v has Q} = 1, T gives for each 
Ill, a prescription as a set T m' of finite 0, 1 outcome 
sequences, for rejecting or accepting Q. That is, the 
infinite outcome sequence v is rejected as not having 
Q if v E W(T m). The error probability of this estimation, 
i. e., one rejects v as not having Q when it really has 
Q, is S 2-m• However any v'l W( T m) certainly has Q 
because v Ii' W(T m) implies v <1 W(Tn) for alln ? m. 

One can also speak of finite sequences7 having Q at 
level J/I. Here e is rejected by T as not having Q at 
level )JI if e E T m' If e rz T m' then we shall say that 8 has 
Q or passes T at level m. Note that if 8 is rejected by 
Tat levelm, then e is rejected at all lower levels. Also 
r'mT m is empty as no e is rejected by T at all levels. 
For no finite sequence can one be certain that it is re
jected by To 

It is to be noted that deciding whether or not v cc W(T m) 
requires that v be available only asymptotically. For if 
v E W(T m) then this will be found out in a finite number 
of steps in which the successive finite sequences 
e1 , e2 , ••• , en' • 0 in the enumeration of T m are compared 
with the outcome sequence obtained from the first l(e1 ), 

l(e2 ), ••• , l(en), .•• measurement repetitions. If for 
some 11, VI (On) = en' then v E W(T ml. If v (i W(T m), then this 
will be found out asymptotically only after exhausting 
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the enumeration and discovering that for no n does v, (e ) 
_ e n 
- n' 

All of the usual probability theoretical tests for ran
domness can be given as simple sequential tests. 2,7 
Consider for example the property NIv = (ii;, Pd;), Leo, 
the limit relative frequency of occurrence of 1 in v 
equals (1/!, P l 1/!). A P e sequential test T for this property 
is given by T m = Vh:l T~.h [Eqo (15) and discussion] where 
for each II, Th is a P e sequential test for the property 
"there exists an 11 such that for all I'> II, 1.~11 V - (<J;, Pl<J;) I 
:s 2-h (ill v is the mean of the first I elements of v). The 
effective enumerability of the rand T can be proved by 
actual construction. 

As another example let vI) be a given effectively 
enumerable sequence in (/ and Q the property v,* vo, 
The corresponding test T is obtained by defining T m to 
be the set of all finite (J sequences which have v~ as an 
initial segment where v~ is the shortest initial segment 
of vO such that PeW(T m) < 2- m

, 

For each P e sequential test T one can associate to 
each T m the set T m defined by 8 c: T m - 8 E T m and for 
all 8' E T m 8' is not a proper initial segment of e, That 
is, T m is the set of all elements of T m which are the 
~hortest initial segments of elements of T m' Note that 
T m is a set of pairwise orthogonal sequences. 

Now let C be the (countably infinite) set of all P e 
sequential tests, A universal test2 for the tests in C is 
a P e sequential test V such that for each test T in e 
there is a constant d, depending on T but not on 11/, such 
that for each IJI 

Tm+d'= Vm· 

The existence of universal tests is shown as follows: 
Let T(l" c, 0, T(k), c • be an effective enumeration of 
the tests in e, which does exist. 2 Define V m by2 

w 

V m = U T~.~ 
k"l 

(14) 

(15) 

for m ' 1 and VI) = (J"-'v, It can be shown2 that V ={ (III, e) I e 
E V m' 111 = 0,1,2, . , o} is a P e sequential test which is 
universal for e 

The universal property can be seen as follows: If a 
sequence e passes Vat level 111, then for each test T 
in e, e passes T at some higher level 111 + 1'1, Note that 
v 1 I' mW(V m) implies that v d mW(T m) for each T in e and 
conversely. 

A sequence v is defined to be e random if and only if 
/lIv(V) < 0() or equivalently v ci nmW(V m)' That is, a se
quence v is C random if v passes V at some level 111. 

If v passes V at Jevel In, then v passes each test T in 
e at some level higher than 11/ Conversely if v passes 
each test T in e at some level, then v passes Vat some 
level (because V is in C), 

A sequence v is non-C-random if and only if v 
lCC (lmW(Vm), or v is rejected by Vat all levels. Since 
Pe([~lmW(Vm))=O one sees that the set of e-random se
quences is a set of P e measure 1. The dependence of 
the definition of randomness on the measure P e is indi
cated by the term "e random" and the obvious depen
dence of the tests in C on Pe. (If desired one can re-
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move this dependence by calling a sequence random if 
it is e random for some computable product measure 
P.) 

B. States corresponding to sequential tests 

It will now be seen that one can associate families of 
states in HO and H w to a sequential test. 

Let T be aPe sequential test and let T m be defined 
from T as above, Define the state x~m inH o by 

x~m= .0 _ X~, 
BE:a:!:in("T m 

where ~ is given by 

(16) 

x;, = .0 ~ (Pe, (j <iJ e, (j)Ci! 0'0 (17) 
e' ":T9 j"l 

and T; is the set of all (J sequences of length II which 
have e as an initial segment. 8 0 is given by Eq, (6). X~ 
is the state corresponding to all outcome sequences of 
length 1/ which have e as an initial segment [note that 
n 2: 1(8) J. X~ m is the orthogonal sum over all states, 
corresponding to the shortest initial sequences of length 
:s II which are rejected by the test T at level III, From 
the definition of T m' and condition (2) in the definition 
of a sequential test it is clear that X~ m is also given by 

i~;m = 6 ~ (Pe (})<J:& ¢e (j)) g; 8 0. 
eE~nr'Tmj"l 

(18) 

Thus x~m is also the state corresponding to all outcome 
sequences of length Il which are rejected by the test T 
at level III. For each such sequence e, x~m includes a 
corresponding component state X~. 

The corresponding asymptotic state X oOI'm in H W is 
defined by 

XwTm= 6 X e
OC

, 

e~Tm 
(19) 

where X; is given by Eq. (10). By the discussion above 
and in Sec. II, xoOI'm is an asymptotic state which in
cludes component states, corresponding to exactly those 
finite outcome sequences which are rejected by the test 
T at level 111. 

Note that (1) xoOI'm, like Ow, and X e
oc

, cannot be writ
ten as a sum over infinite outcome sequences and (2) 
one cannot replace T m by T m in the sum, The reason 
for the latter is that unlike the case for T m the terms 
in the T m sum are pairwise orthogonal. Also from the 
definitions of a sequential test and T m one has Ilx~mll 
:s 11x-!'.'1 11 :s liX oOI' mil :s (2- m )1 12. 

The states corresponding to those sequences whicTh 
are accepted by T are obtained as follows: Define en m 

and E-) oOI' m by 

(20) 

and 

(21) 

with On and 8~ given by Eqso (5) and (8L Consider first 
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the o~m. One has from Eqs. (5) and (18), 

(22) 

which is a sum over all outcome sequences of length Il 
not in T m" That is, a sequence of length 11 has a com

T 
ponent in On m if and only if it passes test T at level 111. 

00[' o m includes component states corresponding to all 
and only those finite 0-1 sequences which pass test T 
at level 111 

As was the case for o~,xoO['m and ooO['m inH~ do not 
correspond to a sum over components each corre
sponding to an infinite outcome sequence. However, 
one can partition cr~ into two sets, each associated with 
x~Tm and 000[' m as follows: One says that a set of infinite 
sequences is as sociated with a state in H ~ if and only if 
for each sequence v in the set and for each II, the initial 
segment of v of length 11, vn , has a component in the 
state, Then it is clear that W(T m) is associated with 
X 00[' m and aN _ W( T m) is associated with 000[' m. 

To see this note that by the definitions of T m and T m' 

W(T m) = W(T m) = UBFT BB. From Eq, (10) one sees that 
each infinite sequenc; in dV with e as an initial segment 
is associated with Xo"'. Thus by Eqo (19), W(T m) is ex
actly the set of infinite sequences associated with xoO['m. 
Since (f is associated with e'" one has from Eq, (21) 
that dV 

- W(T m) is associated with ooO['m. 

It should also be noted that for each infinite sequence 
v in rjV - W(T m) [ic e., not in W(T m)] vn has a component 
in e~ m for cach II. To see this one notes that v q W(T m) 

implies that for all II, vn <:t T m' [For if vn E: T m for some 
11, then by Eq, (12) v c W(T m)' which is a contradiction.] 
From Eq. (22) one clearly has the result that for each 
II, vn has a component state x';;n [Eq, (17)] in o~m. 

This has the following consequence, Suppose one con
siders the evolution of a sequence of states f)n, II 

= 0, 1, ... as the time development of an infinite number 
of copies of an object + record system, each undergoing 
one measurement interaction, Then if the sequence of 
states o~ m with II = 0, 1, .. , is to have meaning as a de
scription of measurement sequences which pass T at 
level III there must clearly exist in the sequences o~m, 
many possible trajectories or infinite outcome sequence 
tracks, The above proof shows that this is so-each v 
in rjV - W(T m) describes such a trajectory. 

Finally one has from the construction of the states 
x~m and xodl'm, Eqs. (16) and (19), [llx~mll s Ilx"'Tm;1 
s2-m/~1, 

for each III and 

lim 110'" - Oodl'mll = O. 

(23) 

(24) 

These limits reflect the fact that for each 111 there exist 
finite outcome sequences which fail T at level nI and 
that no finite outcome sequence fails T at all levels 
('m T m is empty), So the state which corresponds to ex
actly those sequences in flmT m must be the 0 vectoL 
However nm W(T m) is far from empty 0 Thus there is no 
(nontrivial) state associated with "mW(T m), the set of 

2293 J. Math. Phys., Vol. 18, No. 12, December 1977 

all infinite 0-1 random sequences which fail T with 
certainty even though for each 111, X 00[' m is associated 
with W(T m)' Similarly there is no state associated with 
the set, a" - flmW(T m) of all infinite sequences which 
pass T even though for each 111, oodl'm is associated with 
a" - W(T ml, 

Now let V be a universal test for the set C of all P e v coV v ooV 
sequential tests and define Xn m, X m, On m, and 0 m 
by Eqs. (16), (19), (20), and (21) with V replacing T. 
Then X~ m and o~ m include components corresponding 
to exactly those finite 0-1 sequences of length II which 
are non-C-random and C random at level m respectively 
x"'vm and O~Vm include components corresponding ex
actly to all finite 0-1 sequences which are non- C
random and C random at level JJI A Iso X ",v m and 0 ",v 

are associated with the respective sets of infinite 0-1 
sequences which are non-C-random and C random at 
level JIl [By the previous discussion W(V m) is associat
ed with X "'v m and a" _ W(V m) is associated with O"v m. ] 

Similarly there are no nontrivial states associated with 
the sets 'mW(Vm) and a" - "mW(Vm) of non-C-random 
and C- random sequences respectively. 

IV. DISCUSSION 
A. Other aspects of the test-state correspondence 

Other aspects of sequential tests and their associated 
states should be noted. Since the universal test V de
pends on the effective enumeration of the tests in C, the 

X Vm Vm ooV m oOV m states n ,0 , X ,and 0 also depend on the 
enumeration. However it can be shown that the set of 
infinite C- random sequences is independent of the ef
fective enumeration of tests. Thus if V and U are two 
universal tests for C which differ only in the numera
tion of the tests in C, V m '" U m and X"V 

m ",XO«Jm 
and O"'vm", oO«Jm. However ,~ mW(Vm) =, mW(Um) 

and so a" - "mW(Vm) =dv 
- "mW(Um), 

One can extend the construction to some of the other 
definitions of randomness which have been proposed in 
the literature. 8...J.U For example, C can be the set of all 
sequential tests T with condition (4) in the definition 
relaxed to require that T be hyperarithmetic, 8 T have 
a code in the minimal standard transitive model of 
Zermelo Frankel set theory, 9 or T be definable in the 
language of Zermelo Frankel set theory.l0 In each of 
these cases one can define the set of random sequences 
to be those which pass each test T in C at some signifi
cance level. 11 For each definition of C one can define 
a universal test12 for all the tests in C and, by the con
struction of the previous section, give the corresponding 
t t X Vm XooVm Vm "'V m 

S a es n' ,On, and 0 for each Ill. 

It should be noted that it is not known at present which 
of the proposed definitions of randomness is correct in 
the sense of being the weakest possible without leading 
to contradictions. Moreover a proof of which definition 
is correct would have important consequences13 for the 
relationship between the foundations of physics and 
mathematics, Until such a proof is forthcoming, one is 
free to use any of the definitions he wishes, 

B. The Everett interpretation 

The Everett interpretation3 of quantum mechanics 
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considers the whole physical universe, including all 
observers, to be described by a single universal state 
vector whose time evolution is deterministic. The uni
versal state can be represented as a coherent sum over 
a large number of component states, each correspond
ing to a possible state of the universe as seen by an ob
server who is also included in the universal state. As 
time goes on, the universal state branches more and 
more in such a representation. The universe as the ob
server perceives it and its time evolution corresponds 
to one of the observer memory sequences in the uni
versal state. All of the possible worlds, each corre
sponding to a branch in the universal state, have equal 
reality status. 

In the repeated measurement model of this interpre
tation On with II = 0,1, " " Eqs, (14) and (5), repre
sents the evolution of a measurement apparatus + auto
mation undergoing successive measurement interactions 
with an ensemble of identically prepared systems. Each 
possible path in the sequence 0u, . 0 • , On, C •• corresponds 
to a unique outcome sequence v in {O, 1tN and represents 
a possible world in which v(j) for j = 1,2, .. are the 
outcomes observed by the automation, 

An essential part of the Everett interpreta-
tion is the metatheorem which states that quantum mech
anics generates its own statistical interpretation. In a 
proof of the metatheorem, given by DeWitt, 1 a sequence 
of states O~, 11 = 1,2, .. 0 is defined, which for each /I, 

exclude from On Eq, (5), all components corresponding 
to sequences e in{O, I}" for which 12Vne- (~!,Pl~')l 'Cc 
The O~ are then shown to satisfy II O~ - 0nll - 0 as II - 00. 

It is noted in passing that the same result is obtained 
for states defined to exclude components for memory 
sequences which fail to meet any finite combination of 
tests for randomness, The metatheorem is then stated 
to follow from this and the fact that nonrandom memory 
sequence component states are of a set of measure 0 
in the limit /I - 00 • 

The above proof is incomplete in the sense that the 
states relating to the other tests of randomness are 
not given an explicit definition, Furthermore, their de
finition depends on what properties, other than those 
given for the O~, they are required to have. 

v 
The point to be made here is that the On m can be used 

v 
to remove this incompleteness 0 By Eq, (22) the Gn m 

include components for exactly those memory sequences 
of length 11 which pass the universal test V at level nI '. 

By an argument given in Sec, III, the infinite memory 
sequences v in cI' - W(V m) are those which, for each H, 

have a component state x;,n, Eq. (17) in e~m. So in the 
limit 11 - DC the memory sequence v n passes at level 111, 

all the tests for randomness, Since, Eq, (24), 

the set of memory sequences which pass V at some 
level )II is a set of measure 1. (The set which fails V 
at all levels is a set of measure O. ) Thus the e: m have 
the desired properties for DeWitt's prooL 
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There is another difference between the O~ as defined 
by DeWite and the e: m. To see this consider a per
ceived world whose complete evolution path is given by 
the infinite sequence v. (Recall that each v corresponds 
to a chain of finite memory sequences v n' totally well 
ordered by the relation "is an initial segment of." l It 
is clear that in general this path will wander in and out 
of the state sequence e~ as n increases, It will be inside 
for those 11 for which IMnvn- (<f;,Pdll <c It will be 
outside for those 11 for which I iIv n - (if, P1 4·) I " Eo 

Furthermore there are in general no paths at all 
which are inside the sequence e~ for all n, In fact, for 
many Il and E, e~ is the zero vector.14 Thus the most 
one has, is that if a perceived world is such that its path 
v satisfies i J\.lv - (z/!, Pi </J) I < E, then there is some value 
of ii, dependent on v, E, and (Ij!, P11j!), such that for all 
1'> II, the world path lies in the state sequence e~ for 
all 1 = II + 1, /I + 2, .... 

v 
The (\ m differ in this respect from the e~ in that 

there are many perceived worlds whose paths have jor 
each ii, component states in e:mo This follows from the 
argument given at the end of Sec. III. All these worlds 
satisfy the appropriate statistical laws in the sense of 
DeWitt since the appropriate tests are included in V. 
Only the exceptional or "Maverick" worlds wander and 
they make only one change. Initially they are in the e: m. 

For some value of n they leave the e~m and move into X: m. Once in the x~m they stay there and do not wander 
out. 

lB. DeWitt, in The Many Worlds Interpretation of Quantum 
Mechanics, edited by B. DeWitt and N. Graham (Princeton 
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Vector spherical harmonics of the unit hyperboloid in 
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Vector fields in Minkowski space which are simultaneous eigenfunctions of the operators [Jx ]2 + [Jyl' 
+ [J,]2, [J,]. and -(1/2)L "VL"v are investigated using special tensor methods which exploit the 
properties of the intrinsic gradient operator \l of the unit hyperboloid x ~x" = 1. A convenient 
representation of the simultaneous eigenfunctions is provided by the use of Helmholtz's theorem for the 
unit hyperboloid. The utility of this representation arises from the existence of intertwining relations such 
as J "v\l = \l L ~v. An addition theorem for the solenoidal vector spherical harmonics of the unit 
hyperboloid is derived, and the Green's function of Poisson's equation on the unit hyperboloid is obtained. 

I. INTRODUCTION 

In the following we investigate vector fields in 
Minkowski space which are simultaneous eigenfunctions 
of the operators [Jxl2 + [.Jyf + [Jz12, [Jzl and - ~L~vL~v' 
Here Px 1 = LxI + [Sx 1, etc., denote the components of 
the ordinary total angular momentum operator asso
ciated with the vector field, and L ~v = (l/i) (x ~ Ov - x v2~) 
is the four dimensional orbital angular momentum 
tensor. Such simultaneous eigenfunctions are here 

. called 1'('cto1' spherical harmonics of the unit In,pcr
boloirl. The vector spherical harmonics of the unit 
hyperboloid are particularly suited for applications to 
the electromagnetic field. One such application, for 
which the present paper provides necessary mathemati
cal background, will be reported in a companion paper. 
Since vector spherical harmonics of the unit hyperboloid 
have a certain intrinsic appeal and may well find further 
quite different applications it was decided to report the 
results contained herein separately. 

The 4-vector spherical harmonics considered here 
differ from those discussed recently by Daumens and 
Minnaert1 in that the latter authors consider simulta
neous eigenfunctions of [Jx12 + [,!yf + [Jzf, [Jzl, and the 
three dimensional orbital angular momentum operator 
squared, L; + L; + L;, rather than our Lorentz invariant 
four dimensional angular momentum operator squared. 

We work in a pseudospherical coordinate system in 
Minkowski space, defined through the equations 

xO = s coshp, 

Xl = 8 sinhp sine cos<p, 

x 2 =s sinhp sine sin<p, 

x 3 = s sinhp cose, 

0<8<"', O"-p<OO, o<e"-7T, 0<<p"'27T. 

(1. 1) 

Our attention is hereby restricted to vector fields 
within the forward light cone. For efficient calculations 
in pseudospherical coordinates a special calculus based 
on the properties of the intrinsic gradient operator V 
of the unit hyperboloid x ~x ~ = 1 is developed in Sec. II. 
The derivation in Appendix A of the curl-curl identity 
(2, 17) and the derivation of the intertwining relations 
(3,49), (3.50) are indicative of the type of calculations 
the methods of Sec. II are designed to handle with rela
tive ease. 
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The mathematical techniques developed in Sec. II are 
applied in Sec. IlIA to scalar spherical harmonics and 
in Sec. IIlB to the vector spherical harmonics that we 
are really interested in. Aside from the derivation of the 
Green's function (3.27) of Poisson's equation of the unit 
hyperboloid in Minkowski space, the final results con
cerning scalar spherical harmonics in Sec, IlIA are not 
especially new; but they are included for completeness, 
since the scalar spherical harmonics will form the 
building blocks for the construction in Sec. IlIB of the 
vector spherical harmonics. The discussion of Sec. IIIB 
is restricted to vector spherical harmonics which are 
tangent to the unit hyperboloid and are solenoidal in the 
sense of the intrinsic geometry of the unit hyperboloid, 
as only these solenoidal vector spherical harmonics are 
required for later application to the electromagnetic 
field. Our discussion of vector spherical harmonics of 
the unit hyperboloid is completed in Appendix B where 
the non-solenoidal case is considered. The very simple 
representations, (3.44) and Appendix B Eqs. (B3) and 
(B4), obtained for the vector spherical harmonics are 
obtained by exploiting a form of Helmholtz's theorem for 
the unit hyperboloid according to which every tangent 
vector field can be written as the sum of a gradient plus 
a curl. The utility of writing a tangent vector field as 
a gradient plus a curl lies in the existence of intertwin
ing relations such as those mentioned above. Also in 
Appendix B we derive an addition theorem [Eq. (B9)1 for 
the solenoidal vector spherical harmonics, a result for 
vector spherical harmonics which parallels an earlier 
scalar addition theorem for Gegebauer functions which 
was obtained by Durand, Fishbane, and Simmons. 2 

II. TENSOR METHODS FOR PHYSICS ON 
SPACELIKE HYPERBOLOIDS 

The D'Alembertian operator in the pseudospherical 
coordinate system (L 1) takes the form 

_ ,2 V 
L;==S- --, as s 

(2.1) 

in which 

, a 1 (' a <p a) V"'P-ap + sinhp eaB + sine aq; 0 

The unit tangent vectors to the various coordinate curves 
are defined through the equations 

S'" (ax/as) I ox/2s 1-1, e", (ax/ae) I ax/28 1-1 , etc. 
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Their components are conveniently summarized in the matrix statement 

S coshp - sinhp sin 1:1 cosc;o - sinhp sinl:l sinc;o - sinhpcosl:l 

0 cosl:I cosc;o cose sinc;o - sine 

0 - sinc;o cosc;o 0 (2.3) 

coshp sine cosc;o coshp sine sinc;o coshp cose 

in which to, it, tz, £3 denote contravariant basis vectors 
along the xv, Xl, x 2

, and x 3 axes, respectively. Their 
normalization is t"'· tv =g~", in which g~" are the contra
variant components of the metric tensor in Minkowski 
space, with nonzero components gOO = _ gl1 = _ g22 = _ g33 

=1. 
The transformation matrix (2.3) is a Lorentz trans

formation matrix; consequently the tangent vectors 
S, - 8, -;P, - P are a local set of contravariant and 
orthonormal basis vectors. Due to the not positive 
definite nature of the dot product in Minkowski space, 
we have the relations s . s = - e . e = - ~. ~= - p . p = 1. 

The dimensionless operator 'il distinguished in Eq. 
(2.2) is the intrinsic gradient operator of the unit hyper
boloid x~x ~ = 1. When applied to a scalar function it 
produces a tangent vector field of the unit hyperboloid. 
For efficient calculations involving 'il it is convenient to 
go over from the representation (2.2) to an equivalent 
representation exploiting the fact that the unit hyper
boloid is a Riemannian manifold and is thus subject to 
the laws of general tensor analysis. Thus, we define the 
covariant basis vectors 

(2.4) 

a=I,2,3, ul",e, u2 ",c;o, u3 ",p in the tangent spac~of~ 
the unit hyperboloid. The ea are just the vectors e, c;o, 
and p again but with modified normalization; and are 
orthogonal to 5: 

5' ea = O. 

From the defining Eq. (2.4) it is immediate that an 
arbitrary infinitesimal displacement dx on the unit 
hyperboloid has the representation dx=dua(as/aua) 

(2.5) 

= duaea • We can thus compute the squared line element 
on the unit hyperboloid as dx' dx = ea • eb dua dub. If we 
compare with the standard representation dx' dx 
=gabduadub of the line element of a Riemannian mani
fold, we find that the unit hyperboloid has the metric 
tensor 

(2.6) 

Raising and lowering of indices can be defined in the 
usual way; for brevity the usual operations of Rieman
nian geometry will be assumed as needed and without 
explicit comment. 3 We adopt the convention that Greek 
indices shall be tensor indices of Minkowski space, 
while Latin indices are reserved for tensor structures 
of the unit hyperboloid, The Einstein summation conven
tion is adhered to with regard to both geometries. The 
completeness relation for our basis vectors reads 

1= 55 + ea ea, (2.7) 

in which the ea are the vectors of the dual baSiS, defined 
through the requirement that ea 

• eb = o~. Dyadic outer 
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I 
product in Eq, (2.7) is understood, On the left- hand 
side of Eq, (2.7) in the unit (metric) tensor of Minkow
ski space; with mixed components c~, covariant compo
nents g",v' The gradient operator of the unit hyperboloid 
has the representation4 

(2.8) 

We can now derive an operator commutation relation 

['il~;svl=- (gu,,-5 u5,,) 

that will be needed subsequently. Thus, 

['il~;5vl=[-e:aa;s,,] 

= -e~[aa;'U = - e:(a5jiJlla
) 

=- (1- 55)",,=- (gu,,- 5us,,). v 
For the more complicated commutator 

['il"; 'il" 1 = - ($" 'il v - S" 'il ~) 

(2.9) 

(2.10) 

derivatives of the eO are required. These derivatives an 
and the corresponding formulae for the ea are 

(2.11) 

and 

(aea/aub)=-{~Jec- o~5. (2.12) 

The Christoffel symbols {tc} of the unit hyperboloid can 
hereby enter our calculations; but it has been the 
author's experience that these invariably disappear from 
final results of interest, except in combinations such as 

{'a} 1 iJ(_g)lI2 
ab = (_ g)f72 dUb , (2.13) 

in which g denotes the determinant of the (negative 
definite) metric tensor gab' We illustrate with the 
derivation of Eq. (2.10): 

['ilu;'ilvl=[-e~2a; -e~abl 

=e:[aa;e~2bl + [e~;e~iJ1>l Ga 

= e: (oe~/G1(a)21> - e~(ae~/allb) ?a 

a({b}c b~) b({a}C a~) =e~ - ae e,,- cas" 21>- i'" - be e" - 6bS~ aa 

= -{~c }e: e~ 01> +{~c}e~e~ 2a - s"e: Ga +.S ue~ i\ 
= 5 v'il u - $ u 'il v = - (5 u 'il v - 5" 'il ~). f 

The relative ease of this calculation lies in the ability to 
treat the three Gaussian coordinates e, <P, and p of the 
unit hyperboloid on equal footing, Further commutators 
that will be needed are the following: 
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(2.14) 

and 

(2.15) 

in which v2",v'v=(-grl/2aa(-g)1/2gabob is the intrinsic 
Laplacian operator of the unit hyperboloid. The proofs 
of Eqs. (2.14) and (2,15) build on the commutators 
(2.9) and (2.10): 

[v2; svl = [V"V ,,; svl 

and 

=V"[V ,,; svl + [V"; ,U V" 

= - V"(g "V - 5 "sv) - (6~ - s"5 v )V" 

=- 2Vv+V"s"sv=- 2vv+[v";s"svl 

= - 2V v + ,~ " [V" ; .~ v 1 + [V" ; s " 1 5 v 

=- 2Vv - s,,(6~- 5"Sv)- (6~- s"s,,)sv 

=- 2Vv- (6~ - s".~,,)sv=- 2Vv- 3sv 

[\72; V v 1 = [\7 ~\7 ,,; V vl 

= v"[v ,,; v v1 + [V"; v v1v" 
=- V"(5"Vv- ,svV,,)- (5"Vv- 5vV")V" 

= - v"s" Vv + v"svv" - 5"VvV" + svV2 

= - [V"; 5"lvv - 5" V"Vv + [V"; sv1v" + sv\72 

- [s"; v v1v" - Vvs"V" + svV2 

= (6~ - ,~".~ ,,)Vv - 2(6~ - s"sv)V" + 2svV2 

=3Vv-2Vv +2sv\72 

=Vv+2svV2.{ 

In these calculations the relation 5 . V = - 5 . eail a = 0 was 
used to eliminate certain terms. Also, the differentia
tion property [AB; C1 =A[B; C] + [A; C1B of the commuta
tor was needed. 

The unit hyperboloid has an intrinsic cross product in 
terms of which a curl operator, designated by the sym
bols vx, can be defined: 

(2.16) 

Dyadic notation is assumed. Also, the epsilon density is 
defined through the property E123 '" 1. Two such curl oper
ations performed in succession would technically be 
written using dyadic notation as VX· VX; however, we 
usually delete the dot, writing simply V x V x. Useful 
operator relations involving the curl are 

vxvx 

(2.17) 

and 

(2.18) 

The derivation of Eq. (2. 17) is rather long, and is indi
cated in Appendix A, Equation (2.18) can be obtained 
quite s imply once Eq. (2. 17) has been established by 
expanding vxvxvx either as VX' (vxvx) or as 
(vxvx)oVx· 

VX· (vxvx) 
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= V X 0 1\72 - vx' I = V X \72 
- vx 

since V X 0 S = 0 and V X· V = 0, 

Equating our result here to the expression obtained by 
expanding in the other order, find 

VXv2 - vx 

= (VxVX) 0 VX 

Terms dropped vanish by virtue of either the above 
identity, s' V x= 0, or the new identity V . V x= O. So 
far we have obtained the result Vx \72 

- Vx= \72VX - Vx. 
Cancelling the common term V x on either side of this 
result now gives Eq. (2.18). 

With the help of the cur I-cur I identity we are able 
to prove the following important closure property of 
\72

: If F lies in the tangent space of the hyperboloid 
x"x" = 8

2 through the field point, then \72F lies in the 
tangent space if and only if \7 . F = O. 

Proof: by the curl-curl identity (2.17) and the com
mutation rule (2.14), we find 

VXVxF 

= \72F -5[.~; \721' F - [5; \72]S' F -F - VV· F 

= \7 2F +s(-2V -3s)'F -F - VV'F 

= \72F - F - VV . F - 2s V . F. 

Terms dropped here vanish because s . F = O. Our result 
so far is equivalent to the representation \72F = V x V x F 
+ F + vv . F + 2sV . F of \72F in which all terms on the 
right hand side represent tangential vectors except the 
2.sV . F term. The vector \72F is thus wholely tangential 
according as this term does or does not vanish, i. e. , 
according as V . F = 0 or not. v As a by product of our 
proof we learn from the representation of \72F above 
that the curl-curl identity (2.17) assumes the very 
simple form 

V x V x F = \7 2F - F , 
(2.19) 

s ·F=O, V'F=O, 

for a solenoidal tangent vector field F. 
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III. VECTOR SPHERICAL HARMONICS OF THE 
UNIT HYPERBOLOID IN MINKOWSKI SPACE 
A. Scalar spherical harmonics of the unit hyperboloid 

A particle moving in Minkowski space has an angular 
momentum tensor 

L""", (1/i)(x"a" -x"a"), (3.1) 

The space -space components of L "V are made up of the 
usual angular momentum operators: Lx = L 32, L, = L 13, 

and L.=L21, describing a simple rotation of the refer
ence frame in x, y, z space; while the components L Ok 

= _L kO
, k= 1,2,3, describe Lorentz transformations 

to a moving frame of reference (boosts). The commuta
tion relations 

[L"V; L,"81= i(~'"Lv8 + L"'"gvB _gJ). 8U'" _L"8g,,,") (3,2) 

can be established by use of the representation (3,1); 
and can be used to show that the Lorentz invariant 
Casimir operator _~L,"BL<>.B commutes with all L"v, It 
follows that _~L,"BL<>.B commutes with L; + L~ + L; as 
well as with L., Since the last two operators are well 
known to commute from standard angular momentum 
theory; we have the mutually commuting set 

GOing over to the pseudospherical coordinates (1. 1) 
we find 

(3.3) 

(3.4) 

We employ the wedge product notation" /I" signifying the 
completely antisymmetrized tensor formed from the 
indicated vectors: 

A /I. B "AB - BA 

and 

A/lBI\C",ABC -ACB+BCA -BAC+CAB -CBA. 

Only coordinates referring to the unit hyperboloid 
x"x" = 1 appear on the right hand side of Eq. (3.4). This 
is made more explicit by the representations 

L 01 = i [sine coscp?p + cothp(cos 8 coscpa e - sincp csc 132 ~)], 

L 02 = i [sine sincpa p + cothp(cos 8 sincp2 e + coscp esc 8(1 ~)], 

L13 = i[ - coscpc e + cot8 sincp(l ~ l, 
and 

(3.5) 

obtained by evaluating the wedge products S /I ea = ,~ea 
- eas using matrix algebra, and then substituting in 
Eq. (3.4). For this calculation the components (203) and 
the explicit expressions for the metric tensorS are 
required. The above representations show that the L"v 
can be viewed as linear operators acting on the Hilbert 
space of scalar fields defined over the unit hyperboloid 
x"x" = 1. Indeed, it can be shown that the L"" are self
adj oint operators on this Hilbert space; if the latter is 
assumed to be endowed with the unitary dot product 
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(g;j) = r dz:, g*f. (3.6) 

Here f( 13, cp, p) and g( 13, cp, p) are possibly complex -valued 
functions defined on the unit hyperboloid, and dL 
= (-g)1/2d3u = (- g)1/2dedcp dp = sinh2p sin ededcp lip is the 
three dimensional area element on the unit hyperboloid. 
In consequence of the self-adjointness of the L"", our 
operators (3.3) above are self-adjoint. Since they mu
tually commute; they admit a complete orthogonal set 
of simultaneous eigenfunctions. These simultaneous 
eigenfunctions of the operators (3.3) are the "scalar 
spherical harmonics of the unit hyperboloid" that we 
are concerned with here. 

To calculate these generalized spherical harmonics 
we require the explicit representation of the operator 
-~L <>6L"6 in the variables e, cp, p. This can be ob
tained rather efficiently from the representation (3.4) 
of the L"". Thus, 

showing that the Casimir operator -±L""L,," is the in
trinsic Laplacian operator v2",(_g)-1/2(la(_,~)1/2gllb;\ 
of the unit hyperboloid. In the above calculation, the 
identity [derived from Eqs. (2.12) and (2 13)] 
(_g)- 1122«_i;)1/Ze")/Cllla= -3,~ was required. 

Also, some terms could be dropped because the wedge 
product vanishes if two factors are equal or parallel. 
One case in point are the wedge products e 1 (. e1 = e 2 /1 e2 

= e3 /1 e3 = 0; the vector ea differs from ea only by a scalar 
factor by virtue of the fact that the metric tensor is diag
onaL Substituting the values ~l = _ (sinhp)"2, g22 = 
_ (sinhp sine)"2, r!3 = _ 1, and (- g)1/2 = sinh2p sine in the 
expression for the Laplacian now gives the Casimir 
operator in pseudo spherical coordinates: 
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(3.7) 

in which the identification (familiar from standard angu
lar momentum theory) 

2 + 2 + 2 __ (_1_ J!.... ~ 1~) 
Lx Ly L z - sine ae sme ae + sin2e arp2 

has been made. 

The details of the derivation of the simultaneous 
eigenfunctions of the three operators -~L"'vL",v, L; + L~ 
+ L;, and L z are quite standard; consequently, their . 
derivation will be discussed only briefly. Solutions of 
the simultaneous eigenvalue equations can be found in 
the separable form P(p)y1m(e,cp), in which Y1m(e,rp) de
notes the usual spherical harmonics of the Euclidean 
2 -sphere. 6 Substituting into the eigenvalue equation 
associated with the operator (3.7) gives a second order 
ordinary differential equation for P(p) which can be con
verted into the form 

{C\,2_1) ;":2 +(21+3)x ::y +(Z+W+C!2}C(p)=o, 

(3.8) 

X"" coshp, 

of Gegenbauer's equation, by writing pep) = (sinhp)IC(p). 

In Eq. (3.8) the eigenvalue of 'Y2 is represented in the 
form 1 + ()I 

2 . Initially one must assume a real or pure 
imaginary, in order that an aribitrary real number 
admit a representation of the form 1 + a 2

• Positive defi
niteness of 'Y2 imposes the restriction 1 + a 2 ~ O. Hence 
imaginary values of a, if they occur, must be less than 
one in absolute magnitude. This possibility of imaginary 
values of a whose magnitudes are less than one is ruled 
out by the failure of the corresponding eigenfunctions to 
vanish sufficiently rapidly in the neighborhood of infinity, 
p- co. We are thus left with real a only.7 Solutions ob
tained for negative real a are not independent of those 
for positive real ()I, hence the further restriction a' O. 
The resulting eigenfunctions, denoted Y c> 1m (p, e, co), are 

Y,,'m({l, Ii, rp)" P/<,(coshp)y1m(e, cp), 

where 

(3.9) 

/,. . 3 1 -COShP) 
x ,F 1 ~ + 1 + I a , I + 1 - I a, 1 + i; 2 . 

(3.10) 

This form of P,c>, involving the Gaussian hypergeo
metric function 2F 1> results from an investigation of the 
series solutions of Eq. (3.8) in ascending powers of 
0-x)2. Other forms of P,a are" 

P =i(_I)'+l\ r(l+iC!) \(~)1/21!21(SinhP)1 
'''' r(I+1+ICt) Ti 

(3.11) 

and 

) _ l[ r(l+i()l) 1(~)1/2 
1 1",-(-1) r(I+I+ia) Ti 
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x( . )1 d
1 

(Sina p ) 
smhp d(coshp) I sinhp • (3.12) 

The form (3.11) can be obtained from Eq. (3.10) by use 
of the relation9 

""() r(A+2v) F ( 2 1 1 -2) 
LoA 2 = r(i\+I)r(2v)2 1 -A,i\+ v,v+2"; -2-

(3.13) 

between the Gegenbauer function C~ and the hypergeo
metric function. Also, in addition to Eq. (3.13), the 
usual properties of the gamma function are required. 10 
In order to obtain the representation (3.12) one can use 
the differentiation formula 11 

r(a + Z)r(b + J) 
r(c+l) 2F 1(a+l,h+l,c+l;z) 

(d) I r(a)r(b) 
= dz ric) 2F 1(a,h,c; 2) (3.14) 

to rewrite the hypergeometric function in Eq. (3.10) in 
terms of the 1 = 0 function )'1(1 + ia, 1 -iCt, %; ;'(1 
- coshp)). The latter is then expressed in terms of ele
mentary functions by means of the identity12 

( 
L 1 -COShP) 2F 1 1 + iCt , l-ia, 2, ----c-

2
---"-

sinap 
()I sinhp . (3.15) 

As indicated above the P!<x are eigenfunctions having a 
continuous eigenvalue spectrum. Their normalization 
as defined in the above equations (3.10) through (3 0 12) 
is adjusted to make 

J)x dpsinh2pPfa2(coshp)Pl"1(coshp) = 0(a 2 - ( 1). 
(3.16) 

The normalization of the full generalized spherical 
harmonics (3.9) is then 

(rl2;Y~ 1m Y" 1m = 01 10m m 0(a 2 -(1). (3.17) 
. 222 111 2121 

With this normalization, the completeness relation for 
the Y",m reads 

~ I 

0(21) = ~ L.: IX ria Y"lm(2)Y~lm(1). 
l::;;() m= .. l . 0 

(3.18) 

The delta function of position on the unit hyperboloid 
0(21), is defined in terms of Dirac delta functions by 

6(21) - 0(P2 - pJ6(b2 - A1 )0(CP2 - co1)isinh2p2 sin!!2' 

and has the characteristic property 

j(2l=c.l rl:SJ(1)6(21), (3.19) 

for any sufficiently smooth function (. For completeness, 
we record explicitly the defining equations 

y2Y"'lm = (1 + ( 2
)Y,,'m' 

(3.20) 

of the scalar spherical harmonics of the unit hyperboloid. 

We close this section with an application of the theory 
of spherical harmonics of the unit hyperboloid to the 
problem of calculating the Green's function of Poisson's 

Levere H ostl er 2300 



                                                                                                                                    

equation on the unit hyperboloid. This Green's function, 
denoted G(21), is the solution of the differential 
equation 

V'~G(21) = &(21). (3.21) 

The point source &(21) in this equation is the delta 
function of position on the unit hyperboloid defined above. 
Equation (3.21) will be solved by expanding G(21), re
garded as a function of its arguments P2' 82 , CfJ2' as a 
linear superposition of the functions Y"lm(2), 

~ I 

G(21) = 6 6 C da Y"'lm(2)C"lm' (3.22) 
IdJm=-I- o 

and then substituting into the differential equation (3.21). 
The result of this substitution 

~ 1 

66 C da(l + ( 2 )Y"lm(2)C"lm = 6(21) 
1=0 m=-l - 0 

(3.23) 

makes use of the first eigenvalue equation (3.20) of the 
spherical harmonics of the unit hyperboloid. The gen
eralized angular momentum expansion of 6(21) is pro
vided by the completeness relation (3.18). Using Eq. 
(3.18) we can write Eq. (3,23) in the form 

00 1 ~ 

= L L ~ da Y"lm(2)YC:lm(1). 
1=0 m=-/ 

By equating coefficients of corresponding orthogonal 
functions Y"lm(2) on both sides of this equation, we find 
the expansion coefficients of G(21) in the form C"lm 
= Y~lm(l)/(l + C!!2). GOing back to Eq. (3.22), we find the 
following eigenfunction expansion of G(21): 

G(21)= l~ EljOO da Y"lm~~Y~Jm(l) . (3.24) 

o 
The discrete sum in Eq. (3.24) can be performed by 
means of the following special case: 

(3.25) 

coshP21 '" -~ 2 . -~ l' 

of the general addition theorem for Gegenbauer func
tions of Durand, Fishbane, and Simmons. 13 The quantity 
P21 in Eq. (3.25) can be viewed as the P coordinate of one 
of the two timelike vectors 52' SI measured in a Lorentz 
frame of reference for which the other vector is aligned 
along the time axis. Using the addition theorem (3.25), 
our eigenfunction expansion (3.24) becomes 

G(21) = _1_ f~ ada sin(ap21) . (3.26) 
sinhp21 21T2 1 + a 2 

o 
This integral can be evaluated by means of the calculus 
of residues: We write it in the form G(21) 
= CSChP21(41T2)-1 1m! a da(1 + a 2tl exp(iap21) and close the 
contour in the upper half C\' plane, obtaining 

G(21) = cschP21 (41T2t 1 Imp( i+) (a - i)-ldC!! a(O' + i)-I 

x exp(ill'p21) 

= cschP21(41T2f 11m21Tii(2l)-1 exp(iip21) 
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which cah be rewritten 

1 1 
G(21) = 21T (e2P21 -1) (3.27) 

This is the Green's function of Poisson's equation on the 
unit hyperboloid. It can be verified by explicit calcula
tion that the function (3.27) obeys Laplace's equation 
'V~G(21) = 0, for x2 *xu and has a singularity at x2 
= Xl of the strength and type demanded by the delta 
function source term in Eq. (3.21). 

B. Vector spherical harmonics of the unit hyperboloid 

Lorentz transformations of a vector field in 
Minkowski space are described by a total angular mo
mentum tensor [J""] conSisting of the orbital angular 
momentum tensor L"vI plus a spin angular momentum 
tensor [S""]: 

[J""]=L""I+ [S""1. (3028) 

The bracket around a quantity Signifies that the quantity 
enclosed is a 4 X4 matrix. An exception is the 4 X4 
unit matrix I, for which the bracket is deleted. The 
operator £In is the orbital angular momentum operator 
of Sec. IlIA. The action of the spin matrix [S""] on a 
4 -vector field A is described by the equation 

(3.29) 

in which the a-{3 matrix element of [S"") appears. The 
matrix element [S""lr has the representation 

(3.30) 

which can be used to show that the components of the 
spin tensor [S"") obey the same Lie algebra (3.2) as the 
L"". The components of the total angular momentum 
tensor [rV)=L,",vI+ [S""] then likewise obey this Lie 
algebra. (The action of L""I on a 4-vector field is simpl} 
that the differential operator L'"" acts on each Cartesian 
component: 

{(L""I)A}" '" L""{IA}" = LIlV A". ) 

Of particular interest are the components [SJ'" [S32], 
[Sy] '" [SI3], and [Sz I '" [S21] of the spin tensor. ExpliCitly 

{3-

a 0 0 0 0 
~ 

0 0 0 0 
[Sx ]~= 

0 0 0 

000 

[Sy]~= (: : : ;0'), 
o -i 0 

o 0 

0-: i 

o 
o 0 
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The operators [Jxl"'L,I+ [Srl, [JyJ"'L)+ [Syl, and [Jel 
~LzI+ [S,1 describe simple rotations of the 4-vector 
field in the xyz space. It is readily shown that the set 
of operators [analogous to the set (3.3)1 

(3.31) 

is a mutually commuting set. Again, our angular mo
mentum operators can be viewed as linear operators 
acting on a space of functions defined on the unit hyper
boloid' the space of functions conSisting this time of 
the set of 4 -vector fields defined on the unit hyperboloid. 
A 4 -vector field of the unit hyperboloid which is a simul
taneous eigenfunction of the operators (3.31) will be 
called a rcclor spherical izaY/lloni c of Ihe unit Jzyper
boloid. The set of 4 -vector fields of the unit hyperboloid 
endowed with the dot product 

(A2 ;Al )'" (d'L,At 'Au (3.32) 

fails to form a Hilbert space with positive definite met
ric: the indefinite metric in Minkowski space makes 
the dot product (3.32) in the Hilbert space not positive 
definite. Because of this lack of positive definiteness, 
it is not straightforward to apply the usual spectral 
theorem to the set of commuting operators (3.31). In 
the following we investigate the possibility of finding a 
complete orthogonal set of simultaneous eigenfunctions 
of the operators (3 0 31); i. e., of finding a complete 
orthogonal set of vector spherical harmonics of the unit 
hyperboloid. 

In order to cope with the lack of positive definiteness 
of the dot product (3.32) we start out by restricting con
side ration to the set of lallgelll peclor fi clds of the 
hyperboloid, for which the dot product (3.32) will be 
negative definite. Application of the usual spectral 
theorem would now become straightforward; but a new 
difficulty is encountered: the operator \7

2 does not always 
cilange a tangent vector field into another tangent vector 
field. In short, \7 2 cannot be viewed as a linear trans
formation of our new Hilbert space into itself! The 
closure property of \7 2 proved at the end of Sec. II indi
cates a way out of this last difficulty, however. If we 
further restrict our Hilbert space to be the Hilbert 
space of solenoidal tangent vector fields, then we shall 
have both the needed positive definiteness and closure. 
The usual spectral theorem now guarantees us the 
existence of a complete orthogonal set of solenoidal 
tangent vector fields which are simultaneous eigen
functions of the mutually commuting self -adjoint opera
tors (3.31). The term "complete set" must here be in
terpreted to mean that any solenoidal tangent vector field 
can be expanded in a linear superposition of the eigen
functions. The eigenfunctions referred to here (solenoi
dal eigenfunctions tangent to the unit hyperboloid) turn 
out to be the only eigenfunctions needed for our future 
application to the electromagnetic field. Therefore, 
as indicated in the introduction, the discussion of this 
section will be limited to the calculation of the solenoidal 
vector spherical harmonics. See Appendix B for the 
treatment of the non solenoidal vector spherical har
monies. Also, as mentioned in the introduction, Appen
dix B contains the derivation of an addition theorem for 
vector spherical harmonics of the unit hyperboloid 
which parallels the scalar spherical harmonic addition 
theorem (3.25) of Durand, Fishbane, and Simmons. 
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It is convenient to characterize all possible tangent 
vector fields by means of a form of Helmholtz's 
theorem. Any tangent vector field A can be written as 
a radial part plus a transverse part 

A=PAp+AT, AT '" GAe+<PAcp. 

For a fixed p the transverse part AT, regarded as a 
function of 8 and cp, can be regarded as a tangent vector 
field for the unit 2 -sphere described by the equations 
xo= 0, Xl = sin8coscp, x2 = sin8sincp, x3 == cos8. To see 
this one verifies that the unit vectors tangent to the 
coordinate curves cp = const, 8= const, of the above 2-
sphere are the same vectors e and cp respectively de
fined earlier. The form of Helmholtz's theorem in 
question states that any tangent vector field of the 2-
sphere has a unique decomposition into a conservative 
and SOlenoidal part 

AT=/)V+A[, 
(3.33) 

j)'A;=O, 

in which D= (8(il/?8) +cPcsc8(2/acp)) is the intrinsic 
gradient operator of the unit 2 -sphere. It is readily 
shown that the solenoidal part Ai admits a representa
tion of the form 

AT= -0 ?W + ~i1W 
I (l8 sin8 (1([) , 

(3.34) 

for some scalar function, W. For, let Ai = BA,e 
+ <PA,., The divergence condition j) ·Ai = ° reads 
- csct!(i1/? Ii) sin8A,e -csc8(a/2cp)A l • = 0, which is equiva
lent to the vanishing of a curl ((i/?cp)B e= (iJ/(1 8)B., 
Be"'" -A,., B.=sinIiA,e . But the vanishing of the curl 
implies that there exists a potential function W such that 
Be= (i'/? 8)W and B.= (i1/f1cp)W, leading to the equations 
A , .=-(2 Ii)W and A le =csc8(o cp)W, in agreement 
with Eq. (3.34). Combining Eq. (3.34) and Eq. (3.33), 
we find A T in the form 

AT = j)V + (- cP(? /(1 8)W + e csc i!(a /2cp )W). 

To this we add the radial part PAp of A, and find the 
repre sentation 

~ ( ,oW 8 (lW) 
A=pAp+DV+ -cp -;;-8 + -'-8 -0- (3.35) 

(1 SIn" cp 

of a general vector field tangent to the unit hyperboloid. 
An equivalent form of Eq. (3.35) 

A=PAp+.DV+j) x (pW) (3.36) 

exhibits the part of AT which is solenoidal with respect 
to D as a curl type of structure formed from D. The 
curl type operator in Eq. (3.36) is defined in conformity 
with Eq. (2.16) for \7 x: 

j) x = en ( _g)-l / 2EabCj) bee' 

For applications to the vector spherical harmonics of the 
unit hyperboloid it is advantageous to go over from a 
representation of A involving j) to a representation in
vol ving the full gradient operator V. This is made 
possible by the identities D x (iJ W) = V x (p W sinhp) and 
rJA p + D V = pU sinhp + V( V sinhp), in which 

U"'(sinhp)-I(Ap -2(Vsinhp)/2p). 

In terms of \7 the representation (3.36) becomes 
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A=.oU sinhp+ V(Vsinhp)+ V x(.oWsinhp). (3.37) 

Taking the curl of the general tangent vector field (3.37) 
will provide us with a general representation of a 
solenoidal tangent vector field. Since the curl of the 
gradient is zero; the representation obtained is 

Y = V x(.osinhpU) + 't'xV x(.o sinhpW), (3.38) 

in which Y denotes any solenoidal tangent vector field. 
In particular, our solenoidal vector spherical harmonics 
of the unit hyperboloid must have this form. 

Proceeding, we investigate the effect of applying the 
operator JJ1.v to a structure of the type (3,38). The com
mutation relation 

(3.39) 

enables us to bring the operator J/J. v in JIl-vV x(.o sinhpU) 

and JIl- v V x V x (.0 sinhp W) to the arguments p sinhpU and 
.osinhpW of the curls. It follows that VX(psinhpU) and 
V xV x(p sinhpW) individually would be simultaneous 
eigenfunctions of [Jx]2 + [J ]2 + [Jz]2 and [Jz 1 if P sinhpU 

~ y 

and p sinhpW were. In fact, the intertwining relations 

(3.40) 

show that p sinhpU and p sinhp W become simultaneous 
eigenfunctions of [Jxl2 + [JJ + [Jzl2 and [Jz] on Simply 
choosing U and W to be simultaneous eigenfunctions of 
L~ + L; + L; and L z; i. e., if U and Ware taken to have 
the form P(p) Y lm (e, (/). We shall complete our calcula
tion of the solenoidal vector spherical harmonics of the 
unit hyperboloid and then shall discuss the meaning of 
the intertwining relations (3.40). 

We come now to the investigation of the effect of \72 on 
the structures \7 x (p sinhpU) and \7 x V x (.0 sinhpW). 
According to the commutation relation (2.18) \72 may 
also be moved to the arguments p sinhpU and p sinhpW 
of the curls: \72\7 X(p sinhpU) = V X (\7 2p sinhpU), and 
similarly for the other function \7 x \7 x (.0 sinhp W). In 
the arguments of the curls we write 

\72 p sinhp = [\72; P sinhp ] + P sinhp \72, 

giving 

\72V x (.0 sinhpU) = V x [\72 ; p sinhp lu 

+ \7 X (p sinhp \72 U), (3.41) 

with a similar equation for the function \7 x \7 x (p sinhp W). 
The commutator [\72

; P sinhp] would be lengthy to evaluate 
but it will be shown that the factor V x in Eq. (3,41) 
annuls the commutator, giving simply 

\7 2 \7 X(.o sinhpU) = \7 x (p sinhp\72U). (3.42) 

Thus 

\7 x [\72; P sinhp ] 
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[ 
e ~132 (J _ \72. 1" _. - ,. h2 . e ~ (- smhp) sm p sm ucp 

e E
231 

(1 ] 
+ . h22 . e ~e (-sinhp) sm pSln u 

= [\72. sinhpe( -1)( - sinhp) ~ 
, sinh2p sine ?cp 

+ sinhp sin l1ip( - sinhp) ~] 
sinh2p sin e (J e 

This calculation justifies the transition from Eq. (3.41) 
to Eq. (3.42). 1-1 In the last step of the calculation the 
fact, familiar from standard angular momentum theory, 
that L ~ + L~ + L; commutes with the Cartesian compo
nents Lx, L y, and L z was used. The analogous result for 
W can be obtained by changing U into W in Eq. (3,42) 
and applying V x to both sides of the equation, This re
sult is 

\72V X \7 x (p sinhp W) = \7 x \7 x (p sinhp \7 2 W). (3.43) 

We are now in a position to write down the solenoidal 
vector spherical harmonics of the unit hyperboloid de
noted Y:1m(p, 8, cpl. These will be defined as 

1 _ \7x(psinhpY",lm) 
Y"'lm= [l(l+1)]1/2 (3.44) 

and 

1=1,2,3,"'; 

in which Y" 1m denotes the scalar spherical harmonic of 
Eqs. (3.9) through (3.12). It is perhaps worthwhile 
summarizing our arguments briefly. Let 0 be one of the 
three operators [Jx]2 + [Jy]2 + [Jz]2, [Jz], and \72 • To a 
particular 0 associate the operator T =L~+L;+L;, 
L Zl or \72

, respectively. By use of the intertwining 
relation (3.40) or Eq. (3.42) as appropriate, we find 

0\7 x (p sinhp Y "'1m) = \7 x (p sinhp TY", 1m) 

= \7 x (p sinhptY "<1m) = /\7 x (p sinhp Y"lm)' 

showing that the vector field \7 x(psinhpY"lm) is an 
eigenfunction of 0 to the eigenvalue /. Corresponding 
eigenvalues of the vector and scalar spherical harmon
ics are equal: the eigenvalue f of 0 is equal to 1(Z + 1), 
rn, or 1 + Cl!2, respectively. The Simplified curl-curl 
identity (2.19) used in conjunction with Eqs. (3.44) en
ables one to demonstrate the identities 
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\1 XY~ 1m = Cl'Y~ 1m (3.45) 

and 

In order to determine the normalization of the 
Y~ 1m it is simplest to go back to a representation in 
terms of [): 

y1 _ [)x(pYc<z ) (3.46) 
aim - [l(Z + 1)]d'2 • 

To proceed, we note the operator identity [) x p 
= - ip X (1/i)[) = - iL; which uses the representation 
L =p x (1/ i)[) of the orbital angular momentum operator 
L = t1L, + i2Ly + l3L z' Thus 

JdL,y1* .y1 
il: 2 12m2 a:l l 1nt l 

= [dL,(-iLYa I m )*. (-iLYa ' m )[Z(l + l)ll 
< 2 2 2 1'1 1 

=JdL, Y~ 1m L'LYa / m [Z(Z+1)]-1 
222 111 

= - [dL, Y~ I m (Lx2 + L~ + L.2)y" I m [1(Z + 1)]"1 
< 222 J 111 

= - 0(CI'2 - Cl'1)0/ I Om m • 
2 1 2 1 

The self -adjointness of L was required here in moving 
L from one side of a unitary dot product to the other. 
The final minus sign is inherited from the indefinite 
Minkowski metric, according to which £1' [1 = [2' £2 
= {3' 73= -1. Hence L' L= - (L; + L~ + L~). In order to 
show that y~ / m is orthogonal to y~ I m we form their 
unitary dot p}6d~ct uSing the repres~n1ahons (3.44). The 
curl operator of y1", I is moved to the other side of the 

2 2 m2 
dot product, by integration by parts, producing a 
VxVxVx structure. The latter can be evaluated as 
(\12 -1)\1 x by use of the Simplified curl-curl identity 
(2.19). Thus: 

[ dL, y1* . y2 
, c¥2'2m2 c¥lZlml 

X(psinhpYa 1m )[CI'Z(Z+ 1)1-1 
1 1 1 

= - J dL, sinhpY~ ImP' (pX[)Ya 1m CI'[l(l + 1)1-1 

222 111 

=0, 

by virtue of the operator identityp' (p X[)) = O. We omit 
the few remaining details of the normalization calcula
tions' and just state the final result; that the functions 
(3.44) have the normalization 

[ dL, y P2* • YP, 
, 0!2 12m2 «""1 11ml 

(3.47) 

The completeness relation for the solenoidal vector 
spherical harmonics is 

- ~ Jo~dCl' Y~lm(2)"'Y~~m(1)" 
Plm 

(3.48) 
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In Eq. (3.48) G(21) is the Green's function of Poisson's 
equation on the unit hyperboloid investigated in Sec. 
IlIA and given by Eq. (3.27). Equation (3.48) can be 
proven by showing that both sides of the equation provide 
a representation of the same kernel K(21)"," of a linear 
operator K which acts on an arbitrary 4 -vector field 
F according to the rule {KF(2)}", "'!d6 1 K(21)","F(I)" and 
projects F onto the solenoidal part of its tangential 
component. 

In closing this section we shall discuss the meaning 
of the intertwining relations (3.40). The existence of 
these relations was responsible above for the utility of 
the representation (3.38) of a general solenoidal tangent 
vector field. Equations (3.40) are one of a family of 
intertwining relations. Other examples are 

[J""]s = sL'.LV, (3.49) 

(3.50) 

The relations (3.49) and (3.50) will be required in 
Appendix B to derive the remaining vector spherical 
harmonics of the unit hyperboloid. The intertwining 
relations (3.40), (3.49), and (3.50) all have a similar 
origin. Their meaning is indicated by the following study 
of Eq. (3.49). We begin by showing that [J""]s = O. 

Using Eqs. (3,4) and (3.30), we find 

L""sa = (1/i)(s"'ea" _s"ea")(asa lilu") 

= - [s,,"]a8<~a= _([s""]s}a. 

Transposing the spin term gives the desired result: 

L""s + [s""F = [J""]s = O. ..f 

When acting on ,~ the effect of the derivatives in L"" is 
annulled by the effect of the spin matrix [S""]. In view 
of the interpretation of [J""] as generating Lorentz trans
formations, the equation [J""]S = 0 expresses the fact thaj 
s is a Lorentz invariant vector field. Next we investi
gate the effect of L"" and [S""] on a product sUo In 
accordance with the law of differentiating a product, 
the first order derivatives in L"" produce a sum of two 
terms L""(sU)=(L""s)U+s(L""U). In the first of these 
terms L"" acts only on s; in the second, only on U. 
When the constant matrix [5"'"] acts, it acts effectively 
only on the factor .~, [S""](sU) = ([S""]s)U, Now when 
[J""](sU) is formed, we again have a sum of two terms; 
but s is acted on by the full operator [J""], while U is 
acted on only by L"": 

[.r](,W) = ([.1" "ls)U + ,~(L"'"U). 

By the invariance of ,s, the first term here vanished, 
Therefore, the effect of [J""] on the vector field sU is 
expressed through the action of L"" on the component 
U, [J"'"]sU = .~L""U. Dropping the arbitrary argument 
of the operators here gives the intertwining relation 
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(3.49)0 In order to prove Eq, (3,50) the representation 
[c, f. Eqo (304)] L"'" = i(s'" V'" - s"V"") of L"'" is used. One 
begins by reducing the commutator [£"'"; V"'] using the 
identities (2.9) and (2,10). The appearance of the spin 
operator in the resulting expression is recognized 
through the use of Eq, (3 030). Equation (3,40) is a bit 
unusual. The vector field ?J is invariant under ordinary 
rotations of xyz space, but not under the full Lorentz 
groupo This accounts for the restriction l, m = 1,2, 3 
only in Eq, (3.40) 0 The (j direction in the tangent space 
of the unit hyperboloid is now a distinguished direction; 
and we reqUire the special identities opjoU 1

•
2 = cothp e 1 • 2 ; 

and cothp..~k=fl, "=1,2, and 3. Thus 

[Ll m; pOI.] = [_ i(SI eam _ smeal lOa; pOI.] 

2 
= .0 (_ i)(§l eam _ smeal)cothPe~ _ i(sle3m _ Sme31)SOl. 

a=l 

2 
= .0 (- i}(pl eam - pmeal)€f. 

a=l 

So far, we have L1m?J=(jL1m _ [Slm]p. Transposing the 
spin term now gives (Lim + [slm])p=pL 1m, in agreement 
withEq. (3.40). 

APPENDIX A: THE CURL-CURL FORMULA 

Here the derivation of the curl-curl identity (2.17) 
will be indicated briefly. We begin by using the two 
representations [Eq. (2.16) is repeated here for 
convenience] 

(A1) 

and 

V'x = - (_g)-1/20k(_g)I/2g"hede f(_g-)I/2€dfh (A2) 

of V'X. The representation (A2) is obtained from Al) 
by moving the factor (- gt1 

/20c to the extreme left 
followed by suitable raiSing and lowering of indices. 
Correction terms due to moving Oc involve the symmet
ric quantities oei2uc and oe/ouc and vanish upon con
tracting with the antisymmetric €abc. We here adopt the 
convention that 0::123'" 1. Since we had earlier defined 
0::

123
", 1 and since our g< 0 an explicit minus sign appears 

on raising or lowering indices. For example, 

( ) -1/2 abc ( )1/2 
-g 0:: gadgbfgck= - -g £dfk' 

Dotting (A2) into (A1), we find 

V' x V'x = (- g)-1/20 k( - g)I/2g kh(I - 55)il h 

(A3) 
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In the next step in the reduction the factor 1- ss in Eq. 
(A3) is moved to the extreme left. The commutator cor
rection terms thereby encountered can be reduced by use 
of the equations 0.9 joua = ea and ene a = I - 55, leading to 
the formula 

_ (_g)-1/20k (_g)I/2eCeko
c

' 

The next step in the derivation involves the identity 

- (-gt1/ 2a k( - g)l/ 2e ceka C 

(A4) 

(A5) 

In order to obtain Eq. (A5) the operator a k is first 
moved to the right of the two factors e C and (_g)I/2e k 

with commutator correction terms involving oec jouk 

= -{~l}el - 6~s and a ((_g)I/2e k)jil1l = - 3(_g)I/2S. 

Christoffel symbols which appear at this step are can
celled by commutator correction terms from the next 
shift, which is a shift of the operator 0 c to the left of the 
factor e k

• When Eq. (A5) is used in conjunction with 
Eq. (A4), the identity (2.17) results. ,f 

APPENDIX B: FURTHER RESULTS ON VECTOR 
SPHERICAL HARMONICS 

An arbitrary vector field F in Minkowski space can 
be written F = sFs + F T, where FT is tangent to the unit 
hyperboloid, As indicated in Sec. IIIB, FT can be 
expressed as a conservative plus a solenoidal part FT 
= V V + V x A, for suitable scalar and vector potentials 
V and A. We thus have the representation 

(B1) 

of the full vector field F. Now V xA can be expanded in a 
series of the solenoidal vector spherical harmonics 
Y~lm' Since V and Fs can be expanded in a series of the 
scalar spherical harmonics Y"lm' it follows that the set 
of vector fields 

sY"lm' V'Y "1m' Y~ 1m (B2) 

is a complete seL The set (B2) is in fact a complete 
orthogonal set. It is readily verified by use of the inter
twining relations (3049), (3.50) that the new vector fields 
sY"lm and V'Y"lm are simultaneous eigenfunctions of the 
operators lJJ2 + lJ y]2 + lJ z]2 and lJ.J, On the other hand 
sY"lm and VY"lm are not eigenfunctions of V'2. However, 
linear combinations can be taken which are eigenfunc
tions of V'2. These linear combinations are 

(B3) 

and 

Y~lm '" (1 - ia)sY"lm + VY "1m' (B4) 

and these are the additional vector spherical harmonics 
of the unit hyperboloid that we are looking for, The com
plex eigenvalues which appear in the eigenvalue equations 

V'2Y~lm=l(0/-i)2+1]Y~lm (B5) 

and 

(B6) 
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are a manifestation of the breakdown of the usual spectral 
theorem in a Hilbert space in which the dot product fails 
to obey the positive definiteness condition, Another man
ifestation of this breakdown is the lack of orthogonality 
of the vectors (B3), (B4)0 The lack of orthogonality is 
ameliorated somewhat by the existence of a convenient 
dual basis: If we define 

Z~/m=Y~/m[2Q1(QI-i)]-1 and Z~/m 

=Y~/m[2Q1(QI +i)]-l, 

then we have 

J .. dL Z P2* • yPl 
0!2l2m2 O!lllmi 

(B7) 

(B8) 

We close this appendix by indicating the derivation of 
the new addition theorem 

2 

~ ~y~/m(2)Y~";m(1) 
pd 1m 

x d ( sinO' P21) 
d coshp21 QI sinhp21 . 

(B9) 

This addition theorem involves the solenoidal vector 
spherical harmonics only. The derivation of Eq. (B9) 
exploits the Lorentz transformation law 

y P
1 (2' )"i' 

o:llml jJ. 

(BlO) 

of the solenoidal vector spherical harmonics. On the 
left-hand side Eq, (B10) we have the usual vector spher
ical harmonic, but formed entirely from quantities 
referring to a different Lorentz frame of reference. In 
order that a normalization condition like Eq. (3.47) 
shall hold for the new functions as well as the old, the 
coefficients L:2/2m2;P1/1m1 must form a unitary matrix, 
This unitarity in turn implies the Lorentz invariance 
of the dyadic structure on the left hand side of Eq. 
(B9): 

~ y~/m(2)Y~im(1) 
Plm 

Plm 

(B11) 
I 

The addition theorem (B9) will be obtained by evaluating 
the right hand side of Eq. (B11) in a special Lorentz 
frame for which the time axis is aligned along the time
like vector SlO In this frame of reference the only non
zero values of y~/m(l')vi;, are 

(1 + ~2)1 /2 
y2 (l')v":'1 ":, ~ 

cd 0 lv 11'=0 = l3 -'-71'('="3")1'/"2-

and 

(1 + Ql2)1/2 
71(3)1/ 2 

(B12) 

The infinite series on the right hand side of Eq. (B11) 
thus collapses into only three terms. To proceed, we 
require the explicit expression (3044) for y2c<lm' formed 
using quantities referring to the primed frame of refer
ence, Here the Lorentz invariance of the operator V x 
comes to our aid, Because of this Lorentz invariance 
only the argument of V x V x in the expression for 
y~lm need be formed from quantities referring to the 
primed frame of reference, and we find 

= QI (;)1/2 V 2 X V 2 x ([SinhP~y c<lm(2') ~ !! ). (B13) 

If we write down the now finite sum on the right-hand 
side of Eq. (B11), using Eqso (B12) and (B13), and con
vert all expressions occurring back to a form involving 
only quantities referring to the original Lorentz frame, 
the addition theorem (B9) will be obtained. The rather 
lengthy calculation needed to write all expressions ob
tained in the finite sum in terms of quantities referring 
to the original Lorentz frame is outlined below 0 [We 
note that these same Lorentz invariance considerations 
can be used to provide an alternate derivation of the 
scalar spherical harmonic addition theorem (3,25) orig
inally established by Durand, Fishbane, and Simmons 
by a method of analytic continuation starting with the 
addition theorem for the Gegenbauer polynomials.] 
In terms of quantities referring to the original Lorentz 
frame, P~ is simply p~ = P21 = cosh-1(s2 . 51}, The deriva
tion of the equation 

052 _ - 51 + coshP2152 

()p~ sinhp21 
(B14) 

requires an explicit transformation equation 

coshp1 - sinhp1 sine1 COSip1 - sinhpl sine1 sinip1 - sinhpl cose1 X
O 

0 cose 1 COSip1 cosel sinipl - sinel Xl 

0 - sinip1 COSip1 0 X2 (B15) 

- sinhp1 COShp1Sine1COSip1 coshplsinelsinipl coshpl cose l X 
3 

to a primed frame of reference whose time axis is in the direction Sl' If in Eq. (B15) both new and old components 
of X 2 are written in the form (1. 1), we find the relations 

coshpf = 51 . 52' sinhp~ sine~ cosip~ = - ~ , 52' 
(B16) 
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sinhp~ sin8~ sincp; = - CP1 'S2' and sinhp~ cos8; = - P1 • S2' 

We apply the derivative %p~ to both sides of Eqs, (B16), with osa!op~ expanded by the chain rule as 

o sa! op~ = sinhp2.9208a!op~ + sinhp2 sin82CP2o cpa!op~ + P20Pa!OP~' 
The resulting equations are arranged in the matrix form 

A A 

Sl 0 82 
A A A A 

0 sinhp21 Sl . S2 Sl . CP2 Sl' P2 

81 0 ~2 81 ' 82 81 ' CP2 iJ1 • P2 sinhp208a!op~ 
(BI7) 

A A 

rP1 .82 
A A A 

sinhp2 sin820 cpa! op~ CP1 • S2 CP1 • CP2 CP1 'P2 

cothP21P1 • S2 P1 ' S2 Pl' 82 Pl' CP2 Pl' P2 

and solved for the important unknowns sinhp2082/op~, sinhp2 sin82ocpa!op;, and opa!op~ in terms of quantities referring 
to the original Lorentz frame of reference 0 Matrix inversion in Eq, (BI7) is readily carried out, since the matrix 
is a Lorentz transformation matrix. Equation (BI4) can now be obtained by substituting the expressions for the 
unknowns thus obtained in the above chain rule formula for OS2/0P~, and simplifying. When Eq. (BI4) is used in 
Eq, (BI3), we find simply 

Y': (2')"£' -- V XV x[s Y (2')]0'- 12- 1 /
2 

cr:lm j.J. - 2 2 1 cr:lm • (BIB) 

To complete the derivation we need the relations 

sin8~e";;:'~ = - S2 . (81 ± iCP1)/sinhP21 and cos8~ = - S2 'p/ sinhpm 

which follow from Eqs. (BI6); and the relations 

(BI9) 

1M. Dalumens and p. Minnaert, J. Math. Phys. 17, 2085 
(1976). 

2L. Durand, P.M. Fishbane, and L.M. Simmons, Jr., J. 
Math. Phys. 17, 1933 (1976). 

3See, for example, R. Adler, M. Bazin, and M. Schiffer, 
Introduction to General Relativity (McGraw-Hill, New York, 
1975). 

4In general we adhere to the convention that the notation Da 
shall signify a differential operator, while %ua will be re
served for ordinary differentiation and will be followed by an 
explicit argument. In this notation for example 00 sinO = cosO 
+sinOoo, but (o/ao) sinO=cosO. 

5The relations needed are: el = sinhpO, e 2 = SinhpsinOr,?, e3 = P; 
gtl=_ (sinhp)-2, li2=- (sinhpsine)-2, g33=_1; e1=_ ~(sinhp)-l, 
e 2 = - <P (sinhpsine)-l, e3 = - f3 • 

6We use the definitions of A. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University, Princeton, N.J., 
1957). 

7It follows that not only '\72 but also '\72 -1 is positive definite. 
More perspective on the positive definiteness of '\72 -1 is 
given in footnote Ref. 14 to Sec. IIIB. 

8The form (3.11) is in the notation of Ref. 2, which contains 
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(B20) 

a rather extensive account of the properties of Gegenbauer 
functions, 
~eference 2, Eq. (2.5). 

10H. Bateman, Higher Transcendental Functions (McGraw-Hill, 
New York, 1953), Vol. 1, Chap. I. 

l1Reference 10, Chap. II, Eq. (7), p. 50. 
12Reference 10, Chap. II, Eq, (12) (second form, with z-ip/2 

anda-2ia), p. 101, 
13Reference 2, Eq. (8,3). 
14Equations (3.42) can be combined with the simplified curl

curl identity, Eq. (2.19), to give the relation '\7 X '\7 X '\7 
X(i> sinhpU) = '\7 X (0 sinhp(V'2 -1)U). By use of this relation it 
follows that if U is an eigenfunction of '\72 to eigenvalue A+ 1 
for some A, then '\7 X (psinhpU) is an eigenfunction of '\7 X '\7 to 
eigenvalue A. But it can be shown that the operator '\7 X '\7 X is 
a positive definite operator on the Hilbert space of solenoidal 
tangent vector fields on the unit hyperboloid. The restriction 
A> 0 and the positive definiteness of '\72 -1 viewed as an op
erator on scalar functions now follows. This result provides 
some added perspective on the positive definiteness of '\72 -1. 
In order to gain this perspective we have had to go beyond the 
scalar case to the theory of vector spherical harmonics. 
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Classical mechanics, the diffusion (heat) equation, and the 
Schrodinger equation 

Aubrey Truman 

Mathematics Department. Heriot- Watt University. Edinburgh, Scotland 
(Received 28 February 1977) 

We consider the limiting case A----IO of the Cauchy problem 

aux/at = (A/2!J.) yo]; u" + [V(X)/A] u". 
u,(x .0) = exp[ - So(x )/A] To(x); So. To independent of A. for both real and pure imaginary A. We prove two 
new theorems relating the limiting solution of the above Cauchy problem to the corresponding equations of 
classical mechanics 

fLCd'X/dT')(T) = -VxV[xCTl]. TE(O.t). 

These relationships include the physical result quantum mechanics ----I classical mechanics as h----lO. 

1. INTRODUCTION 

We consider the limiting case A- ° of the Cauchy 
problem for the equation 

au A 2 V(x) 
-=-VII+--II at 2/-1 x ;\. , 

(1) 

where V2 is the n-dimensional Laplacian, V is a real
valued potential, V E L2(lRn) + L "(lRn) , and /-1 is a posi
tive constant. Here II = U). (x, t) is the solution of the 
above equation defined on lRn x [0,00) with Cauchy data 
/l).(x, 0) =exp[- 5 0(x)/A]To(x), 50 and To being independent 
of A. 

When A is real, the above equation is a diffusion 
(heat) equation with potential V. This equation arises 
in stochastic mechanics with A=n, Planck's constant di
vided by 21T, for stationary states u. When A is pure im
aginary, A = in, the equation above is the Schrodinger 
equation for the wavefunction u of a particle of mass /-1 
(or suitably transformed for several particles) moving 
in the force field (- VV) in the n-dimensional Euclidean 
space JRn

• 

Here we derive a relationship between the limiting 
solution, as A - 0, of Eq. (1), in the case of both real 
and pure imaginary A, and the solution to the corre
sponding equations of classical mechanics 

d2X (x, T) • 
/-1 dT2 =-VxV[X(X,T)], (2) 

X(x, T) E JRn, T E (0, t), with boundary conditions X(x, t) 
=x, /-1X(x,0)=V5 0[xo(x,t)], wherexoCx-,t) is defined 
below. 

The study undertaken here was motivated in part by 
our previous investigations1 of Feynman's path inte
tral. 2 We were concerned too with the problem of ob
taining, in as simple a manner as possible, the limiting 
case of quantum mechanics when n tends to zero. This 
problem lies at the very foundation of quantum mech
anics and has previously been investigated by many 
authors. 3 In this paper we present some new results in 
this context-Theorems 1 and 2. We believe that these 
two theorems give a better understanding of how classi
cal mechanics is achieved as the limiting case of quan
tum mechanics when n tends to zero. We also feel that 
our results are less formal and easier to derive than 
those of previous authors. 

Theorem 1 is a new result for the diffusion (heat) 
equation and probably has applications to stochastic 
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mechanics, 4 Here, however, our interest in Theorem 
1 centers on the method of proof which uses functional 
integration (the Feynman-Kac formula) in an intrinsic 
way and the fact that it gives an explicit form for the 
limiting solution to Eq. (1), which is valid for both real 
and pure imaginary A. Similar results to Theorem 2 
have previously been obtained by Maslov5 but our proof 
is much shorter than Maslov's. In spite of the strong 
similarities between Theorems 1 and 2 we have been 
unable to obtain both results by a common method. 

We need to make some modest assumptions about the 
potential V. In the diffusion (heat) equation case we as
sume that in addition to V being real, V c= L 2(JRn) 
+ L "(lRn

) , V has continuous second order partial deri
vatives (a 2V/ax i ox)(x), i,j=1,2, ... ,Il, at all points 
x = (xl> x2 , ••• , xn) C JRn and 

When these last two conditions on V are satisfied we 
write V E C 2

'. We assume 50 is real, and again in the 
diffusion (heat) equation case 50 E C 2

'. 

The above assumptions imply that Eq. (2) has a uni
que local solution x[x Q, J! U, T] C JRn

, 

d2x 
/-1?=- VxV[x], (3) 

(T 

TE [0, T'], satisfying x[xo,Po, O]=xoC': JRn, /-1i[xo,Po, O] 
= P 0 lCC lRn. We also need to assume that the equation 
x[x u, V5oCy o), f]=x can be solved uniquely to yield Xo 
=xo(x, f), t E [0, T"J. The required classical solution 
X(x, T) is then defined by 

X(x, T) = x[x k, f), V50[x o(x, t)], T], 

Tr (0, t), IE (0, T), where To:; T', T--c T". 

(4) 

We shall say that the trajectory X(x, T) is well be
haved if it does not pass through any focus of the classi
cal problem so that I aXi(x, T)/ oxJ I if' 0, T E (0, t) and if, 
in addition, X(x, T) is such that V[X(x, T)] has continuous 
third order partial derivative with respect to space vari
ables for T E (0, tl. F or the diffusion (heat) equation case 
we must assume X(x, T) is well behaved for T c (0, t), 
t E (0, T), where T --c T', T --c Til, In this case it is neces
sary to further restrict T. We denote by A( V) the maxi
mum eigenvalue of the matrix 1:[a2V(x)/i'.\·i2xj]I:. Putting 
A. = supJmax[;\.( V), O~ , it follows that 0 --c A. < co. Simi-
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larly denoting by A(- So) the maximum eigenvalue of the 
matrix 11- [aZSo(x)/aXjOXJI and A_ = supJmax[A(- So), OJ} 
we obtain 0"" A_ < 00. We define the time T'" "" 00, by 
T'" = (jJ./A.)l/Ztan-l[(jJ.A.)l/Z/AJ. For the diffusion (heat) 
equation we put T = mint T', T", Till]. 

Weare now ready to state our main result for the 
diffusion (heat) equation. 

Theorem 1: Let S(x, t) be the solution of the Hamilton
Jacobi equation 

I V'xS(x, f)I Z V() as(x,f)_o ( ) 
2 IJ. + x + of -, tEO, T , 

with Sex, 0) =So(x) E CZ', so that 

, ~ 1t [IJ. ~, (~) Z ] 5(.\, t)=5 0ho(x, t)]+ -D d -V[X] dT , 
o 2 j=l T 

where X =X(x, T) = (Xl, X z, ... , Xn) E JRn, is well 
behaved. 

Let 1I.c" t) be the solution of the diffusion (heat) 
equation 

(5) 

(6) 

all~ ~ A Z Vex) 
2t~ 2J.l \7xll~ + -A-!lx, (7) 

with Cauchy data 1I~(x, 0) =exp[- 5 0(.,)/A]ToC,) E LZ(JRn), 

where To is bounded and continuous V E CZ' n [LZ(JRn) 
+C(JRn)j. 

Then, for each fixed t E (0, T), 

exp[S(x, t)/A]II~(X, t) -J~/Z(x)Tol,o(x, t)] 

pointwise, as A - 0, where J t (x) = I axVax j I, the Jacobian 
of the transformation x - x o(x, t) = (xt, x~, ... , x'O) E JRn. 

The last result shows that the diffusion process deter
mined by the above Cauchy problem, for small A, fol
lows the lines of the classical flow. Hence, when 
1I~ (x, 0) has support contained in a small neighborhood 
of the point xu, the support of u~ (x, t), for s mall A, is 
concentrated around the classical flow x[x o, \750(xo), fl. 

To deduce the results corresponding to Theorem 1 for 
the Schrodinger equation we slightly change our assump
tions regarding the classical flow. We use the above 
notation exc ept that T = mint T', Til]. The time T is the 
maximum time for which the above uniqueness and 
existence theorems obtain for the classical problem. 
These uniqueness and existence results are still re
quired for the Schrodinger equation, but we do not re
quire explicitly VE C2F and SuE C2'. 

For each fixed t c (0, T), we assume that D t : Xo 
- x[.'o, \75 0(xo), t] is a C1 diffeomorphism D t : JRn -JRn 

with C1 inverse Di1 
: x - x o(x, t), Di1 : JRn _JRn. Denote 

by Jt(x) or Jt(.,o) the Jacobian of Di1, Jt(.'o)=Jt(x) 
= I oX6/ ax} I, where it is understood that, if J t (x 0) is 
required, we put x=x[xo, \75u(xo), fl. Then we assume 
that 5 ={x c JRn I J t (x) = O} has Lebesgue measure zero. 
We then have the theorem. 

Theorem 2: Let 0~(x, t) be the solution of the Schro
dinger equation 

o0h ~ in z'l Vex) " (8) at ~2J.l\7xip~+ in'i'h, 

with Cauchy data <Ph(X, 0) == exp{iSo(x)/n}¢o(x) E LZ(JRn), 
where V E {Lz(JR n) + L ~(JRn)} is real-valued and ¢o (in-
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dependent of n) is such that F(T) = IIV'~~/Z(x)¢o[xo(x, T)JII Lz 
E Ll(O, f), II IILZ being the LZ norm with respect to x. 

Then, for each fixed t E (0, T), 

in the LZ norm with respect to x, as n - o. 
We shall show in the last section of this paper that 

Theorem 2 establishes that for any finite number of 
spinless nonrelativistic particles with potential inter
action, quantum mechanics tends to classical mechanics 
as n tends to zero, 

Theorem 1 is proved by establishing a quasiclassical 
representation for the diffusion equation similar to that 
in Ref. 1. The quasiclassical representation in Ref. l(a) 
was derived from the Feynman-Ito formula for the 
Schrodinger equation using the translational properties 
of the Feynman path integral]. In this case a quasi
classical representation is obtained for the diffusion 
equation by exploiting the Feynman-Kac formula and 
the translational properties of the Wiener integral E. 
The quasiclassical representation leads to a certain 
Wiener integral which is evaluated using the Jacobi 
fields of Ref. 2. This is carried out in Secs. 2 and 3. 

In Sec. 4 the explicit form of Theorem 1 leads us to 
change the dependent variable in the Schrodinger equa
tion to a new variable ¢. For the new variable ¢ we 
show there is an isometric evolution operator iJ, whose 
time-dependent generator A is linearly related to n. 
The linear relationship between A and n enables us to 
prove Theorem 2 in Sec. 4. 

2. QUASICLASSICAL REPRESENTATION FOR THE 
DIFFUSION EQUATION 

We derive the quasiclassical representation in the 
next lemma. We use the notation of the previous section. 

Lemllia 1: Let t,.zV[X, (2VJ.l)1 IZy] be defined by 

[ ( 2A) 1 12 ] t,.2 V X, - Y 
IJ. 

[ (2A) 1/2 ] 
= V X(x, 1- T) + 11 yeT) - V[X(x, t - T)] 

(
2A) 1/2 - 11 yeT) . V'V[X(x, t - T)], (9) 

where yeT) = (Y1(T), Y2 (T), ... , Yn(T) E CU(O, t)®n, so that 
Yj(T) is continuous on (0, f), liffir-u. Yj(T) = 0, j 
= 1,2, ... , II and here X =X(x, t- T). Denoting Xo=X(x, 0) 
=xu(x, t) and Y t = Y(t), similarly let 

2 [ (2A) l/Z 1 
t,.5u X O, 11 Y~ 

[ (
2,,")1/Z ] 

= So X(x, 0) + 11 Y(t) - 5 0[X(x, 0) 1 

(2"") liZ - 11 Y(t) . \75 0[X(x, 0)]. (10) 

Then, for t < T, 
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exp[S(x, t)/A]U~(X, t) 

=E [exp{i;:t ~2V[X, e~Ar/\]dT} 
x exp{ -A 1 ~2S0[XO' (2: r I\t] }To [Xo + (2~A r l\tJ] , 

the Wiener integral being taken with respect to the 
variables Y(T). 

(11) 

Proof: Put u~(x, t) = v~(X, t), where v~ is the solution 
of the Cauchy problem 

aa~~ = tv2xV~ + A-1 V [ e:) 1 12X J v~, 
v~(X, 0) = uJ(2A/ ~)1 12X, 0], X being given by X 
=(~/2A)1/2X. 

Then, because V(·) E L2(JR") + L ~(JR") and v~ (. , 0) 
E L2(JR") , the Trotter product formula implies 

<heX, t) = E [exp { iJ:t V[ (2~) 112 (X +X(T»JdT} 

x v). (X +X(t), O)J . 

This is the Feynman-Kac formula. 6 

Thus, we obtain 

u).(x,t) =E [exp{i [t v[x + e~A) 1/2X (T)] dT} 

xu). (x + e:) 1 12X (t) , 0) 1 

(12) 

(13) 

(14) 

We now make a parallel translation in the Wiener mea
sure argument. According to Koval'chik, 7 if X - Y + a, 
aCT) E CoCO, t)®", aCT) E L 2(0, t)®", for continuous bounded 
functionals F, 

E[F]= jF(X)dW(X) 

=exp [- lot B (~r d T] 

xE [F(Y + a) exp (- 2 fo t B ~dYj(T)) J. (15) 

where on rhs E is taken with respect to the variables 
yeT). 

Putting a = (~/2A)1 12X cl where Xci = (Xl, X 2, ... ,Xn ) 

is as yet unspecified, we obtain 

exp [:A lot ~ (%) 2 dT] u~(x, t) 

=E [exp{i;:t V[ x+Xc\(T) + e~'\y/2 yeT)] dT 

_ 2(~) 1 /21t t ~dYi(T)} 
2,\ 0 j=l dT 

xu~ (x +Xcl(t) + C~A) 1 I\(t), 0) 1 (16) 

We now choose x +Xcl(T) =X(x, t - T) =x[xo(x, f), 
VSo[xo(x, l)], t - T]. Partial integration of the Stieltjes 
integralS gives 
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it B%dYJ(T) 

=[t ~dT (x, t - T)Yi(T)]t - ft t aztxi (x, t - T)Yj(T)cIT 
i=l 0 0 i=l (T 

_ Y(f) (t yeT) 
=-/.l-' VSo[xo(x,t)]+ J

u 
;:t'VV[X(x,f_T)]dT. 

(17) 

Substitution of this result and u~(x, 0) = exp[- SO(X)/A] 
x To(x) into the above equation gives the quasiclassical 
representation. 

The above lemma has a simple corollary. 

Corollary 1: With the above notation, for t < T, 

exp[S(x, f)/A]u~(x, t) 

as A- 0+, the Wiener integral being with respect to the 
variables Y j (T). 

Proof: Consider the functional F('\, y), 

F(,\, Y)=exp{i;:t ~2V[X, (2~'\) 1/\]dT} 

x exp{ -,\ 
1 ~2S0 [Xc, (2: y/2 Y t]} To[Xo 

(2A) 1/2 J 
+ /.l Y t · (19) 

Then V, So E C2' and To continuous imply that, as A - 0+, 

F('\, Y) - exp{~ lot B a;i2a~j [X(x, t - T)]Yi(T)Yj(T) cIT} 

{ 
1 a2s 

. xexp-~ R axia°"<j [xo(x, t)] 

x Yi(t)Yj(t) }To[xo(X, n], (20) 

a. e. with respect to Wiener measure. 

Also, because V, So E C2' and To is bounded, 
that 

:3 !VI such 

I F(,\, Y) I '" !VI exp {,\+ [t t Yj(T) Yj(T) cIT 
/.l 0 j=1 

A " } +-=0 Yj(t)Yj(t) =F(Y)!VI. 
~ j=l 

(21) 

It is not difficult to show that 

E[F]=[D(0)]-"/2 [D(O) * 0], (22) 

where D(T) E C(o, t) is the unique solution of 

.. A 
D(T) +2D(T) = 0, 

~ 

D(t) = 1, bet) = A_//.l. 9 Thus, for t < T < T"', E[F] < 0<). 

Applying the dominated convergence theorem for 
Wiener measure in the quasiclassical representation 
proves the corollary. 

(23) 
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We show how to evaluate the Wiener integral on the 
rhs of Eq. (18) in the next section. 

3. EVALUATION OF THE WIENER INTEGRAL 

The key to the evaluation of the Wiener integral is 
contained in the next lemma. 

Lemma 2: Letp(T) be a real (nXn) symmetric matrix 
continuously differentiable on (0, t) and let q be a real 
(n x 11) symmetric matrix. Then, if the equation 

ct2K(T) 
~ + AP(T)K(T) = ° dT 

admits a unique nonsingular (n x 11) matrix solution 
K(T), T E' (0, t), with K(T = t) = 1 and (dK/dT)(T =t) = q, 

E [exPA { (t.t Xj(T)pjj(T)Xj(T) dT} J 0 ',;=1 

xexp{.t xj(t) qijXj(t)}] = ID 1-1
, 

1 ,J =1 

(24) 

(25) 

where the Wiener integral is with respect to the vari
ables Xj(T) and ID I is the Fredholm determinant of the 
Volterra transformation 

(26) 

Proof: Let F be some bounded continuous functional 
F: Co(O, t)0"-<r. We consider the Wiener integral of F 

E[F] = I F(y) dw(y), 

when we make the transformation y = x + Ax, A being 
the linear transformation 

(AX)(T) = _iT ~;) K-1(a)x(a) da, 

(27) 

(28) 

for the nonsingular K(a) defined above. This transfor
mation is a bijection, mapping Co(O, t)0"-Co(0, t)0", 

with inverse 

X(T) = 1'(T) _ K(T) iT dK-
1
(a)y(a) da . 

- 0 da 

Let L~,1 be the Sobolev space of continuous functions 
x j(T) on (0, t) with x j(O) = ° and with weak derivative 
dx j /dT EL2(0,t). Then, if A 1 L~,1i2" is nuclear, 

E[F]= ID IE[F(x+AX) 

xexp(- rtdd (AXl;(T)dd (AX)j(T)dT) 
) 0 j,1 T T 

(29) 

ID I being the Fredholm determinant above. 10 However, 
A 1 L~,10" is nuclear if k(a) = - (dK/da)(a)K-1(a) is two 
times continuously differentiable, which is the case if 
p(a) is one times continuously differentiable. Assume 
for the moment that k(a) is symmetric as well. Then, 
observing that 

and 
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i t )~ dk·· ( ( 
- LJ Xj(T)::::::.ll T)X j T) dT, 

o j ,j,1 dT 
(30) 

we obtain 

E[F] = ID IE [F(X +Ax) exp { [t [.t dk (T) - k2(T)] Jo I,J,1 dT jj 

XXj(T)Xj(T) dT}exp[- .~ Xj(t)I?j/f)Xj(t)]]. (31) 
I,J-1 

However, K(T)K-1(T) = 1 implies K(T) [dK-1 (T)/dT] 
+ [dK(T)/dT]W1(T) =0, so that 

dK-1 (T) dK(T) 
-- +K-1(T)--K-1(T)=0 

dT dT 

and 

K(T) d
2
K-

1
(T) + 2 dK(T) dK-1(T) + ct2K(T) K-1(T) = ° 

dT2 dT dT ~ . 

Thus, 

l?2(T) _ dl?(T) =K(T) dK-
1
(T) K(T) dK-1(T) 

dT dT dT 

dK(T) dK-1(T) ct2K-1(T) 
_-;]T~-K(T) dTz , 

or from above 

k2(T) _ dl?(T) = dK(T) K-l(T) dK(T) K-1(T) 
dT dT dT 

(32) 

(33) 

(34) 

(35) 

where we have combined first and third terms to obtain 
penultimate equality. Putting F= 1 the result now follows 
from Eq. (31). 

It remains to prove that k(T) is symmetric. We ob
serve that leT (T), the transpose of k(T), satisfies 

(36) 

Define K 1.(T), T E (0, t), by (dK1.(T)/dT) = _l?T(T)K1.(T), 
K 1.(T=t)=1, (dK1.(T=f)/dT)=q. Then 

J2Kiq(T) + '''(T)K (T) dT2 '1/ 1. 

dl?T (T) dK (T) 
=---K (T)_kT(T)_l_. -+AP(T)K (T) dT 1. dT 1. . (37) 

Hence, 

+ [kT (T) ]2K1.(T) + Ap(T)K1.(T) = 0. 

(38) 

By the assumed uniqueness of K(T) we have K 1.(T) 
=K(T) => l?T (T) = l?(T). This proves the lemma. 
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Lemma 2 has the following corollary. 

Corollary 2: For t < T and well behaved X(x, T), SO, V 
EO C2

', 

(39) 

the Wiener integral being with respect to the variables 
Xi(T). 

Proof: As a preliminary we prove that If) I, the 
Fredholm determinant of the Volterra transformation 
in the above lemma, is given by 

ILl I =(detK(O)) 1/2 
detK(t) . 

(40) 

For the Volterra transformation X(T) - X(T) + foTl?(T, a) 
xx(a) da, a simple calculation implies that 

ILl i = exp (t it tr[l?(s, S)]dS) , (41) 

where k(s, s) = limo _ s k(s, a). In the particular case 
k(T, a) = K(a)[dW1(a)/;Za] 8(T - a), 8 being the Heaviside 
function. we nhbin 

1. 1: t [( ] 1. 1: t !l, dKj~ (s) 
2 tr k s, S) ds = 2 U Kij(s) ds 

o 0 i,j,1 ds 

= _ ~ (t d In[detK(s) ]ds = _ t In(detK(t)) (42) 
J 0 ds detK(O) , 

where we have used the well-known identityll 

)~, K ( ) dK;~(s) d [ tK] 
LJ ij s -d-~=--l lnde . 

i,j,1 S (S 

This proves Eq. (40). 

(43) 

Hence, from the previous lemma, for symmetric P 
and q, 

E [exp {A (t. t xi(T)Pij(T)Xj(T) dT l Jo t,J~l J 

x exp {i~1 Xi (t)qjjXj(t)}J= (~:~~~)) 1 12, 

where K is the unique nonsingular matrix solution of 

d2K(T) 
~ + AP(T)K(T) = 0, TEO (0, t), 

dK 
K(t)=l, rfT(T=f) =q, 

p(T) being continuously differentiable on (0, t). 

Putting 

02V _ 1 02S 
Pij(T) = OXiOXj [X(x, t - T)l, qij =1): axiox

j 
[xo(x, t)] 

and A = fl-1
, we obtain 

d2Ki .(T) A a2v 
fl dT~ + hI ax i ax; [X(x, t - T) ]Kj' j (T) = 0, 

TEO (0, t), with Kij(t) = 0ii> (dKjdT)(T = t) = (- 1/ fl) 

(44) 

(45) 

X (a2s/ox i oxj )[xo(x, t)]. (In this case P is one time con-
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tinuously differentiable because X is well-behaved and 
does not pass through a singularity of o2V/oX,ox). How
ever, V EO C2

' implies global uniqueness and existence 
of the above K. 12 We now find K and show that it is non
singular for well-behaved traj ectories X. Partially dif
ferentiating the classical equations of motion 

rJ2xi[ , ] -av [ [ fldT2 xo,\7So(.'o),I_T =-a-. x, xo,\7So(Xo),t-T]] (46) 
x, 

with respect to xt and putting xo=xo(x, t), gives a solu
tion Kij(T) = (oxi/CJ.x{)[xo(x, I), \7SoC-,o(x, t)), t - T] of the 
above equation. This solution IIKjj(T)1I is nonsingular 
TEO (0, t), because X does not pass through a focus of 
classical problem. It is simple to check that Kjj(T) 
satisfies the correct boundary conditions. 

Hence, we arrive at the result 

(47) 

the Wiener integral being with respect to the variables 
Xi(T). Recalling that x[xo(x, fl, \7So[xo(x, t)J. t]=x, the 
corollary follows from the implicit function theorem. 
This concludes the proof of Theorem 1. 

We have seen that the solution of the Cauchy problem 
for Eq. (1), for real A, with initial data IIxCI, 0) 
=exp[- So(x)/A]To(x), So, To independent of A, is such 
that II, (x, t) - exp[- S(x, t) I A ]J! 12(X) TaLI o(x, t)], as A - O. 

Thus, if we consider the case where To has its support 
concentrated in the neighborhood of some point, N(x o), 
we see that, for small A, the support of {I, (x, t) is con
tained in a neighborhood of the points x = x[l'o, \7So("o), t], 
-"o,::N(xo). Thus, we can think of the diffusion or heat 
flow governed by (1) following these lines of classical 
flow. 13 This result probably has applications to sto
chastic mechanics, but we do not pursue these here. 
In the next section we show how the last result can be 
generalized to the Schrodinger equation arising when A 

is pure imaginary. Here the physical import of this 
result is that classical mechanics can be viewed as the 
limiting case of quantum mechanics when ff tends to 
zero. 

4. THE SCHRODINGER EQUATION 

We consider the Schrodinger equation 

oljJh _}!£ 2,1, V(x) W 
at-2fl\7,<e,,+ iff 1\ 

with Cauchy data <b,,(x, 0) = exp[iSo(x)/ff]cflk) Cc. L 2(JR"), 
where So and cPo are independent of ff and V {L2 (JR") 
+L ~(JR"n. 

(48) 

If V EO L2(JR") + L ~(JR"), the Hamiltonian H 0 = [( - nz / 
2fl)\72 + V] is essentially self-adjoint on some suitable 
domain in L 2(R") and H, the extension of Ho, is such 
that (iH) generates a continuous unitary one-parameter 
group U(t) on L2(JR").14 Writing IjJt(x) = ,Nx, t) and U(t) 

= exp(- itH/ff) we obtain 
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~t (x) = [U(t) ~o](x). (49) 

The diffeomorphism Dt : JR" -JR" induces a unitary map 
Uo(t) : L2(JR") - L21(JR"). We define the map Uo(t) by ~t 
E: L2(JR") and Uo(t)~t = ¢t E: L 21(JRn

), according to 

where on the rhs x=x[x o, VSo(x o), I] and II¢tIIE~ 
= JI ¢t(xo) 12d"xo. The assumptions on Dt ensure that 
Uo(t) is an isometry 

(51) 

It is a simple matter to check that RanUo(t) = L2' (JR"). 
Indeed, defining U'i}(t) by, <P E: L2' (JR") , 

[Uii1 (t)<P ](x) 

=J} 12(X) exp[iS(x, t)jlf]<p[xo(x, t)], a. e., (52) 

Uii1 (t)<PE:L2(R") if ¢E:L2'(JR"). Hence, U'i}(t)=Ut(t), 
where Ut denotes the adjoint of Uo, Ut : L2' (JR") - L2(JR"). 

We define the putative evolution operator U(t, s), for 
<PsE L 2'(JR"), according to 

U(t, s) = Uo(t)U(t - s)ut(s). (53) 

Here, in U(t s) s denotes the initial time and t denotes 
the final tim~ (I' s) and U(t, s) has the evolution prop
erty (II' I' s) 

- - -
U(u, I)U(t, s) = U(u, s). (54) 

Evidently u(t, s) is unitary on L2' (JR") , because U(t - s) 
is unitary on L 2 (JR"). 

The infinitesimal generator (iA(t)) of the evolution 
operator U(t, s) is defined by 

- - -
iA(t)U(t,s) dUd~,S)=t~r:)U(t+k,~-U(t,S), (55) 

so that 

A(!) ={ _ i d~~(t) u(t, s)ut(s) 

- iUo(t) dU~t- s) Ut(s) } U*(t, s), (56) 

where d/ dt = a jat I Xo is the time derivative at constant 
x o, 

a I a I 1 - =- +WVS.v at xo at x X' 

Using the fact that J satisfies the continuity equation 

aJt + W1 VS . vJ + W 1J v 2S = 0 (57) at t t , 

we obtain 

_ i dUo(t) = _ 111 (~+ I vs 12 + ilfV2
S ) Uo(t). 

dt at jJ. 2!J. 
(58) 

Also, from the above we obtain 

Combining these results, gives the operator identity 
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(60) 

Putting H = [- (If /2 jJ.) v 2 + V] and recalling that S satis
fies the Hamilton-Jacobi equation, we arrive at 

A(t) = _ 111 (I vSI
2 

+ ilf v 2S) + (2jJ.)-l lf 
2)J. 2!J. 

(61) 

However, 

+ Uo(t) v . iI11vSUt(t), (62) 

where [v2
, exp(iS/lf)] = v 2 exp(iS/lf) - exp(iS/lf)v2, is the 

commutator of v2 and exp(iS/If). 

Hence using the operator identities v. VS - vS . V 
= v 2S an~ VS . VUt(t) = exp(iS/n)[ VS. VJ~ 12 + i1111 vS 12J~ 12], 

and splitting up the last term in Eq. (61), we finally 
obtain 

A(t) _~J-1/2V2Jl/2 - 2jJ. t t· (63) 

This expresses A(t) as a differential operator on a suf
ficiently small domain LJ t c: L2' (JR") , 1J t ={ ¢ 
E:L2'(lR") IA(t)¢ E:L2'(JR")}. Here V2=V~ must be ex
pressed in the curvilinear coordinates xo(x, I), so too 
with J t • 

It is not difficult to show that AU) as defined above 
is symmetric. [We can extend the domain of definition 
of A(t) by defining v 2 as a pseudodifferential operator 
by taking Fourier transforms. In this way we can make 
A(t) self-adjoint, but this is hardly worthwhile here. ] 

Putting A(t) = - ffH(t)/2J.l, we see that 

. a¢t +If 
l at = 'i:liH(t)<Pt . (64) 

Integrating and using the symmetry of H(T) gives, for 
<PoE: nTE:(O,t/)" 

(65) 

Using the Cauchy-Schwarz inequality and the isometric 
property of U(T, 0), 

I ( I 
1fI1¢011L2 (t () II 

(¢o, ¢t)L 2 - ¢o, ¢0)L 2 "" 2J.l J 0 IIH T ¢o L2 dT 

IfII¢oIlLZ ,t F(T) dT (66) 
2J.l J 0 ' 

where F(T) = IIV~;/2(X)¢0[xo(x, T)]IIL2 . Hence, if F(r) 
E: L 1(0, t), 
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(67) 

as If- O. 

Using the isometric property of U(t, 0), we obtain 

II<pt - <PoIIL~ =2(<po, <PO)L' - (<Po, <Pt)L' - (<pt. <PO)L' 
2 2 2 2 

~ 21 (<Po, <Pt)L Z - (<Po, <PO)Li
l 

- 0, (68) 

as n - O. Finally, changing integration variables once 
more, we arrive at 

as n- O. This proves Theorem 2. 

To see the physical significance of the last result for 
a single particle in 1R" (n ~ 3) we choose So(x) =Po' x, 
where Po = (p~, ... ,Po) E 1R", Po' x = ptxl + p~X2 + ... + Pox". 
Then the Cauchy data :j;(x, 0) = exp(iPo . x/If) <P o{:tl corre
sponds to (p1.]J)(x, 0) = (n/i) '1 1.]J(x , 0) =Po1.]J+ O(n). Hence, as 
If - 0, the Cauchy data corresponds to giving the quan
tum mechanical particle a fixed initial momentum Po 
E 1R". The diffeomorphism corresponding to the equi
valent classical flow we denote by T t : R" -IR", Ttx O 

=x[xo,Po, t]. Let ~ be any measurable subset of 1R" and 
let the limiting quantum mechanical probability of find
ing the particle (with the given initial conditions) in ~ 
at time t be P(t, ~). Then a simple consequence of The
orem 2 is that 

P(t, ~) = lim In 11j!~ (x, t) 12d"x 
h-O 

(70) 

for t < T and ~ any measurable subset of 1R". This is 
tantamount to quantum mechanics - classical mechanics 
as n- O. 

An analogous result holds for any finite number, say, 
r particles in configuration space 1R3r . We put 1l=3r. 
Then we must consider the Schrodinger equation 

. aw -1f2 2 -1f2 2 -n2
2 In----'-=--'1llj!~'1 w-' .. -'1 Ij! + V{,I)1j! at 211'11 2m2 2. 2mr r ., 

for Ij!(y,t) with lj!(y,O)=exp(iL:~=lPj'yj/If)<po(Y), where 
Y = (Yl, Y2, ... , Yr) E 1R3r , P = (Pl, ... , Prj E 1R3r and ~; 

(71) 

= '12Yj is the three-dimensional Laplacian with respect 
to yj. We simply put x= (-rm-;:Yb ... , ..r:m;Yr) to obtain 

. alj! - nz 2 [ xl Xr ] 
Ina-t=-2-'1xlj!+V /YiI,.'''''..r:m; Ij!. (72) 

This corresponds to the above theorem with !l = 1. Here 
the classical equations now read 

,Vj = - '1Xj V(y), xj(O) = :;172 <=> injYj = - '1j VCV), 
J 

11'1/Yj(0) =Pj, j = 1,2, ... , r. (73) 

Solving the above equations with 5' j(O) = Y~ induces the 
diffeomorphism Tt:IR3r_IR3r, TtYo=Y[;'o,P,t]. Let 
P(t, ~) be the limiting quantum mechanical probability 
of observing the r particles at time t in ~ C 1R3r , a mea-
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surable subset of the configuration space. Then from 
the above theorem for the appropriate initial conditions 

(74) 

Thus, we see that as n - 0 quantum mechanics - classical 
mechanics. 
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Proof that the H- ion has only one bound state. Details 
and extension to finite nuclear mass 

Robert Nyden Hill 

Physics Department, University of Delaware, Newark, Delaware 19711 
(Received 23 June 1977) 

It is rigorously demonstrated that the H~ ion, treated in nonrelativistic approximation with Coulomb 
interactions only, has only one bound state for the electron to nucleus mass ratio less than 0.21010636. 
This extends earlier work which had proven the result in the fixed (infinite mass) nucleus approximation. 
The method used can, if desired, also be used to calculate rigorous lower bounds to the energies of those 
bound states of two electron atomic systems which do exist. 

I. INTRODUCTION 

The H- ion, made up of a proton and two electrons, 
has long been known to have one bound state. 1 The first 
rigorous proof that additional bound states do not exis t 
in the fixed (infinite mass) nucleus approximation with 
Coulomb interactions only appeared recently in abbre
viated form. 2 The present paper provides additional de
tails of that proof, and extends it to finite nuclear mass 
to prove that the H" ion has only one bound state if (1) 
only Coulomb interactions are included and (2) the elec
tron-proton mass ratio is less than 0.21010636. The 
methods used to obtain this result can also, if desired, 
be used to calculate rigorous lower bounds to the ener
gies of those bound states of two electron atomic sys
tems which do exist. 

An effort has been made to make the present paper 
accessible to a wide audience, Theorems which are not 
a part of traditional graduate training in theoretical 
physics and chemistry are discussed briefly before they 
are applied. Standard Dirac notation is employed. When 
operators are written out explicitly, continuous matrix 
notation is used where convenient. The mathematic an 
who is uncomfortable with such notation should have no 
difficulty rewriting the operators as tensor products. 

The mathematical foundation for the study of N-parti
cle quantum mechanical Coulomb systems was laid by 
Kato,3 who gave the first rigorous definition of the 
Hamiltonian, proved that it is essentially self-adjoint 
(Hermitian), proved that eigenfunctions belonging to 
whatever discrete eigenvalues the Hamilton has will 
satisfy the Schrodinger equation as a differential equa
tion except at singular points of the potential, and 
proved that the discrete eigenvalues (below the con
tinuum) and their eigenfunctions could be characterized 
by the familiar Rayleigh-Ritz variational principle. It 
has subsequently been shown that the essential spectrum 
of the Hamiltonian (L e., the continuous spectrum plus 
limit points of the discrete spectrum and discrete 
eigenvalues of infinite multiplicity) consists of the half
line [/.l, 00) where /.l is the lowest threshold for breakup 
into subsystems,4 This result, which most physicists 
would consider intuitively obvious, holds in each sub
space of particular permutation and rotation-reflection 
symmetry, It has also been proven, for classes of poten
tials which include the Coulomb potential, that eigenfunc
tions belonging to discrete eigenvalues fall off exponen
tially,5 and that there are no positive discrete eigenval-
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ues embedded in the continuous spectrum. 6 Rigorous re
sults in the theory of N-particle Schrodinger Hamilton
ians have been reviewed by Sigalov, 7 Kato, B Simon, 9 

Jorgens and Wiedmann, 10 and Hunziker. 11 

The bound state spectrum of negative ions is very dif
ferent from the bound state spectrum of positive ions 
and neutrals. Positive atomic ions and neutral atoms 
have an infinite number of bound states, 12 with a spec
trum which is qualitatively similar to that of hydrogen. 
A stable negative ion, however, has only a finite number 
of bound states, 13 for which electron correlation is of 
decisive importance. 14 H-, for example, is believed not 
to be bound in Hartree-Fock approximation. 15 In what 
follows (and in the above), the term "bound state" re
fers to a discrete eigenvalue of finite multiplicity below 
the continuum; discrete eigenvalues embedded in the 
continuum will, by definition, not be bound states. 
Methods for counting the number of bound states of a 
Schrodinger Hamiltonian are by now well developed for 
one particle in an external potential and, equivalently, 
for two particles without external forces. 16 However, 
the counting of the bound states for the more general 
N-body problem is in a somewhat more primitive state. 
The Rayleigh-Ritz variational procedure, which gives 
upper bounds to bound state eigenvalues, can be used to 
prove the existence of bound states and, more general
ly, to obtain a lower bound on the number of bound 
states, Rayleigh-Ritz is, however, powerless to 
establish the nonexistence of bound states or, more 
generally, to give an upper bound OIl the number of 
bound states. An adiabatic approach, which can in 
principle give rigorous lower bounds to ground state 
eigenvalues and/or prove the nonexistence of bound 
states, has been used by Gertler, Snodgrass, and 
Spruch and extended by Aronson, Kleinman, and 
Spruch, 17 but is powerless to show that H" has at most 
one bound state. An alternative approach of Aronson, 
Kleinman, and Spruch18 has not yet been made rigorous. 
The methods of Refs. 12 and 13, although rigorous, 
have not been shown capable of establishing the number 
of bound states of H", 

The results of the present paper are obtained via 
generalizations of methods introduced by Bazley19 and 
by Bazley and Fox2o to construct lower bounds to helium 
eigenvalues. The methods of Bazley and Fox in turn 
have their roots in the Weinstein method of intermediate 
problems, which is discussed in monographs by Gould,21 
by Weinstein and Stenger, 22 and by Weinberger. 23 Sec-

Copyright © 1977 American Institute of Physics 2316 



                                                                                                                                    

tion II establishes notation and constructs the internal 
Hamiltonian in a convenient dimensionless form. Sec
tion III shows how to obtain one-particle Schrodinger 
equations whose eigenvalues are sufficiently good lower 
bounds to the eigenvalues of the original internal Ham
iltonian to show that H- has at most one bound state in 
the fixed (infinite mass) nucleus approximation. Section 
IV contains the proofs that the single particle equations 
derived in III have one bound state for the singlet sector 
and no bound states for the triplet sector. Section V 
extends the results to finite nuclear mass. An under
standing of the basic ideas can be had from Secs. II, 
III, and V A; Section IV and the remainder of V contains 
details which can be omitted at a first reading. 

II. NOTATION: THE HAMILTONIAN 

The Schrodinger Hamiltonian for two-electron atomic 
systems such as H-, He, or Li+ in nonrelativistic ap
proximation with Coulomb interac tions only, is 

Htotal == (2Mtl7T5 + (2mtl(7Tr + 7Tn 

- Z e2 
( I XI - Xo I t l + I X2 - Xo I-I) + e2 I XI - x21-1 

, 

(2.1) 

where XI, 7To are the nuclear coordinate and momentum, 
XI,X2' 7Th 7T2 are electron coordinates and momenta, Ze 
and M are the nuclear charge and mass, and - e and m 
are the electron charge and mass. The center of mass 
motion can be separated off and the internal Hamiltonian 
reduced to dimensionless form by making the definitions 

P==7TO+7TI+7T2, (2.2) 

R==[1vlxo +nz(XI +X2)V(M +2m), (2.3) 

PI == an-I[(m +J1)7TI- m(7To +7T2)V(M +2m), (2.4) 

rl =a-I(xt - xo), (2.5) 

P2 == an-I[(m + M)7T2 - m (7To + 7TI)V(M + 2m), (2.6) 

r2 == a-I (Xz - xo)' (2.7) 

Here n is Planck's constant divided by 27T, a ==n 2/(jJ.e2) 
is the reduced mass Bohr radius, and jJ. ==mM/(m +M) 
is the reduced mass. It is easy to show that the trans
formation from 7To, xo, 7TI' XI' 7T2' Xz to P, R, nPh rl, nP2' r2 
is canonical, and that the Hamiltonian can be expressed 
as 

where the internal Hamiltonian Hint is 

Hint ==Ho + 2YPI 'P2 + V, 

with 

and 

Ho ==Pr - 2Zrjl + P~ - 2Zril, 

V == 21 rl - r21-t, 

y==m/(m +M)==jJ./M, 

(2.8) 

(2.9) 

(2.10) 

(2,11) 

(2.12) 

The term 2YPI 'P2 in the internal Hamiltonian (2,9), 
which vanishes in the fixed (infinite mass) nucleus ap
proximation, is known as the Hughes-Eckart term. 24 
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III. ONE·PARTICLE EQUATIONS 

This section will show how to obtain one-particle 
Schrodinger equations whose eigenvalues are lower 
bounds to the eigenvalues of the internal Hamiltonian 
Hint. The analysis is carried out in the fixed (infinite 
mass) nucleus approximation y == O. Energy eigenvalues 
are in units of h-I Ry ==e2/(2a); this place the hydrogen 
atom's ground state energy at - L 

A. Lower bounds 

The basic tool to be used is a comparison theorem25 

well known among mathematicians who work on eigen
value problems: 

Theorem 1: Let H(1) and H(2) be two essentially self
adjoint (Hermitian) Hamiltonians whose discrete eigen
values below the bottom of the of the essential spectrum 
can be characterized by the familiar variational prinCi
ple E == min(l/J IH Il/J)/ (l/J Il/J), with the minimization for ex
cited states carried out subject to the constraint that 
Il/J) be orthogonal to preceding eigenvectors. Denote the 
ordered eigenvalues of HW by E\i) ,;; E~ /) ,;; • , , ,;; E~ j) 

,;; •• , ,;; E~L where E~~ is the energy at which the es
sential spectrum (if any) begins, Assume (l/JIH(1) II/!) is 
defined for all vectors Il/J) for which (I/! 1H(2) II/!) is de
fined. Then if (l/J IH(1) Il/J)';; (l/J IH(2) II/!) holds for aU ad
missible state vectors Il/J), E~t),;; E~2) holds for all n, 
and E~;~ ,;; E~~~. 

The result Elt) ,;; E\2) for the ground state energy fol
lows immediately from the "familiar variational prin
ciple. " Proofs of the results for the excited states are 
usually based on one of the minimax characterizations26 

of eigenvalues. In practical applications of Theorem 1 
to the computation of lower bounds, H(2) is the original 
Hamiltonian, while H(t) is something more tractable. 
The results of the present paper will be obtained by let
ting H(2) be the internal Hamiltonian Hint while H(1) is 
something for which the Schrodinger equation is reduc
ible to one-particle Schrodinger equations. 

The lower bounding Hamiltonian H(1) for the case y 
== 0 will be constructed by generalizing a method intro
duced by Bazleyl9 to construct lower bounds to helium 
eigenvalues: Replace V in H(2) =Hlnt ==Ho + V by 
VI/2PVII2 where P is a projection operator, The posi
tive square root of 21 rl - r 2 I-I is to be taken when con
structing Vi /2. The fact that a projection operator such 
as P cannot increase the length of a vector such as 
VI/211/!) implies that (l/JIVI /2PVI/211/!)';;(l/JIVIl/J), The 
eigenvalues of H(1) ==Ho + V I /2pVI /2 are then lower 
bounds to the eigenvalues of Hint ==Ho + V, Bazley con
structed his Vi /2pVI /2 by starting with the first N eigen
vectors I ~I) of Ho and using Schmidt orthogonalization 
to construct vectors I~:> such that 

(~; I V-II~.f) == Ol,j' (3.1) 

His Vi /2 PVI /2 then took the form 

(3.2) 

for small finite N. It follows immediately from (3, 1) 
and (3.2) that P~azley==PBazley and P~aZley==PBazl.Y' so 
that P Bazley is a projection operator as is required. Be-
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cause I~;> is a linear combination of the first N I ~i)' 
VI/2PBazley VI/2 couples only the first N states of Ho, 
and the eigenvalue problem for Ho + Vl/2PBazleyV1I2 re
duces to an eigenvalue problem for an NXN matrix. 

B. The construction of P 

The discrete spectrum of Ho, given by 

E<O) =_Z2{n-2 +n-2) 
nj_ "2 I 2, (3.3) 

where (nj, n2) is any pair of positive integers, is known 
from the theory of the hydrogen atom. Because the two 
electron atomic system can dissociate into a free elec
tron plus an electron bound in a hydrogenic ground 
state with energy - Z2, both Ho and Ho + V have a 
continuous spectrum beginning at - Z2 (see Refs. 4 
and paragraph 3 of the Introduction). The spectrum 
(3.3) has an infinite number of levels belonging to pairs 
of quantum numbers of the form (1,n2) and (nl, 1) which 
lie below - Z2 and accumulate at - Z2. The associated 
eigenfunctions have the form <PI (r j)Xn2 (r2) and 
Xn (rl)<Pl(r2) where 

1 

<PI (r) =Z3/2 7T-1/2 exp(- Zr) (3.4) 

is the normalized hydrogenic ground state wavefunction 
and Xn(r) is a hydrogenic bound state wavefunction be
longing to the principle quantum number n. In order to 
prove that H =H 0 + V has only one bound state for Z = 1, 
Vi 12pVj

/
2 must contain enough of the original repulsive 

V to push all but one of these levels up to - 1; in par
ticular V1/ 2PV1/2 must couple to all of these levels of 
Ho which lie below the continuum. Stated another way, 
V 1/2 PV1/2 must retain enough of the original V to pre
serve shielding: If one electron is in a hydrogenic 
ground state with the second electron far out, the far 
out electron must see, after the replacement of V by 
V1/2PV1/2, a potential which cannot support an infinite 
number of bound states. Clearly V1/2PBazleyV1I2, which 
couples only a finite number of low-lying states of H o, 
will not work here; a generalization is needed. 

Bazley's procedure will now be generalized to obtain 
a VI = V1I2PI Vl/2 which couples to all states of the form 
f(rl)<pl (r2) where f is arbitrary. Start with the 
wavefunction 

(3.5) 

corresponding to particle one in a position eigenstate at 
r and particle two in the hydrogenic ground state, Re
place the orthogonality condition (3.1) by 

(3.6) 

and the expression (3,2) for V1/2pV1/2 by 

VI (rl, r2; rj, r2) = (V1! 2P 1 V
I /2)(rl, r2; rj, r2) 

=jx;(rj,r2)x;(rLr2)d3r. (3.7) 

One then easily finds that 

(3.8) 

and 

(3.9) 
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where 

(3.10) 

From a rigorous point of view, the difficulty that Xr 
and X; are not in the Hilbert space of square integrable 
functions within which one would like to work is most 
easily circumvented by regarding the steps which lead 
to (3.9) and (3.10) as a purely formal heuristic argu
ment. Equation (3.9), which shows that VI is the tensor 
product of the ordinary potential (multiplicative opera
tor) U in the space of rl with the dyad I <PI) <<Pj I in the 
space of r2, is taken as the definition of Vi> with the 
projection operator P j defined by P j = V-1 /2V1 V-1!2. It 
is then easy to see that PI is a bounded Hermitian opera
tor, and to verify directly from (3.9) and (3.10) that 
Vj V-1V 1 = VI, which is equivalent to pi =Pj , holds. 

Unfortunately VI couples only to those levels of Ho 

below the continuum which have the form Xn (rl)<Pl (r2)' 
Interchange of 1 and 2 yields the operator 1 

V 2(rl, r2; r{, r2)= (V1!2P2 VI/2)(rt> r2; r{, rf) 

(3.11) 

which couples to the levels of the form <PI (r I)Xn (r2)' A 
V 1/2 PV1 /2 which couples to all levels of Ho beldw the 
continuum (actually, to everything below - Z2/2) results 
from choosing P to be the projection onto the span of 
the ranges of P j and P 2• This P is given by21 

P =i(PI +P2) +it [(I - P 1)P2KjP2(I - Pj) 
n=O 

+ (I - P 2)P jK!J.Pj (I - P 2)], 

where K j and K2 are the operators 

Kl =P2P jP 2, K2 =P1P 2P j , 

(3.12) 

(3. 13) 

Convergence of the infinite series of operators in P is 
implied by the following observations. (1) Since Kl and 
K2 are products of projection operators, their eigen
values cannot exceed L (2) Eigenvectors of K j and K2 

with eigenvalue 1 must be simultaneous eigenvectors of 
PI and P 2 (proof for K j : Suppose P 2P jP 2 I<P)= I<P). Multi
ply on the left by (<P I and by <<P IP2 to obtain (<p IP2P jP 2 i <P) 
= (<P I <P) and (<p IP~PjP2 I <P) = (<p IP2 I <P), from which (<P I <P) 
=(<PIP2 1<P). This implies that the inner product of I<P) 
- P 2 I <P) with itself is zero, so that I <P) - P 2 I <P) is the null 
vector andP2 1<p)= I<P). This reduces <<pIP2P jP 2 1<p) 

= <<P I <P) to (<p IPj I <P) = <<p I <P), from which P j I <P) = I <P) fol
lows by the same argument. Q. E. D,) (3) Simultaneous 
eigenvectors of P j and P 2 are annihilated by (I - P j )P2, 

(I - Pz)P j , and their adjoints. (4) K j and K2 are Hilbert
Schmidt operators (as will be seen), so that eigenvalues 
of K j and K z cannot accumulate at 1. Hence only eigen
values of K j and K z which are strictly less than 1 con
tribute to the sum in P, which therefore converges by 
comparison with the geometric series. Thus (3.12) and 
(3.13) are a proper definition of P. It is straightforward 
to verify that P is Hermitian, that PP j =PjP=Pj , that 
PP2 =P2P =P2, and that p2 =P. 

It should be noted that the terms in the sum in P have 
the form A tA [with Kj/2P2(I - Pj) or K'2/2pj (I - P z) for A 

when n is even and plp2K~n-1) 12P 2(1 - PI) or 
p2plK~n-1)/2pl(/-P2) for A when n is odd]. Thus lower 
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bounds to the eigenvalues of H =Ho + V are obtained 
even if all but a finite number of the terms in the infinite 
sum in P are discarded. 

C. Analysis of Vy, PVy, 

The structure of V1I2pV1IZ with P given by (3.12) can 
be made more explicit by examining K j and K 2• Equa
tions (3.9), (3.11), and (3.13) imply that 

Kt(rj, rz; rl, r2) 

= [t I r t -r21 U(rz) ]112 <PI (r 1) 

x J d3rk(r2, r)k(r, rf)<pj (rj)[t I rj- rfl U(rf)]1I2 , 

(3.14) 

where 

(3.15) 

The corresponding expression for K2 can be obtained 
by interchanging 1 and 2 on the right-hand side of (3.14). 
The fact that Kl is a Hilbert-Schmidt kernel follows 
easily from (3,14) and (3.15). As a consequence of 
(3.10) and (3.14), the solutions of the eigenvalue prob
lem K j IX;1)=J..L;J) Ix;!) are related to the solutions of 
the eigenvalue problem k I hi) = VI I hi) via J..L: j) = v~ and 

It is straightforward to verify that 

hi (r) = (32Z)1I2[35U(r) ]-1/2 <pl (r) 

(3,16) 

(3,17) 

is a normalized eigenfunction of k with eigenvalue Vj = 1. 
The corresponding eigenfunction of K 1, which is 

(3,18) 

is a simultaneous eigenfunction of PI and P 2, as it must 
be in light of the above discussion of the convergence of 
the sum in (3.12). 

It will now be shown that J..L It) = vi = 1 is the only eigen
value of Kl which equals 1 and therefore does not con
tribute to the sum in (3,12), All other eigenvalues of 
KI are strictly less than 1 and do contribute, as a con
sequence of the fact that the eigenvalues of the operator 
M, defined by 

(3.19) 

are strictly less than L This can be proven by using the 
representatwn28 k = kl - k2 where 

kl (r, r') = HU(r)J1I2 <pl (r)(l + r)(1 + r')<pdr')[U(r') J1I2, 

(3,20) 
and 

kz(r, r') =HU(r)]1I2<pl (r){(l - r)(l - r') + 'IT-I I (I r - r" I-I 
- r -1)( I r' - r" I-I - r,-I) d3r"} <PI (r')[U(r')j1I2, 

(3.21) 
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Expectation values of kl and of k2 cannot be negative be
cause kl is a dyad of the form 10') <a I with positive co
efficient while k2 is a sum of such dyads with all coeffi
cients positive. Theorem 1 then implies that the eigen
values of k are bounded above by the eigenvalues of kl . 
But kl has only one positive eigenvalue, Hence k has 
only one positive eigenvalue, which must be the eigen
value 1 associated with the eigenfunction hi' Therefore, 
all eigenvalues of M are nonnegative. Armed with this 
fact, the eigenvalues of M can be proven strictly less 
than 1 by considering the trace of k. It follows from 
(3.15) that 

~ 

6v/=Trk=0, (3.22) 
;=1 

Hence the sum of the eigenvalues of M is given by 
~ 

6(- v/)= TrM=L (3. 23) 
;=2 

Since all eigenvalues of M are nonnegative, each eigen
value must be strictly less than 1 if no single eigenvalue 
exhausts the sum rule (3023). That this is so follows 
from the partial wave decomposition of k given in Appen
dix A, which implies that TrIll has the partial wave 
decomposition 

~ 

Trivl = 6 (2l + 1) TrM/ , 
/=0 

where 

with 

= 6/, 0 + 8[(2l- 1)(21 + 1)(2l +3) J-1C 

C "" Z3 1 ~ U(r) exp(- 2Zr)r3 dr. 
o 

(3,24) 

(3.25) 

(3.26) 

Since C is clearly positive [Eq. (3.10) shows that U(r) 

?c 0; numerical integration yields C'" O. 318780514], no 
single partial wave (and therefore no single eigenvalue) 
exhausts the sum rule (3.23). 

With the aid of Eqs. (3.9)-(3.15), (3.18), and (3,19), 
Vtl2 PV1I2 can be written out explicitly as 

where ka and ke are the one-particle operators 

kd = U - (16Z/35) I <PI) <<PI I +t U1I2M 2nU1I2, 

ke=t Ul 12M2n-lul 120 
n:l 

n=1 
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The physical effect of V1I2pV1I2 is clear from (3.27). 
V1I2pV1IZ couples only to states with at least one parti
cle in a hydrogenic ground state. One of the particles is 
scattered while the other remains in the hydrogenic 
ground state. The terms containing kd are direct terms 
while those containing ke are exchange. 

D. One'particle equations 

The eigenvalue problem for Ho + V1IZpV1I2 is simpler 
than the eigenvalue problem for Hint =HO + V. Let S s be 
the space spanned by functions of the form 

(3.30) 

S A the space spanned by functions of the form 

(3.31) 

and S ~ the orthogonal complement of the space spanned 
by functions which are linear combinations of functions 
of the form I/Js and I/JA' Each of the spaces S s, SA, and 
S~ is mapped into itself by Ho + V1IZpVlIZ, which is to 
say that these spaces are reducing spaces for Ho 
+ 0/ ZpV1!2. 0/ 2pV1!2 is zero on S", so that eigen
functions in S ~ have their (discrete) eigenvalues given 
by (3.3) with n1? 2, n2? 2; the continuous spectrum 
in S~ begins at - Z2 /4. Because the bottom of the spec
trum in S~ is at - Z2/2, which is above the bottom of 
the continuum for the full problem at - Z2, S L need not 
be considered further. 

The eigenvalue problems for Ho + Vl/2pVl/2 on S s 
and SA are equivalent to the following one-particle 
eigenvalue problems for f and g: 

and 

+kd +ke](I + I <PI) <<PI I ) If) 
=(E+Z2)(I+ l<Pl)<<Pll)lf), 

(I - I <PI) <<PI I )(p2 - ZVo + lld - ke)(I - I <PI) <<PI I) Ig) 

(3.32) 

= (E +Z2)(I - I <PI) <<PI I) Ig), (3.33) 

where 

p2 =_ V 2 (3.34) 

is the one-particle kinetic energy, and 

so that - ZVo is the Coulomb interaction with the nucle
us. I is the identity operator. Equations (3.32) and (3.33) 
are most easily derived by writing out the Schrodinger 
equation for Ho + Vi /2 PV1 /2 in configuration space with 
the aid of (3.27), (3.30), and (3.31), multiplying by 
<PI (r2), and integrating r 2 over all space. Occurrence 
of the operators (I + I <PI) (<PI I) and (I - I <PI) <<PI I ) in 
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(3. 32) and (3. 33) is not surprising once the normaliza
tion integrals for I/Js and I/J A have been written out: It 
follows directly from (3.30) and (3,31) that 

(3.36 ) 

and 

(3.37) 

Equations (3.36) and (3.37) give the natural metric for 
use with I f) and with I g). Occurrence of the operator 
I + I <PI) <<PI I is a manifestation of the well- known fact 
that bosons prefer to be in the same state. The opera
tor I - I <PI) <<PI I is a manifestation of the Pauli exclu
sion principle; it arises because only the part of Ig) 
which is orthogonal to I <PI) has any significance. An 
alternative method of calculating the result of applying 
Vl/2pVI /2 to functions of the form I/Js or ~)A' which was 
communicated to me by W. Hunziker after he had read a 
preprint of the abreviated Phys. Rev. Lett. 2 version 
of the present proof, is outlined in Appendix B. 

Equations (3.32) and (3.33) can be thought of as ap
proximate Schrodinger equations for the "outer" elec
tron, where the approximation has been constructed so 
that the eigenvalues of (3.32) are lower bounds to the 
eigenvalues of the original problem in the singlet 
sector (symmetric spatial wavefunction and antisym
metric spin function), with the eigenvalues of (3.33) 
lower bounds in the triplet sector (antisymmetric spatial 
wavefunction and symmetric spin function). The terms 
hd ± ke are a kind of "effective interaction" with the inner 
electron. All of the terms in "e and kd except U fall off 
exponentially at large distances due to the presence of 
the hydrogenic ground state function <PI (Y). Carrying out 
the integration in the definition (3.10) of U shows that 

U(r) =Hr + (2Z2r)"1 - [(4Z)"1 + (2Z2y)"l] exp(- 2Zr)}-I. 

(3.38) 

Combining the large - r expansion of (3.38) with - ZVo 
and setting Z = 1 yields 

(3.39) 

Thus the outer electron sees, in the present approxima
tion, an attractive r-3 potential at large r. The r-3 fall
off is fast enough to avoid the infinite number of bound 
states associated with an attractive Coulomb potential, 
but is not the r-4 falloff of the induced dipole potential 
which the outer electron should see at large r in the 
original physical problem. An y-3 falloff instead of the 
physically correct r-4 arises because polarization is not 
properly treated when the inner electron is forced to 
remain in the hydrogenic ground state. Nevertheless, 
the present approximation is good enough to count the 
number of bound states correctly, as will be shown in 
the next section. 

IV. THE NUMBER OF BOUND STATES FOR 
Z= 1 AND 'Y = 0 

This section will show that, for Z = 1, the singlet 
equation (3.32) has at most one bound state and the 
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triplet equation (3.33) has none. This will in turn im-
ply that the singlet state of H" has at most one bound 
state and the triplet has none in the fixed (infinite mass) 
nucleus approximation with Coulomb interactions only, 
The analysis of (3.32) and (3,33) will be carried out by 
first discarding some terms with nonnegative expecta
tion values to simplify the equations. A coupling constant 
will then be introduced; the number of bound states will 
be studied as a function of the coupling constant by sit
ting at the bottom of the continuum and counting the 
bound states as they emerge from the continuum when 
the coupling constant is increased. 29 

A. The singlet equation 

The singlet equation (3.32) will be considered first. 
It follows from (3.28) and (3.29) that 

tz2
1 <PI) <<PI I + hd + he 

= U + {[tz 2 - (16Z/35)] I <PI) <cPII ., 
+6 UI /2M nUI /2}, (4.0 

n=1 

Because all eigenvalues of M are real and nonnegative, 
the term in curly brackets in (4,1) has a nonnegative 
expectation value for Z = 1. Furthermore, for Z = 1, it 
follows from (3.35) and (3,38) that 

- Vo(r) + U(r)? - 2r-1 +2(r +r-1t l 

=_ 4r- I [(1 + r)2 + (1- r)2]-1 

? - 4r-1(1 +rt2= - UI(r). (4.2) 

Hence the terms - ZVo + tZ2 I <PI) <<Pt I + hd + he in (3.32) 
can, as a consequence of Theorem 1, be replaced by 
- U I without raising the eigenvalues or decreasing the 
number of bound states. Making this replacement and 
introducing a coupling constant X yields 

(J + I <PI)(<ptl )(p2 - AUd(J + I <PI) (<ptl) If). 

=(E+l)(l+ l<Pl)<<Pll)lf). 

(4.3) 

The number of bound states of (4.3) for X = 1 is thus an 
upper bound to the number of bound states of (3.32) for 
Z = 1. The number of bound states of (4.3) will be 
counted by the standard trick of sitting at the bottom of 
the continuum, cranking up the coupling constant X, 
and counting the bound states as they emerge from the 
bottom of the continuum, One lets E approach - 1 from 
below and regards X as the eigenvalue; the number of 
eigenvalues A which do not exceed 1 is then the same 
as the number of bound states for A = 1. The justification 
for this trick rests on Theorem 1, which, since expec
tation values of U1 must be nonnegative, implies that the 
number of bound states of (4.3) is a nondecreasing func
tion of A and that the eigenvalues E of (4.3) are non
increasing functions of A, 

The configuration space representatives of bound 
state eigenvectors of (4.3) must decrease exponentially 
at large r. The fate of this boundary condition as E 
- - 1 from below can be seen by rewriting (4.3) as the 
(integral) equation 
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(4.4) 

where G is the inverse operator (Green's function) 

(4.5) 

which is well defined for E < - 1. It is easy to show that 

G = Go + [1 + hE + O( <Pt I Go I <Pt) ]-I[ - t I <PI) (<PI I Go 

- t(E + I)Go I <PI) <<PI I Go], (4.6) 

where 

Go = [p2 - (E + 1)1]-1. (4.7) 

But for E < - 1, the configuration space representative 
of Go is 

.. I 

Go(r, r')=L 6 Y I,m(8, <p) Y I ,m(8', <p')gl(r,r'), (4.8) 
1=0 m=-I 

where YZ,m is a spherical harmonic and 

gl(r, r') = (rr,)-I 1211+1 /2 (Kr<)KI+1I2 (Kr», (4.9) 

with r< the smaller of the pair (r,r'), r) the larger of 
the pair (r,r'), and 11+112' KI+1/2' modified Bessel func
tions of the first and third kinds respectively. 30 K is de
fined by 

As E- -1 and K- 0, 

11+1/2 (Kr<)- [r(l +%)]-1 (Kr</2)1+1!2 , 

and 

KZ+I /2 (Kr» - tr(l + t)(Kr/2t l-1 12, 

so that 

gl(r,r')- (21 +O-I(rVr~·t), 

(4.10) 

(4.11) 

Because G - (J - t I ¢I) (<PI I )Go as E - - 1, Eqs, (4.4) 
and (4.11) imply that the radial part of a bound state 
wavefunction in the lth partial wave must behave like 
r -I-I for large r when E is at the bottom of the con
tinuum at - 1. 

When E = - 1, it is convenient to simultaneously de
compose (4.3) into partial waves and eliminate the 
I <PI) (<PI I terms (which contribute only in the l = 0 par
tial wave) by putting 

R then satisfies the ordinary differential equation 

cP (4X l(l +1») ~[rR(r)]+ r(1 +r)2----;z- [rR(r)]=O. (4.13) 

Because this radial equation has regular singular points 
at 0, - 1, and co it is transformable into the hypergeo
metric equation [this, of course, is the reason for em
ploying the inequalities (4.2)], The change of variables 
r =z/(1 - z), R (r) =rlw(z) brings it to the standard form 
of the hypergeometric equation 

d2w dw 
z(l-z) -, +2(l+l-z) +4Xw=0. 

dz· dz 
(4. 14) 
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As r - 0, R (r) must behave like rl; the solution which 
behaves like r- t- t as r- ° must be rejected to avoid a 
source at r:=O. Hence w(z) must approach a constant 
as z - 0; the solution of the hypergeometric equation 
which behaves like z-21-t as z - ° must be rejected. 
Therefore, w is given, in standard hypergeometric 
notation, 3t by 

W(Z)=2Ft(a, b; c;z), 

where 

(4.15) 

(4.16) 

As has been argued above, R (r) must behave like r-1-1 
as r - co; the solution which behaves like rl as r - co 
must be rejected. Hence w(z) must behave like (l_z)21+1 
as z - 1; the solution of the hypergeometric equation 
which approaches a constant as z - 1 must be rejected. 
One of the linear transformations for the hypergeometric 
function32 yields 

2F I (a, b; a + b + 2l + 1; z) 

_r(2l+1)r(a+b+2l+1) f; (a)n(b)n(n-2l)! (l-z)n 
-r(a+2l+1)r(b+2l+1) n=O n!(2l)! 

_ r(a + b + 2l + 1) (z _ 1)2/+1 t (a + 2l + l)n(b + 2l + 1)n 
r(a)r(b) n=O n!(n+2l+1)1 

Because all eigenvalues of M are real, nonnegative, and 
strictly less than 1, the sum in (4.19) has a nonnegative 
expectation value and can therefore be discarded without 
raising eigenvalues or increasing the number of bound 
states. The term - (16Z/35)l CPI) (cptl in (4.19) does not 
contribute when (4.19) is inserted in (3.33) because of 
the presence of the projection operator I - I CPi) (CPil in 
(3.33). Discarding these terms and introducing a 
coupling constant A yields 

(4.20) 

The number of bound states of (4.20) for A = 1 is an 
upper bound to the number of bound states of (3.33) for 
Z=1. 

Because p2 is a differential operator in configuration 
space while UI12MUt / 2 is an integral operator, (4.20) 
is an integrodifferential equation. It is most easily 
handled by converting it to the integral equation 

(4.21) 

where the generalized inverse G', which is well defined 
for E < - 1, is that solution of 

X(I-z)n[ln(l- z)- iJ!(n + 1) + </I (a +2l +n +1) (1- I CPt) (CPII )[p2 - (E +1)1](1 - I CPI) (CPil )G' 

+</I(b + 2l +n +1)- </I(n + 2l +2)]. (4.17) =1 - \ CPi) (cpII, (4.22) 

Here (a)n=a(a +1),,, (a +n-l)=r(a +n)jr(a) is 
Pochhammer's symboL Equation (4.17) makes it clear 
that the boundary condition at z = 1 can be satisfied only 
if either a + 2l + 1 or b + 2l + 1 is a negative integer or 
zero. Without loss of generality, then, a = - 2l - 1 - n, 
n=O, 1, 2, '" 0 Equations (4.16) then imply that the 
eigenvalues A are 

A=i(n+2l+1)(n+2l+2), n=0,1,2, '''. (4. 18) 

Since only one of these eigenvalUes is less than 1, (4.3), 
and therefore also (3.32) and the singlet state of H", has 
at most one bound state. Since the singlet sector is al
ready known to have at least one bound state, this com
pletes the proof that the singlet state of H" has exactly 
one bound state in the fixed (infinite mass) nucleus ap
proximation with Coulomb interactions only. 

B. The triplet equation 

The triplet equation (3.33) will now be considered. It 
follows from (3.28) and (3.29) that 

+ t UI /2M" (1 _ M)M"U1I2. (4.19) 
"=1 
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which satisfies G' I CPI) = the null vector. G' is given ex
plicitly by 

(4.23) 

where Go is defined in (4. 7). 

The integral equation (4.21) will noW be decomposed 
in partial waves, The partial wave expansion of Go has 
already been recorded in (4.8) and (4.9), It is straight
·forward to show that 

X exp(- r)}, (4.24) 

and that 

(4.25) 

It follows from (4.8), (4.9), and (4.23)-(4.25) that G' 
has the partial wave expansion 

~ I 

G'(r, r') = 6 .0 YI,m(8, CP)YI,m(e', cp')g;(r, r'), (4.26) 
1=0 m=-I 

where 
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+ (1 - Kr2r-1] exp(- r)}{(1 - K)-2 (r't1 exp(- Kr') 

- [oW +K)(l- K)"l + (1- Kt2(r')"I] 

x exp(- r')} 0/,0' (4.27) 

The partial wave expansion of U112MU112 follows from 
(3.4), (3.17), (3.19), and the partial wave expansion of 
k given in Appendix A. It is 

"" I 
[U(r)j1/2M(r,r')[U(r)]1/2=66 YI,m(8,1» 

1=0 m=-I 

where 

XYI•m(8',1>')N/(r,r'), 

(4.28) 

- (2l + 3)"lr~+2r>l-l] exp(- r')U(r') 

+-W- exp(- r - r')ol.o, (4.29) 

The integral equation (4.21) can be decomposed in par
tial waves with the aid of the partial wave expansions 
(4.26)-(4.29). Putg(r)=R(r)Y I ,m(8,1». R then satisfies 
the radial (integral) equation 

R(r) =;>c J"" {gf(r, r')[Vo(r') - U(r')] 
o 

+ ~"" g:(r, r")N1 (r", r')r"2dr"}R(r')r'2 dr'. 

(4.30) 

The integral equation (4.30) does not have a sym
metric kernel, which means that the Hilbert-Schmidt 
theory of integral equations33 cannot be applied directly 
to (4.30). Integral equations with unsymmetric kernels 
are also harder to handle numerically, because con
version to a matrix problem via a numerical integration 
rule34 leads to an eigenvalue problem for an unsym
metric matrix; the diagonalization of an unsymmetric 
matrix on a computer requires considerably more com
puter time than the diagonalization of a symmetric 
matrix of the same size. For these reasons it is de
sirable to transform (4.30) into a symmetric Hilbert
Schmidt equation. This can be done by finding a kernel 
111 with adjoint 111 such that 

rg;(r, r')r' = 10"" 11i(r, r")11I(r", r') dr". (4.31) 

Such kernels 111 (which are not unique) are found ex
plicitly in Appendix C. Only the existence of 111 is need
ed for the following argument. Given 11" define p by 
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p(r) "';>c fo"" {11I(r, r')[Vo(r') - U(r')] 

+ fo"" 111(r, r")[r"N1(r",r')r'] dr"}r'R(r')dr'. 

(4.32) 
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It follows that 

r'R (r') = J ""111 (r', r)p(r) dr, 
o 

and that p satisfies the integral equation 

where 

(4.33) 

(4.34) 

QP) (r, r') = J"" 111 (r, r")[Vo(r") - U(r")]11!(r", r') dr', 
o 

(4.35) 

and 

x 1)~ (r'" , r') dr" dr'''. (4.36) 

The kernels Qll) and Q~ll are symmetric and square 
integrable, so that (4.34) is a Hilbert-Schmidt equa
tion. It is straightforward to show, from (3.35) and 
(3.38), that Vo(r) - U(r) '" O. Furthermore, (4.28) and 
the fact that all eigenvalues of M are positive implies 
that N 1 is an operator with nonnegative expectation value. 
Hence Qll) and Q~I), defined by (4.35) and (4.36), are 
operators with nonnegative expectation values, which in 
turn implies that all eigenvalues of (4.34) are nonnega
tive. These eigenvalues are, of course, the same as 
the eigenvalues of (4.20). 

The proof that the triplet state of H- is not bound will 
now be completed by showing that, for E '" - 1, all 
eigenvalues A of (4.34) exceed 1. This will be accom
plished with the aid of a well-known eigenvalue bound
ing trick from the theory of Hilbert-Schmidt integral 
equations. 35 It is a standard result of Hilbert-Schmidt 
theory that the eigenvalues A~I) of (4.34) satisfy the sum 
rule 

t (A~l)t2 =Tr[(Q~Il+Q~I)2]. 
n=1 

(4.37) 

Because all A~I) are nonnegative, discarding all but the 
n = 1 term on the left-hand side of (4.37) shows that the 
smallest eigenvalue Al') satisfies the inequality 

All) '" {Tr[(QI (I) + Q~I)2]}-1/2. (4.38) 

But Tr[(QP) +Q~I)J2] =Tr[(Q~Il2)]+2Tr(Q~I)Q~I» 
+ Tr[(Q~l)2]. The Schwarz inequality implies that 
Tr(QlI)Q~I) '" {Tr[(Qll)2] Tr[(Q~")2W/2. Since all eigen
values of Q~I) are nonnegative, Tr[(Q~")2] '" (TrQ~/»2. 
USing all of these inequalities in (4.38) yields 

All) '" Al~~ = ([Tr«Qlll)2)]1/2 +TrQ~Il}-I. (4.39) 

It is straightforward to show that Tr(QP»2 '" Tr(Qj1»2 
and TrQ~1) "" TrQ~1l for 1 ~ 1, so that 

(4.40) 

Thus it is necessary to calculate the traces explicitly 
only for 1 = 0, L It is also straightforward to show, with 
the aid of Theorem 1, that AP) is a nonincreasing func
tion of E. Thus it is necessary to calculate the traces 
explicitly only for E = - 1. 

Explicit calculation of these traces can be simplified 
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by using invariance of the trace under cyclic permuta
tion, which here amounts to a (justifiable) interchange 
of the orders of integration, to collect 7}1 and 7}J together 
in the form 7}i7}1 =rg;r. Thus, for example, TrQ~n 
= Tr(7} lrN lr7}f) = Tr(7}!7} l r.N lr) = Tr(rg;r2N lr). Numerical 
integration for E = - 1 shows that Tr[(QiO) )2] '" O. 428239, 
TrQ~O) '" 0.1162229, Tr[(QI1l)2] '" 0.11974739, and TrQ~1l 
'" 0.13762233. It follows that 

A(O)~A(O)"'1 297652 
and I 1M' , (4.41) 

All) ~ Am", 2. 0675353, 1 ~ 1. (4.42) 

The bounds (4.41) and (4.42) imply that (4.20), and 
therefore also (3.33) and the triplet state of H" in the 
fixed (infinite mass) nucleus approximation with Coulomb 
interactions only, have no bound states. 

V. FINITE NUCLEAR MASS 

This section will extend the results of the preceding 
sections to finite nuclear mass [y;o 0 in Eq. (2.9)]. Be
fore outlining the method to be used, it is in order to 
ask what one can reasonably expect to prove. Note that 
interchange of the electron mass m and the nuclear 
mass M puts y into 1 - y and transforms the internal 
Hamiltonian Hint into the internal Hamiltonian of the hy
drogen molecular ion H2. The H2 ion, which is well de
scribed by the adiabatic or Born-Oppenheimer approxi
mations, has a number of (rotational and vibrational) 
bound states. This makes it clear that one cannot expect 
to extend the result that H" has at most one bound state 
to finite nuclear mass for all values of the electron to 
nuclear mass ratio; as y increases from zero, there 
should be some value of y at which a second bound state 
appears. The estimates used in the present section are 
sufficient to show that H" has one bound state for (m/iVi) 
< (1I1/Iyl)max '" O. 210106366 (for y < Ys '" 0.1736263618), 
This does not mean that a second bound state comes in 
for m/:H greater than this limit; it only means that the 
estimates of the present paper are not sufficiently good 
to exclude a second bound state for m/Al > (m/I>i)max' 
Complementary variational (Rayleigh-Ritz) upper 
bounds to eigenvalues together with lower bounds such 
as those of the present paper are needed to get rigorous 
estimates of the value of III/lvi for which a second bound 
state appears. The present section begins with an out
line of the method used to get lower bounds for (m/M) 
> 0, Detailed calculations to show that H- has at most 
one bound state are then presented. The section con
cludes with a simple variational calculation to show that 
H" has at least one bound state for m/M > O. 

A. The basic idea 

The basic idea to be used to extend the results to 
finite nuclear mass is most easily described with the 
aid of the following projection operators: 

PS(rl, r2; ri, ril 

:= t[ 6(rl - rj)¢1 h)¢1 (rf) 
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+ 6(r2 - r{)¢1 (r 1 )¢1 (rf) + 6(r2 - r2)¢t<rl )¢1 (r [) 

+ 6(rl - rf)¢1 (r2)¢1 (rj)] - ¢1 (rl)¢1 (r2)¢1 (rD¢1 (rD, 

(5.1) 
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PA(rj, r2; ri, ri) 

= t[ 6(rl - rO¢1 (r2)¢1 (rf) 

- 6(r2 - r[)¢1 (rl)¢1 (rf) + 6(r2 - r2)¢1 (r1)¢1 (rj) 

- 6(rl - r:i)¢I(r2)¢1 (r[)], (5.2) 

(5.3) 

and 

P !(rl, r2; rj, r:i) = [6(rl - rO - ¢1 (r1)¢t (rill 

x [6(r2 - r:i) - ¢t (r2)¢1 (r2)]. (5.4) 

P s, PA, andP!projectontothespaces5s. 5A, and 
5! defined in Sec. IIID. P II projects onto the span of the 
ranges of P sand P A, which will be called 511' The basic 
difficulty to be overcome when m/M;O 0 is the fact that 
the Hughes-Eckart term 2YP1' P2 in Hint couples 511 and 
5!. This difficulty will be handled by splitting Hint as 
follows 36 : 

Hint =PIIHintPIl +PIIHintP! +P!HintPIl 

+P!Hlnt p!' (5.5) 

P!HlntP! will be replaced by BP! where B is a lower 
bound to the spectrum of P!HintP!; Theorem 1 guaran
tees that this replacement cannot raise eigenvalues or 
decrease the number of bound states. The Coulomb re
pulsion will be handled as in Sec. III. The resulting 
Hamiltonian H[nt is 

H[nt =PII(Ho + 2YPI 'P2 + V1!2pVl/2)p" 

+ 2y(P" PI • 1>2 P! +P! Pt· P2 PII) +BP!. (5.6) 

The Schrodinger equation H[nt I1/!) =E I1/!) splits into two 
equations: 

P,,(Ho + 2YPt 'P2 + vt /2pVl /2)p" 11/!) + 2yP" PI 'P2P ! III) 

=EP" 11/!), (5.7) 

and 

(5. 8) 

Equation (5,8) can be readily solved for P! I1/!) if E;O B. 
Inserting the result in (5, 7) yields 

PII[H 0 + 2YPI ' P2 + Vi /2 pvt /2 

- 4y2(B - E)"lpl 'P2 P !Pl 'P2]P" I i/J) 
=EP"Ii/J). (5.9) 

The Schrodinger equation (5.9) reduces to one-particle 
equations in essentially the same way as the Schrodinger 
equation which arose in the fixed (infinite mass) nucleus 
case. If E = B, one obtains B as an eigenvalue of infinite 
multiplicity, with any vector I1/!) which satisfies P" I1/!) 
=P"pt·P2P!Ii/J)= the null vector as an eigenvector. 

B. The lower bound B 

This subsection will derive the lower bound B to the 
spectrum of P!HlntP!. Clearly this bound B must lie 
above the bottom of the continuum at - Z2 if the method 
outlined in the preceding section is to work. As will be 
seen, the methods used in this section will yield a bound 
B which satisfies B> - Z2 only for y < h where 
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Yb'" O. 330485327. (5.10) 

Construction of the lower bound B is facilitated by the 
definitions 

h.,,(r, r')= [- (1- y)V2 - 2Zr-l]o(r - r'), (5,11) 

and 

h.;(r, r')= - Z2(1_ y)"l[t<pI-')'(r)<pI_~(r') +to(r - r')], 

(5,12) 

where 

(5.13) 

with <PI defined by (3,4). <PI-')' is the ground state eigen
function of the hydrogenic Hamiltonian h.", with ground 
state energy - Z2 (1 - y)"l. The expectation values of hy 
and of h; with respect to <PI_yare the same; the expecta
tion value of h; with respect to any wavefunction per
pendicular to <PI-')' is - Z2/[ 4(1 - y)J, which is the ener
gy of the first excited state of h~. It follows from the 
variational principle that (cJ! 1 hy 1 cJ!)?- (cJ! 1 h; 1 cJ!) for all 

1 cJ!). 37 

Equations (2.9)-(2.11) imply that 

(5.14) 

where 

H;~t(rl' r 2 ; rf, rf) =h;(rl, rllo(r2 - r:f) + o(rl - rOh;(r2, rD, 

(5.15) 

and 

H;'~t(rl' r 2; rj, r2) 

= (hy - h;)(rl , rilo(r2 - rf) 

+ o(rl - rj)(hy - J~)(r2' r2) + [- y(VI + V2)2 

+ 21 rl - r21-I]o(rl - rj)o(r2 - r2). (5. 16) 

Because the expectation value of Hr~t cannot be negative, 
the lowest eigenvalue of PLH;~tPL will furnish a lower 
bound B to the spectrum of PLHlntPL' The eigenvalue 
problem for PLH;~tPJ. is separable; its eigenvalues can 
be obtained from the eigenvalues of 

(5.17) 

The lowest eigenvalue bl of (5,17) is readily found with 
the aid of (5.12); it is 

bl =_Z2(1_ y)"I[1- t I (<PI I <PI .. ,,) 12]. (5.18) 

The desired lower bound B is equal to 2bl • Evaluation 
of the overlap integral (<PI 1 <PI-')') in (5,18) then leads to 

B=- 2Z2(1- y)"I[1- 48(1- y)3(2 - y)"6]. (5.19) 

It is easy to show that B is a monotone decreasing func
tion of y for 0"" y < 1. Numerical methods show that the 
root Yb of B = - Z2 is given by (5, 10); the inequality B 
> - Z2 is satisfied for y < Yb' 

C. The singlet state 

The Schrodinger equation (5.9) is equivalent to two 
one-particle equations, one for the singlet state (from 
S s) and one for the triplet (from SA)' The reduction 
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procedes in essentially the same way as in Sec, III Dj 
the one-particle equation which replaces (3.32) is 

(I + I <PI) (<PI I ) {p2 - ZVo + iz21 <PI) (<PI I + ka + ke 

+ 6yZ-2T I - 4y (B - E)-I[ tZ2pZ + To - tZ4 1 <PI) (<PI I 

- TI + Tz]}(I + I <PI) (<PI I) If) 

=(E+Z2)(I+ I<pI)(<Pll)lf), (5.20) 

where 

(5.21) 

(5.22) 

(5.23) 

Here PI is the ith Cartesian component of the momentum 
operator p = - iV. It should be noted that the finite rank 
operators T I have nonnegative expectation values, and 
that they can be written out explicitly in coordinate 
space in the form 

I 

TI(r, r')=tl(r,r') 6 YI,m(B, <P)YI,m(B', B'), (5.24) 
m=-l 

where 

to(r, r') == (167TZz/3)(r-1 - Z)<PI (r)cPI (r')(r,-I - Z), 

(5. 25) 

(5. 26) 

and 

t2(r, r')== (81TZ2/15)(r-1 +Z)<PI (r)<PI (r')(r,-I +Z). 

(5.27) 

The analysis of (5,20) is similar to the analysis of Sec. 
IV. Setting Z = 1, discarding certain terms which have 
nonnegative expectation values (note that (B - E)-I is 
positive for E., - 1 and y < Yb], and introducing a coupl
ing constant X changes (5.20) into 

(1 + I <PI) (<PI I ) -[1- (4y2/3)(B - E)"1 Jp2 

- X[UI +4y2(B - E)"I(To + Tz)]}(I + I <PI) (<PI I) if). 
= (E + 1)(1 + I <PI) (<PI I) I.f)· (5.28) 

Equation (5.28), which replaces (4.3) for y* 0, is easily 
handled by converting it to an integral equation. Pro
ceeding as in the derivation of (4.4) and letting E - - 1 
yields 

(I + I <PI) (<PI I ) If) = ,\,[1- (4y2/3)(B + 1)-1]"1 GO[UI + 4y2 

X (B + 1)-1 (To +T2)](I + I <PI) (<PI I ) If). 

(5.29 ) 

Equation (5.29) can be decomposed in partial waves by 
giving f the form (4.12) and using the partial wave de
compositions (4,8) and (5.24), The resulting radial inte
gral equation do not have symmetric kernels, but can be 
transformed into equations with symmetric kernels with 
the aid of (Cl) in essentially the same way as (4.30) was 
transformed into the symmetric equation (4.34) with 
the aid of (4.31). The result is 
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rR(r)=J
OO 

I;j(r,s)p(s)ds, 

° 
(5.30) 

where p satisfies the symmetric Hilbert-Schmidt inte
gral equation 

+S~!)(r, r')] p(r') dr', (5. 31) 

with 

(5.32) 

and 

S(!)(r r')=4y2(B+l)-1 Joo Joo I; (r r")r"[t (r" r"')6 
2 , ° ° I, 0, I, ° 

(5.33) 

The eigenvalues X~I,O) [given by (4.18)] and eigenfunc
tions u~l) of the kernel sjl) are known from the analysis 
of the singlet case for y = 0 in Sec. IV C. The solutions 
to the integral equation (5.31) are therefore also known 
except for 1 = 0 and 1 = 2. Lower bounds to the eigen
values x~ I,r) of (5.31) for 1 = 0 and 1 = 2 can be readily 
obtained by truncation of SI!). Replace SF) in (5.31) by 
S~l) where 

S~O) (Y, r') =" (I/X~o, O»u~o) (r)u~O) (r'). 

+ (1/xlo, 0»[6(r - r') - u~O)(r)u~O)(r') 1 
= (4/3)u~O) (r)u~O) (r') + (2/3)6(r - r'), (5.34) 

and 

S~2) (r, r') = (I/X~2, O»6(r - r') = (2/15)6(r - r'), (5.35) 

with 

u~O)(r)=± 1000 

1;0(r,s)Ul(s)[31/Zs(1 +stl]ds, (5.36) 

The quantity in square brackets in Eq. (5.36) is the 
(properly normalized) solution sR (5) of the differential 

eigenvalue problem (4.13) for n = I = O. Because 
(<J! IS~ l) I q) ~ (<J! IS\!) I <J!), this replacement produces new 
integral equations with degenerate kernels whose eigen
values X~I,lb) are lower bounds to the eigenvalues of 
(5.31). Integral equations with degenerate kernels can 
be readily solved by reducing them to eigenvalue prob
lems for finite dimensional matrices. 38 The results for 
the eigenvalues x~I,r) of (5.31) are 

x(no,r) ~ X~O,lb) = (fJ.~0) + ~tl[l- (4y/3)(B +1)"1], (5.37) 

(5.38) 

X~I,r) = ~(n + 1+ l)(n + 1+ 2)[1 - (4y2/3)(B + Itl
], l"" 0, 2. 

(5.39) 

All but two of the fJ.~0) which appear in the lower bound 
(5.37) are zero: the remaining two, obtained from a 
2 x 2 matrix eigenvalue problem, are roots of the 
quadratic equation 

J.L 2 -t[1 +4y2(B+1)-l lJ.L 

+ (64y/9)(B + 1)-1 {I - 12[1 - 2eEl (1)]2} = 0, 
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(5.40) 

All but one of the fJ.~2) which appear in (5.38) are zero; 
the remaining one is given by 

fJ.~2) =-!s Y (B + 1)-1. (5.42) 

Numerical evaluation of the bounds (5.37)- (5.39) shows 
that: (a) all but one of the bounds X~o, lb) of (5.37) exceeds 
1 for 0 ~ y ~ Ys where 

Ys~ O. 173626362, (5.43) 

(b) all of the bounds X~2, Ib) of (5.38) exceed 1 for 0 ~ Y 

~Ys,2"'0.273244889, and (c) all of the x~l,y) of (5.39) ex
ceed 1 for 0"'y~Ys,I~0.240923098. Hence (5.31), and 
therefore also the singlet sector of (5.9) and of the W 
ion, has at most one bound state for 0 ~ y ~ Ys, that is to 
say for 0 ~ (m/M) ~ (m/M)ma:. ~ 0.210106366. 

D. The triplet state 

Reduction of the Schrodinger equation (5.9) for the 
triplet state proceeds in essentially the same way as 
the reduction of the preceding section for the singlet 
state; the one-particle equation which replaces (3.33) 
is 

(I - I ¢1) (¢Il )[p2 - ZVo + k d - ke - 6yZ-ZT 1- 4y(B - E)-I 

X(tZZpZ-To-TI -T2)](I-I¢I)(¢II)lg) 

=(E+z2)(I-I¢I)(¢II)lg), (5.44) 

where To, T I , and T2 were defined in Eqs. (5.21)
(5.23). The analysis of (5.44) procedes by setting Z 
= 1, discarding certain terms which have nonnegative 
expectation values lnote that (B - E)-I is positive for E 
~ - 1 and y < h], and introducing a coupling constant X 
to obtain 

(I - I ¢I) (¢II) {[I - (4y2/3)(B - E)"I]p2 - X(Vo - u 

+ U 1 /ZMU1/2 + 6yT I)} (1- I ¢I) (¢1 I) Ig) 

= (E + 1) (1- I ¢I)( ¢I I) Ig), (5.45) 

Equation (5.45) is analyzed in the same way as Eq. 
(4.20) which it replaces. The term TI contributes an ad
ditional kernel 

x 1J!(r'" , r') dr" dr"', (5, 46) 

which is to be added to Qll) +Q~l) when constructing the 
analog of (4.34) for 1=1. It is straightforward to show 
that 

TrQ~1l = 2y/3. (5.47) 

It follows that the lower bound (4.39) is now replaced by 

xli) ~ [1 _ (4 yz/3)(B + 1)-1] ([ Tr(Qll)2)]1 /2 

(5.48) 

Numerical evaluation of the right-hand side of (5.48) 
with the aid of the values for Tr[(QlO»2], TrQ~O), 
Tr[(Qlll)2], and TrQ~1) quoted in Sec. IVB shows that 
(a) xl O) ~ 1 for 0'" y '" Yt where 

Yt :::: O. 217891, (5.49) 
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(b) xji> >-- 1 for 0 <S I' <S Yt. t '" 0.24433520, and (c) Xp> >--1 
for 1>--2 and O<sy<S Yt.2'" O. 26468945, Hence (5,45), 
and therefore also the triplet sector of (5.9) and of the 
H- ion, have no bound states for 0 <S I' < Yt. Comparing 
(5,10), (5,43), and (5.49) shows thatYs<Yt<Yb' Thus 
the result that H- has at most one bound state has been 
proven for 0 <s Y < Ys' 

E. At least one bound state 

To complete the analysis and prove that H- has exact
ly one bound state for 0 <s I' <s Y .. it is necessary to show 
that W has at least one bound state for finite 1', This is 
easily done with the aid of the so-called (ls, ls') func
tion I/JSL of Shull and Lowdin, 40 which is 

I/JSL(rt, r2) =N[exp(- art - br2) + exp(- ar2 - brt )], 

(5.50) 

Shull and Lowdin state that the optimum choice a 
== L 0392, b == 0,2832 yields a value of - 1. 0266 for the 
expectation of the internal Hamiltonian Hint when Z 
== 1 and I' = O. The Hughes-Eckart term 2YPt • P2 has 
zero expectation value with respect to I/JsL' Since 
- 1.0266 is below - 1, W must therefore have at least 
one bound state for 0 <s I' < 1. 

APPENDIX A: THE PARTIAL WAVE 
EXPANSION OF k 

The generating function for the Legendre polynomials 
is 

(1 +z2 - 2z cosEl)"1/2 = t z Ip,(cos0). 
1=0 

It (A1) is inserted in the identity 

~[z -t/2(1 +z2 _ 2z cose)t/2] = i(z t /2 _ z-3 12) 
dz 

(A1) 

x (1 +Z2 - 2z cosett/2, 

(A2) 

and the result is integrated term by term with respect 
to z, the expansion 

"" ('+2 Z I ) 
(1+z 2-2zcoS0 )1I2=E 2~+3-21-1 Pz(coS0), 

(A3) 

is obtained. The partial wave expansion of I r - r' I fol
lows from (A3) by letting 0 be the angle between rand 
r' and setting z =:;rjr> where r< is the smaller of the 
pair r, r' and r) is the larger of r, r'o Inserting the re
sult in the definition (3.15) of k and using the addition 
theorem for the spherical harmonics yields 

'" I 
k(r,r /)=:.0 .0 y/.m(e, <p)y/.m(e', <p')k/(r,r'), 

1=0 m=-l 
(A4) 

where 

') 2Z
3 

[ ()]t/2 ( ) ( r~ kz(r,r =2l+1 Ur exp-Zr -(2l-l)r;-1 

(A5) 
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APPENDIX 8; HUNZIKER'S CONSTRUCTION 
OF Vy,PVy, 

This appendix will sketCh an alternative derivation of 
V1l2pVt12 , due to Walter Hunziker, which he was kind 
enough to allow me to include, Consider first the sub
space S s, spanned by functions of the form (3.30). Let 
I/!St and if! S2 be two functions of the form (3. 30): 

I/!St (rt> r 2) =fl (rl)<pt (r2) + <Pt (rt)Jt (r2), (Bl) 

I/!s2 (rt, r2)=f2 (rt)<pt (rz) + CPt (rt)J2 (r2). (B2l 

The prOjection operator P is to be chosen so that for 
each It there exists f2 such that 

V1!2pV1I2 I <PSt) =:; II/Jd. (B3) 

Equation (B3) is equivalent to 

PVt/2 1 <PSt):= V- t / 21Ij;s2\ (B4) 

For any vector I ~), let III <p) II := (<p II/!/ 12, and let 1 be the 
identity, Then (B4) implies that 

IlVt 121 <PSI) - v-1I2 i <Psz)11 2 

= II (I - p)vt /2ilj;sl)11 2 + IIPVI/2il/!sl) - v -t/2il/!sz)11 2• 

(B5) 

It follows that with ft given, iz can be characterized by 

II V1/21 <PSt) - V-1I2 I <PS2) 112 == minimum. (B6) 

Equations (B1), (B2), (3.10), and (3,15) can be used to 
show that 

II vt/21 <Pst) - V- t /2 1I/!s2)11 2 

:= (<PSt I V I <PSt) - 2(jtl (J + I <Pt) (cpt I ) liz) 

- 2(j21 (I + I CPt) (<PI I) 1ft) 
+ 2(j21 U-t I f2) + 2(j21 U-t !2W-1/2

1 f2)' (B7) 

Varying (B7) with respect to If2) yields, via a standard 
argument of the calculus of the variations, the follow
ing equation for I f2): 

liz) =U(I + I <Pt) (cpt I ) 1ft) - Ut l21<U-1I2 liz), (B8) 

Equations (3,17) and (3.19) can be used to bring (B8) to 
the form 

liz) = U(I + I CPt) (cpt I ) 1ft) - (32Z/35) I CPt) 

x (<pt I U-t I f2) + Ut /2f1,W-t/2 1 f 2), (B9) 

It also follows from (3. 17) and (3, 19) that 

MU-1I2 I <Pt) = the null vector. (B10) 

Equations (B9), (B10), and the fact that <<Ptl U- t I <Pt) 
= 35/(32Z) can be used to show that (cptlU-1 liz) == (cpt I ft)' 
This can in turn be used to rewrite (B9) in the form 

If2> = [U - (16Z/35) [<pt) <<PI [1 
x (J + I <Pt) (<Pi I ) 1ft> + U i /2MU-t /21 iz). (B1l) 

The Neumann series solution of (Bll) in powers of Mis 
readily calculated with the aid of (B10). Comparing the 
result with the definitions (3,28) and (3.29) of 1<4 and ke 
shows that this Neumann series solution is 

(B12) 
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With liz) known, the action of Vl/ZpV1!Z in 5 sis 
known. The expression (B12) for liz) is the same as 
the one which follows from Eqs, (B1)- (B3) and (3.27). 
The action of V1!Z PVl IZ in SA can be obtained from a 
variational principle like (B6) in similar fashion, Once 
the action of V1!ZPV1!Z in 5 s and in SA is known, 
Vl IZpVl IZ is itself known, and can be written in the 
explicit form (3,27) if desired, 

APPENDIX C: THE DECOMPOSITIONS 
n, tn, AND ~, t~, 

This appendix shows how the 1)1 of the decomposition 
(4,31) can be explicitly constructed. The construction 
proceeds by first finding a decomposition 

rg,(r,r')r'=f~ l:i(r,sH;/(s,r')ds. 
o 

(C1) 

Given a decomposition of the form I:il:, for the ordinary 
inverse rg,(r,r')r', the corresponding decomposition 
1)~1)0 of the generalized inverse rgo'(r,r')r' can be found 
with the aid of the formula 

1:01:0- 1:61:0I1')«v 11:6 1:0 Ht1(v 11:61:0=1)61)0' (C2) 

where 

(C3) 

The kernel I: 1 will be obtained by observing that the 
differential equation 

( 
aZ l (l + 1) z) ( ')' ( ') - w +~ + K sgl s, r r = 6 s - r , (C4) 

can be used to express rgl(r,r')r' in the form 

r~ ( aZ l(l+l) 
rgl(r,r')r' = J

o 
rgl(r,s)s - W +~ 

+ KZ) sgl(s, r')r' ds, (C5) 

If a function U2 (s) can be found such that 

_tz+l(l;/) +KZ=(-a~ +U2(s))(:s +U2(s)), 

(C6) 

then substituting (C6) into (C8) and integrating by parts 
once yields (C1) with 

I:,(s,r')=(:s +UZ(S))sg,(s,r')r', (C7) 

and 

(C8) 

It follows immediately from (C6) that the Uz needed for 
the factorization (C6) satisfies the Riccati equation 

The standard substitution 

U 2 = _ d l~: (s) , 

converts the Riccati equation (C9) into 

_d2u 
~ + [l(l + 1)s-2 + KZ]U = 0, 
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(C9) 

(C10) 

(Cll) 

whose general solution is an arbitrary linear combina
tion of S1/211+1/2(KS) and s1! 2K 1+1!2(KS). Choosing a par
ticular solution u determines 1:1 via (C7) and (C10); 
clearly I: 1 is not unique, The particular choise u(s) 
=s1/2K 1+1I2 (KS) leads to 

, ~ rt1/2KI+1I2(Kr')/[s1/2KI+1/Z(KS)], s <r', 
I:/(S, r ) = 

0, s >r', (C12) 

It is easy to verify that (C12) works: Eq, (C12) implies 
that 

(C13) 

Here r < is the smaller of the pair (r, r'). The integral 
in (C13) can be evaluated with the aid of the Wronskian 
relation41 

1/+ lIZ (x)K1+1 12(X) - I I+lIZ (x)K;+ll2(x) =x-1• 

One has 

f
7<[ liZ ()]-Zd s KI+l/Z KS s o 

f KT < [ ]-Z[ , ) = 0 KI+1!2(x) 11+1/Z(x)KI+1!z(x 

- 1/+1 12 (X)K;+l 12 (x) 1 dx 

=1'+1 IZ (Kr <)/K l+lIZ(Kr<), 

(C14) 

(C15) 

Using (C15) in (C13) and comparing with (4.9) shows 
that the particular 1:, given in (C12) satisfies (C1). 

With 1:1 known, the 1)1 needed for the decomposition 
(4.31) can be constructed with the aid of (C3); the par
ticular choice (C12) yields 

1)1(s,r)=I:/(s,r)- 4(5 +4K + KZ)"l[(l +K)S +l]exp(-s) 

x{2(1- K)"Z exp(- Kr)- [(1 +K)(l- K)"l 

(C16) 

It is straighforward to verify that the 1), given by (C16) 
satisfies (4,31), 

IVariational (Rayleigh-Ritz) upper bounds of sufficient accu
racy to demonstrate that H- has at least one bound state were 
obtained only a few years after the discovery of the 
Schrodinger equation. H. Bethe, Z. Phys. 57, 815-21 (1929) 
obtained an upper bound of -1. 05056 h- I Ry, and E. A. 
Hylleraas, Z. Phys. 63, 291-2 (1930) obtained an upper 
bound of -1.0528 h- I Ry. Both bounds lie below the hydrogen 
ground state energy of -1 h- I Ry. A large scale variational 
calculation by C. L. Pekeris, Phys. Rev. 126, 1470-6 (1962) 
used a 444 term trial function to obtain an upper bound 
of -1.0555020125908 h-I Ry to the nonrelativistic energy. The 
H- ground state has been discussed recently by C. D. Lin, 
Phys. Rev. A 12,493-7 (1975). 
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The generalized Langevin equation with Gaussian 
fluctuations 

Ronald Forrest Fox 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 
(Received 10 May 1977) 

It is shown that all statistical properties of the generalized Langevin equation with Gaussian fluctuations 
are determined by a single, two-point correlation function. The resulting description corresponds with a 
stationary, Gaussian, non-Markovian process. Fokker-Planck-like equations are discussed, and it is 
explained how they can lead one to the erroneous conclusion that the process is nonstationary, Gaussian, 
and Markovian. 

I. INTRODUCTION 

The generalized Langevin equation provides a 
stochastic description of Brownian motion. In one di
mension, it has the form 

d fl 1 dt u (0 = - 13 (t - s)u (s ) ds + m ] (t) 

o 

(1) 

in which u(t) is the velocity of the Brownian particle at 
time t, m is its mass, 13(t- s) is the dissipative 
"memory kernel," and ](t) is a Gaussian fluctuating 
driving force. It is assumed that J(t) possesses first 
and second moments given by 

<](t) = 0 and <](t)]( s) = kB TmP( I t - s I), (2) 

in which kB is Boltzmann's constant and T is the tem
perature of the fluid in which the Brownian particle is 
immersed. A Markovian limit of this description is ob
tained when 13(t - s) = 2136 (t - s) in which {3 is a constant 
and 6 (t - s) is the Dirac delta function. 

In recent papers, Adelmanl and Fox2 have derived 
Fokker-Planck-like equations corresponding to the 
process described by (1) and (2). It was even asserted,2 
on the basis of the FOkker- Planck-like equation, that 
the process being described must be a nonstationary, 
Gaussian, Markovian process. Here, it will be shown 
that the process is in fact a stationary, Gaussian, non
Markovian process, and that the Fokker-Planck-like 
equations of Adelmanl and Fox2 are not properly Fokker
Planck equations after all. It will be clearly indicated 
how the confusion arises, and the distinction between 
bona fide Fokker-Planck equations for bona fide non
stationary, Gaussian, lVI arkov processes, and Fokker
Planck-like equations which arise in the study of sta
tionary, Gaussian, non-Markovian processes will be 
elucidated. 

II. THE SOLUTION TO THE GENERALIZED 
LANGEVIN EQUATION 

Even though the process described by (1) and (2) will 
be seen to be non-Markovian, the Gaussian property of 
the fluctuating driving force leads to a complete sto
chastic description in terms of a Single, two-point corre
lation function. Therefore, the Gaussianness provides 
a description which has a property usually associated 
with Markovianness, i. e., a single two-point function 
determines everything. In the case of Markovianness the 
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two point function is the two-point conditional distribu
tion P2' which will be discussed below. 

Using Laplace transforms and the definition 

§(zl=('e-zl (3(t)dl (3) 

enables one to obtain the solution to (1) in the form 

u(t)=x(t)u(O) + m X(t-s)](s)ds, 1 f~ 
o 

(4) 

in which X (t) is defined through its Laplace transform 

X(z)=[z +§(Z)]-l. (5 ) 

While the Laplace transform method of treatment of the 
generalized Langevin equation is standard in the litera
ture, some of the results to be given below appear not 
to have been previously published and greatly clarify 
the discussion. 

In their pioneering work on Brownian motion, 
Uhlenbeck and Ornstein3 observed that two types of 
averaging are necessary in a discussion of Brownian 
motion using the Langevin equation. The first type of 
averaging is with respect to the stochastic driving force, 
](t), and is denoted, as in (2), by ( .. '). The second 
type of averaging is with respect to the initial velocity 
u(O), which appears in the solution (4) and will be 
denoted by { ... }. The distribution for u(O) will be the 
Maxwellian 

W(u(O)) = (2rrkB T /m)-l/2 exp[ - mu2 (O)/2kB T]. (6) 

Using the solution (4), we can compute the velocity 
autocorrelation function for t2? f1 

{ <u(t1)U(t2)} 

=X (t)X (t2 j{U
2(O)} 

+ (kB T/m)(x(t2 - tJ -X(t)X(t2)) 

= (kB T /m)x (l2 - t1 ). 

(7) 

To get (7), we have used an identity which is proved in 
Appendix A, which states, for t2? t l' 

«Jo
t
2x (12 - S2)](S2) ds2H(lx (t1 - s 1)](S) ds) 

= kB Tm{x (t2 - t) - X(t1)X (t2)) (8) 

and which is not found in the usual treatments of the 
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problem by the Laplace transform methods. Equation 
(7) makes it quite plain that the process is stationary. 
For t2 = f1' (7) reduces to precisely the same result ob
tained from (6) for {u2 (O)}. Stationarity means that the 
Maxwellian persists. 

Using the autocorrelation given by (7), we can con
struct the unconditioned two-point distribution function 
from the correlation matrix, by following a procedure 
discussed by Wang and Uhlenbeck. 4 The correlation 
matrix is 

kBT(1 X(t2-t1») 
m X(t2 - tJ 1 

(9) 

and its inverse is easily seen to be 

(10) 

x exp (_ m (u~ + u~ - 2 It! u2x (t2 - t ) ) 
2kB T(1 -X2(f2 - t1» 

(11) 

The validity of this result follows from the fact that 
u(t), as given by (4), inherits the Gaussianness of 1(0 
as a consequence of linearity, and {(u(t»} = 0. 

If we want the conditioned two-point distribution, then 
we can use the definition4 

P2 (111 tl ;u,t2) '" W2 (11 1 fl ;U2t2)/W1 (u/1). (12) 

However, from above we have {(U2 (t1 »}=kET/m, and 
with {(u(t1»} =0, it follows that 

WI (u1f1) = WI (111) = (2rrkE T /m)-1/ 2 

xexp(- mui/2kE T). (13) 

As already mentioned, this persistence of the Maxwell
ian distribution exhibits the stationarity of the process. 
From (12) and (13) it follows that 

x exp[ - m (112 - X (t2 - t1)U1)2/2kE T(1 - X2(t2 - t1»]. 
(14) 

Higher order distributions can also be constructed and 
they all depend upon X (t - t'), the two -point correlation 
function. In particular, the three-point, unconditioned 
distribution, W3(U1f1;U2f2;1I3t3) for t3? f2 ~ t1 is determined 
from the corelation matrix 

X(t3- f1») 
X(t3 - t2 ) 

1 

by computing its inverse, a somewhat laborious but 
straightforward procedureo 4 
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(15) 

III. NON·MARKOVIANNESS OF THE SOLUTION 

If the process were Markovian, then the 
Smoluchowski,5 or Chapman-Kolmogorov, 6 equation 
would have to hold: 

P2(U1t1 ;U3t3) = 1.: dv P2(VS;U3t3)P2(U1t1 ;vs) (16) 

for f3;? s ;? fl' For the result in (14), however, this 
requirement leads to the requirement 

X(t3 - t2)X (t2 - t1) =X (t3 - t1). (17) 

Equation (17) is only satisfied by 

X (t - t') = exp[ - (t - t')D] (18) 

according to Doob's theorem. 7,8 But this implies, when 
(5) is used, that §(z)=D, so that 

(19) 

This is simply a Markovian limit of the generalized 
Langevin equationo Therefore, (17) is not satisfied and 
neither is (16). The process is 11011-]\1[ arkovial1. This is 
surely hardly a surprise given the presence of the 
"memory kernel" in (1). 

IV. FOKKER-PLANCK-LiKE EQUATIONS FOR 
THE SOLUTION 

Associated with (14) is the partial differential 
equation 

k B T X(t2- t!) a2 
( • ) 

- (f t) -a 2 P 2 1I1tl'U2t2 
111 X 2 - 1 .lt2 

(20) 

subject to the initial condition P 2(U/ 1 ;u2f1) =6(u2 -111), 

i<. (t 2 - f 1) denotes the derivative of X (r) with respect to 
r. If we consider the special case t1 = 0, f2 = f, 111 = 1l(0), 
and 112 = 11, then (20) looks like 

l?B T X(t) JJ.:. ( .. ) - -() 2P2 u(O),ut , 
III X t all 

(21) 

with the initial condition p(u(O) ;uO) '" 6 (11 - 11(0». 

Equation (21) looks very much like a bona fide 
Fokker-Planck equation for a nonstatinary, Gaussian, 
lvI arkol' process and is precisely the equation both 
Adelman and Fox obtained earlier by a different proce
dure. Below, it will be shown that bona fide nonstatioll
ary, Gaussian, }(/ arkov processes do lead to Fokker
Planck equations of precisely the form of (21) but with 
less stringent initial conditions. It will also be shown 
that (21) will not lead to results consonant with (20) 
and (14) if it is treated as a bona fide Fokker-Planck 
equation. The reasons for these distinctions are mani-
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fest in (20) wherein the coefficients X(t2 - t1)/x(t2 - t1 ) 

exhibit explicit dependence on both t2 and fl' 

A bona fide nonsfafionary, Gaussian, Markov pro
cess is described by the equation 

d ) 1 -df u(f = - (3 (t)u(t) + m f(t) (22) 

with a Gaussian fluctuating force l(t) possessing first 
and second moments 

rJ(t) =0 and (J(t)J(s» =2kB Tm/3(t)o(t -s). 

The solution to (22) is 

u(t)=exp[- t(3(s)ds]u(O) 
o 

(23) 

+ J t exp[ - r (3(s')ds'][J(s)lm]ds. (24) 
o • 

The velocity autocorrelation function is, for f2? tl , 

{(U(t2)U(tJ>} 

= exp[ - t2 j3(s) ds] exp[ - J 11 (3(S) ds ]{u2(0)} + (kB Tim) 
o 0 

x exp[ - F1 j3(s") ds" J} 
o 

= (kB Tim) exp[ - t2 j3(s) ds J. 
11 

This result is proved in Appendix B. 

Associated with this P2 is the partial differential 
equation 

(25) 

(26) 

(27) 

with the initial equation P2(U1t1 ;U2t1) = 0 (u2 - uJ. Now, 
again we make the substitutions t1 = 0, t2 = t, u1 = u(O), 
and 10. = 11. Then (27) looks like 

a at P 2 (u(0);ut) 

(28) 

with initial condition P 2 (u(0);uO)=o(u-u(0». The big 
difference between these results and those in (20) and 
(21) is 

- X (t2 - tJ/X (t2 - t) - /3 (t2)' (29) 

The explicit t1 dependence of (20) disappears in (27). 
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Moreover, we can always solve (28) starting at any 
time fl with P 2(U1;Ut)=O(u-u1), and (28) then yields 
precisely (26). Therefore, (28) with appropriate initial 
conditions yields (26) for any time interval. This is a 
major characteristic of a bona fide Fokker-Planck 
equation. However, Eq. (21) does not behave this way. 
If the interval from t1 to t2 is conSidered and 
P2(U1;ut1) =o(u -u1) is assumed, then (21) yields 

P2 (U 1t1 ;U2t2) 

(30) 

This is not equal to (14) except when X(t2 - t1) = X (t2)/X(t1) 
which only holds when (18) is true, that is, only in the 
Markovian situation. 

V. DISCUSSION OF RESULTS 

In this paper we have developed the explicit solution 
for the generalized Langevin equation using the distribu
tion functions which all depend upon a single, two-time 
correlation function. In the earlier work of Adelman1 
and Fox2 the approach was based upon obtaining the 
Fokker-Planck equation representation. In fact both 
Adelman and Fox only obtained the Fokker-Planck-like 
equation identical with (21). They did not obtain (20) 
which would have made it clear that these equations 
require a very special initial condition tailored to 
the specific time interval between tl and t2• 

Adelman does suggest that the non-Markovian 
Langevin description, as in (1), is more fundamental 
than the Fokker-Planck-like equation description, as 
in (21). However, after obtaining (21) Adelman over
looks the fact that the Fokker-Planck-like equation only 
generates the P 2 function for the time interval from 0 
to t, and for no other interval. He also does not obtain 
the complete description for arbitrary intervals which is 
exhibited in (14) and (20). Fox compounds this confusion 
by noting that the solutions to (21), which he mistakenly 
takes to be valid for arbitrary intervals, generates 
(30) for arbitrary intervals. While (30) clearly does not 
describe the actual process given by (1) and (4), as has 
been pointed out above, it does, unfortunately, satisfy 
identically the Chapman-Kolmogorov-Smoluchowski 
identity (16) and the Doob identity, which in that case is 
simply 

X (t3) X (t2) _ X (ta) 
X (t 2) X (t 1) - X (t J . (31) 

This "verifies" the Markov property! Thus, it appears 
that the process is really nonstationary, Gaussian, 
;'vI arlwvian. 

The remarkable feature, which is valid in the 
Gaussian case anyway, is that the description of all the 
statistics for the generalized Langevin equation depends 
on only a single, two-point correlation, X(t2 - t1). 
Mtrkov processes are always determined completely by 
a single two-point distribution, P2• GaUSSian, non
Markovian processes are also completely determined by 
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X(t2 - t1), when there is a fluctuation-dissipation rela
tion as in (2). Therefore, nothing is really lost by using 
a non-Markovian description in place of a Markov de
scription as long as it is Gaussianl 

None of the preceding considerations are substantially 
altered in the multicomponent generalization of (1). One 
still gets a stationary, Gaussian, non-Markovian pro
cess which is determined completely by a Single, two
point correlation matrix. 
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APPENDIX A: PROOF OF (8) 

<[fa 12 X (t2 - s2)1(S2) ds 2J[fa
tl 

X ((1 - sJ1(s J ds1J) 

= 1. t2ds2Jl1ds1X(t2 - S2)X(t1 - sl)kB Tmi3(1 s2 - sll) 
a a 

(Al) 
follows from (2). 

The double Laplace transform of the right-hand side is 

fo ~ dt2 exp(- ztz) 10 ~ dtl exp(- z'tl )Ja
t
2 dS2 f o

t1 
dSI 

XX(t2 -S2)X(t1 -sJkBTmi3(ls2- sll) 

=kBTm1.~ dS2f~dt2 fr~dSlf~dtl 
a '2 0 81 

X exp[ - z (t2 - S2)]X ([2 - S2) 

Xexp[-z'(t1 -SI)]X(t1 - sl)exp(- zs2) 

X exp(- z, s)13 (I S2 - sll ) 

=kBTm r~ dS2J~ dT2J~ dS11.~ dTl 
, a a 0 0 

X X (T1) exp(- Z S2) exp(- z's)13( I S2 - sll) 

=kBTmx(z)x(z')J~ ds21.'" ds1exp(- zs z) 
o 0 

Now, 

fo~ ds 2 faro dS1exp(-zs2)exp(-z'sl)13(ls2-s11> 

=Jo<O dszJo'" ds1exp[-z(s2-s)JJ3(ls2- sll) 

Xexp[- (z +Z')sl] 

=1.~ ds 1J ~ daexp(-za)13(1 a\)exp[- (z +Z')SlJ 
o -81 

a 
= J '" dS l (§(z) + J da exp(- za)/3( I al) 

o -$1 

Xexp[ - (z + Z')Sl] 

§(z) f'" ( 1 d ---+ ds ----
- Z + z' 1 Z + z, ds 1 

o 
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Xexp[- (z +z')sIJ)1° exp(-za) 13(1 a\>da 

-'1 

= §(Z) + foOdS exp[-(z+z')s,] exp(zsl)13(sl) 
z+z' 1 z+Z' 

° 
§(z)+E(z') 

z +z' 
(A3) 

Therefore, we get the identity 

ZU" xU, -<,)J«,> d"J [t X it, - ,,)j«,) d<] ) 

-k T ~()A( 1)~(Z)+P(Z/) 
- B mx z X Z Z + z' . (A4) 

Using the definition of X(z) in (5) gives 

X(z)$(z)=l-zX(z) and X(z'),3(z/)=l-z ' X(z'). (A5) 

These two identities yield 

k T A( n ') E(z) + E(z') 
B mx z X z z + z' 

=k Tm(X(Z/)+X(z) -X(z)X(Z/»). 
B Z + z' 

(A6) 

In parallel with the identity in (A3), we conclude that 
(A6) is the double Laplace transform of 

kB Tm(x(1 t2 - tIl) - X(t2)X(t1 » 

which completes the proof of (8) becaus e t2 '" t1 • 

APPENDIX B; PROOF OF (25) 

It will suffice to verify, for t2? t1 , that 

({[ t2 dS2 exp[ - r 12 pes') ds'l1 (s2)/m} 
o ' 82 

x{ C1 ds, exp[ - C1 j3(s') rlS'].f(Sl)/ m} > 
. 0 . 8

1 

=kBTm[exp[- (2 13 (s)dsl-exp[- rI2
p(s)ds)] 

, 11 ' a 

xexp[- rll 13(s/)ds /J]. (B1) 
, 0 

From (23) we get 

rl I -<{ 2 dS 2 exp[ - 1 2 f3(s') ds']j (s2)/m} 
a 52 

x{ r 11 dS l exp[ - r 11 f3(s') ds' 11(s)lm}) 
. 0 ' 

51 

= 2 (kB T /m)1
0

12 
dS2 (1 dS l exp[ - J~>3(S') ds'] 

x exp[ - r '1 p(s)ds 1 p(s2)6(S2 - SI) 
. "I 

= 2(kB Tim) exp[ - I/2 f3(s)ds ]Ia
l1 

dS2 1011 dSI 
1 

xexp[ - I 11f3 (S') ds'] 
$2 

Xexp[ - I 11 f3(s) dS]f3(S2)6(S2 - SI) 
'1 

r 12 r I =2(kBT/m)exp[- I f3(s)ds] 0 1ds2P(S2) 
1 

x exp[ - 2 C1 j3(s) ds] 
, 82 
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= 2(kB Tim) exp[ - (2 (3(S) ds] (1 ds2Hdi ds 2) 

x exp[ - 2(1 p(s) ds] 
&2 

= 2 (kB Tim) exp[ - I t2 /3(s) ds]U - ~ exp[ - 2 1. t1 p(s) ds J} 
t 1 a 

= (kB T /m)[exp 1/2 /3(s)ds]- exp[fot2 /3(s) ds] 
1 

x exp[ - lotI /3(s') ds ,]], 

which completes the proof. 
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N-body quantum scattering theory in two Hilbert spaces. 
I. The basic equations 
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Derivations are given for some transition and resolvent operator equations for multichannel quantum 
scattering with short-range potentials. The basic difference between these and previous equations is that the 
unknown operators act only on the channel subspaces. This is made possible by utilizing, and extending, 
the two-Hilbert-space formulation previously given by the authors [in J. Math. Phys. 14, 1328 (1973)]. The 
equations in abstract form are of the Lippmann-Schwinger type, differing only in the appearance of 
certain injection operators from one Hilbert space to the other. When applied to multichannel quantum 
scattering, the abstract theory yields a new system of equations for the transition and resolvent operators. 
Uniqueness of the solution to the equations is proved. 

1. INTRODUCTION 

Since the pioneering work of Faddeev on the three
body problem, 1,2 nonrelativistic scattering processes 
with three or more particles have been studied with con
siderable interest. Several alternatives to the Faddeev 
equations and their many-body generalizations have 
been proposed. 3-16 The goal is to solve for the N-body 
scattering and/or resolvent operator. This is normally 
done indirectly by writing equations for transition oper
ators Uao" or some related operators. A common fea
ture of all of these equations is that the unknown quan
tities, say Uaa, are operators acting in the full N-body 
Hilbert space HN for all channels a, {3. At the end of 
the calculation it is then recognized that the operators 
Uaa really provide more information than needed (cf. 
Refs. 14-18). All that is really needed are the opera
tors Taa =PaUaaPa , where P a and Fa are projections 
onto the initial and final channel subspaces H a = P aH N 

and Ha =PaHN , respectively. In order to compensate 
for this excess information, and to simplify the theory, 
bound state pole approximation or quasiparticle methods 
are then applied, one purpose of which is to obtain effec
tive equations for the operators TSa instead of Uaa . 

We ask the question: If all that are needed from the 
beginning are the operators Tae< acting on the" small" 
spaces H a and H a, then why use equations for operators 
which act on the big space H N? An examination of the 
derivations given in Refs. 1-18 reveals that the basic 
reason why equations are not written directly for the 
Taa operators, or some related channel operators, is 
that this would require something analogous to inserting 
P;,lPa into the kernels of the equations. Since P a is a 
singular operator for all channels except the free chan
nel, the operator P81, of course, does not exist. 

It is our thesis that several of the problems of N - body 
scattering theory have been magnified by always work-

al Present address. 
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ing in the full Hilbert space fiN' In this paper we present 
the beginning of a theory of multichannel scattering in 
which the projections onto the asymptotic channel states 
are incorporated throughout the calculation. 

Channel projections have previously been included in 
the equations of Osborn-Kowalski, 14 and Karlsson
Zeiger. 15

,16 However, what we are proposing here is 
quite different. The equations derived in Refs. 14-16 
incorporate the channel projections POl and Pa only at 
the input and output stages of the calculation. We pro
pose to work only on the channel subspaces from the 
beginning to the end of the calculation. 

The mathematical vehicle for our work is the two
Hilbert-space formulation of multichannel scattering 
given in Ref. 19. The results of paper19 form the start
ing point of our present work, and the two together con
stitute a rigorous derivation of our equations, complete 
from the time-dependent theory of multichannel scatter
ing developed in Refs. 20- 24. 

In the two-Hilbert-space formulation, the second 
"auxiliary" Hilbert space may be the direct sum of the 
channel spaces HOl or the direct sum of certain cluster 
spaces H A. Its function is to simultaneously keep track 
of all the subspaces in an efficient manner. Communi
cation between the two Hilbert spaces is provided by 
an injection operator J and its adjoint J*. The key to 
deriving equations which preserve the channel or cluster 
subspaces is to invert the operator JJ*. The operator 
JJ* is the complete system analog of the single channel 
proj ection operator Pa. In contrast to the operator Pa, 
however, the operator JJ* is nonsingular. Once all pos
sible cluster arrangements of the N-body system are 
specified, then JJ* and (JJ*)-l are given explicitly. 
They are fixed operators for all channels of the sys
tem. The operator JJ* is the sum of all channel projec
tion operators for the system, and (JJ*)-l is a converg
ing Neumann series of products of projection operators. 

We begin in Sec. 2 by presenting in abstract form a 
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two-HUbert-space theory of scattering which is suffi
ciently general to include the case of multichannel quan
tum scattering theory. Except for the presence of the 
injection operators J, J*, and (JJ*)-l, the basic equa
tions derived in Sec. 2 take on the form of the usual 
Lippmann-Schwinger and resolvent operator equations. 
The derivations of these equations, and the proofs that 
their solutions are unique, are, however, considerably 
complicated by the presence of the J operators. 

In Sec. 3 we consider the situation of N-body quantum 
mehcanical scattering with short-range potentials. The 
assumptions of Sec. 2 are shown to be satisfied if the 
auxiliary Hilbert space H is a direct sum of either the 
channel spaces Hex or of certain cluster spaces H A. The 
abstract equations of Sec. 2 then give some new systems 
of N-body equations for the transition operators and re
solvent operators. The distinctive feature of these equa
tions is that the unknown operators act only on the chan
nel (or cluster) subs paces of H N, thus fulfilling our goal. 

The paper is concluded in Sec. 4 with an additional 
discussion of the results. 

2. THE ABSTRACT THEORY 

A. Basic assumptions 

The following abstract assumptions define the time
dependent scattering theory to be studied in this paper. 
These assumptions are motivated by considerations of 
multichannel quantum scattering theory, the relevant 
aspects of which are discussed at greater length in Sec. 
3. The abstract theory, rather than the specific quan
tum mechanical theory that motivates it, is pursued in 
order to render the basic structure of the theory as 
clear as possible, and also to have the results as widely 
applicable as possible. 

(A1) A spectral family EN(>t) defines a self-adjoint 
linear operator (total Hamiltonian) HN '= f>t dEN (>t) with 
domain U (HN) dense in a separable Hilbert space H N. 

(A2) A spectral family E(>t) defines a self-adjoint lin
ear operator H'= f >tdE(>t) with domainU (H) dense in a 
separable Hilbert space H. The operator H has an ab
solutely continuous spectrum consisting of a half-line. 

(A3) A bounded linear operator J:fi -fiN is defined. 
The operator J maps U (H) intou(HN), and the adjoint 
operator J* mapsU(HN) intoU(H), The operator JJ* :HN 
-HN has a bounded inverse. 

(A4) Potential operators V:u(V)-HN and V* :U(V*) 
-H are defined by 

(2.1) 

and 

V* ,=J*HN - HJ*. (2.2) 

A consequence of Assumption (A3) is that£) (V):::J £) (H) 
andL!(V*):::JL!(HN). For all positive E and E* there exist 
finite band b* such that 

II V<p11 ~ EIIH<p11 + b 1I<p11, (2.3) 
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for all <P ED (H), and 

II V*<PII ~ E*IIHN <PII + b* II <PII , 

for all <PED(HN). 

(A5) Wave operators o':H -HN' 

0' '= s-lim exp(iHNt)J exp(- iHt), 
t"';I: gO 

(2.4) 

(2.5) 

are defined on H. The adj oint wave operators 0'* : H N 

-H have on H N the representation 

12'* = w-lim exp(iHt)J* exp(- iHNt). (2.6) 
t"':l:: OO 

The wave operators are partial isometries, 

12'*0' =1 and 12'0'* =Et, (2.7) 

where I is the identity on fi, and where the operators 
Et are the orthogonal proj ections of H N onto the ranges 
of 0'. The operators 12', in addition, map U (H) into 
U(HN), and onL!(H) they satisfy the intertwining relation 

HNO' = O'H. (2.8) 

(A6) The scattering operator 5:H -fi is defined by 

5=12+*12-. (2.9) 

It is unitary if and only if E; = EN . 

In these assumptions and throughout this paper, we 
have adopted the notational convention that all operators 
written with a subscript [for example, HN, EN (>t), and 
EtJ mapHN , or a subspace ofHN , intoHN • All opera
tors written without a subscript (for example, H, J, J*, 
V, Q', and 5) map from and/or to H. 

The validity of Assumptions (A 1)- (A6) with the ex
ception of the existence of a bounded inverse of JJ* and 
of (A4), has been established previously19 for a class 
of scattering systems that includes systems of dis
tinguishable spinless particles interacting via square 
integrable potentials. The validity of (A4) and the bound
edness of (JJ*)-l is established in Sec. 3 for a similar 
class of systems. 

It is to be emphasized that for multichannel quantum 
mechanical systems the weak convergence in Eq. (2.6) 
cannot be replaced by strong convergence. 19 This point, 
which is commonly overlooked, means that most of the 
elegant two-Hilbert-space results of Refs. 25 and 26 
are unavailable for our use. 

B. Time-independent transition operators 

Assumptions (A 1)- (A6) define a time-dependent the
ory. Using techniques of spectral integration, one can 
rigorously derive time-independent formulas for 0' and 
5. The result which we need is given in the following 
theorem. 

Theorem 119
,27,28: Assume (A1)-(A3), (A5), and (A6). 

Define 

(2.10) 

for E1 > O. Then 5 - I is given on H by the formulas 

5 - 1= w-lim s-lim (- 27Ti) J 15"1 (>t - H)T(>t + i(2) dE(>t) 
"1- 0+ "2- 0+ 

(2.11) 
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The operator T:/) (H) - Ii is defined by 

T(z) '" (z - H)J*(z - HN)-lJ(z - H) - (z - H) 

for all z EP(HN ), the resolvent set of HN • 

(2.13) 

The operator T(z) corresponds to the symmetric 
transition operators of Alt, Grassberger, and Sand
has. 6,7 It is not the only candidate for the transition 
operator. Other, nonsymmetric, candidates are 
T(±)(z):/) (H) -Ii defined by 

T(+)(z) '" (z - H)J*(z - HN )-lJ(z - H) - J*J(z - H) (2.14) 

and 

T(-)(z) '" (z - H)J*(z - HN )-lJ(z - H) - (z - H)J*J. 

(2.15) 

These operators correspond to the nonsymmetric oper
ators used by Lovelace. 8 

Theorem 2: Under the assumptions of Theorem 1, Eq. 
(2.11) is also true with T replaced by T(+), and Eq. 
(2.12) is true with T replaced by T(-). 

Proof: Since 

T(z) - T(+)(z) = (J*J - 1)(z - H) (2.16) 

and 

T(z) - T(-)(z) = (z - H) (J*J - f) (2.17) 

the theorem follows from Theorem 1 and the following 
lemma. 

Lemma 1: Under the assumptions of Theorem 1, 

s-lim J 6'1 (A - H)(J*J - f)(A + if:2 - H) dE(A) = 0 (2.18) 
'2 - 0+ 

and 

s-lim J dE(A)(A + if: 2 - H) (J*J - 1)6, (A - H) = O. (2.19) 
'2. 0+ 1 

Proof: The operator 6'1 (A - H)(J*J - f) is a bounded 
operator for all f:l > O. By Ref. 19, Lemma 5 the factor 
(A+if:2 -H) in Eq. (2.18) may be replaced by if:2 • The 
result is if: 2 times a bounded operator which, therefore, 
converges strongly to zero as f:2 - 0+. This proves 
(2.18). The limit (2.19) is proved in the same way. 

Q.E.D. 

Remark: It can be shown by other methods that Eq. 
(2.11) is also true with T replaced by T(-). If the strong 
limit in Eq. (2.12) is replaced by a weak limit, then it 
is also true with T replaced by T(+). Proofs, as well as 
a discussion of the possibility of replacing all weak 
limits in Theorems 1 and 2 by strong limits, are con
tained in a separate paper in preparation. Alternative 
forms of the operators T(z), T(±)(z) can be found by use 
of the resolvent equations. The resolvents R(z) '" (z - H)-1 
and RN (z) '" (z - HN )_1 are related by the equations 

(2.20) 

and 

(2.21) 

where V and V* are defined by Eqs. (2.1) and (2.2). 
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Since Assumption (A5) implies that the spectrum of HN 
contains the spectrum of H, Eqs. (2.20) and (2.21) are 
valid for z E P(HN)' 

Lemma 2: The operators T and T(±) equal, 
respectively, 

T(z)=Z(z) + V*RN(z)V, 

T(+)(z) = V*J + V*RN(z)V, 

T(-)(z)=J*V+ V*RN(z)V, 

where 

(2.22) 

(2.23) 

(2.24) 

Z(z) '= (J*J - f)(z - H) + V*J = (z - H)(J*J - f) + J* V. 

(2.25) 

Proof; By Eqs. (2.13), (2,21), and (2.20), 

T=R"l(RJ* +RV*RN)JR-1 _ R-1 

= (J*J _1)R-1 + V*(JR +RN VR)R"l 

=Z + V*RN V. (2,26) 

The two formulas for Z in Eq. (2,25) are equal because 
they both expand to 

Z(z) =J*HNJ +H - J*JH - HJ*J + z(J*J - f). (2.27) 

The formulas for T<±) are proved similarly. Q.E.D. 

Time-independent scattering theory consists of the 
study of the ope rator T(z), or of T (±) (z), If one of these 
operators is known, then Theorem 1 or 2 tells us how 
to calculate the scattering operator. The operator 
J*RN(z)J could also be determined from one of the Eqs. 
(2.13)-(2.15). Our goal then is to derive equations for 
T(z) and T(± )(z). We first look more closely at the op
erators JJ* and (JJ*)-l. 

C. The operator JJ* and its inverse 

By Assumption (A3) the operator JJ* is bounded, has 
a bounded inverse, and maps/)(HN) into/)(HN). We would 
also like to know that the operator (JJ*)"l maps /) (HN) 
into/) (HN ). In order to show this, it is necessary for us 
to prove that JJ* maps/)(HN) onto/)(HN)' 

Theorem 3 (Deift): Assume (A1)-(A4). Then JJ* and 
(JJ*)-l map/)(HN ) onto/) (HN). 

Proof: Define KN(y) :Nv -liN by 

KN(Y) "'Ri/U;,)JJ*R,v(iy) 

and let LN(y) "'K,v(y) - JJ*. Substituting 

HNJ=JH+V 

and Eq. (2.21) into Eq, (2.28) yields 

L,v(") =JV*RN(iy) - VR(iy)J* - VR(iy)V*RN(iy). 

(2.28) 

(2.29) 

(2.30) 

By Assumption (A4), for every f: > 0 there is a b such 
that for all 1> Eli 

II VR(iy)1>11 ~ EIIHR(iy)1>11 + bIIR(iy)1>II. 

It follows that V R(iy) is bounded, with the bound 
satisfying 

II VR(iy) II ~ f: + bv·1 • 
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Therefore, II VR(iy)11 can be made as small as desired 
by choosing y sufficiently large. A similar conclusion 
can be drawn for IIV*RN(iy)ll. Hence, for sufficiently 
large y, one can conclude that II(JJ*)-lLN(y)11 < 1. It 
follows that 

(2.33) 

is invertible for y sufficiently large, and KN maps H N 
ontoHN • Therefore, for a given vector </JED(HN), 
there is a vector cP EHN such that Ril(iy)</J=KN(y)cp. But 
this implies that </J=JJ*!; for !;=RN(iY)CPED(HN). Since 
JJ* mapsD(HN) intoD(HN) by Assumption (A3), we can 
now conclude that JJ* mapsD(HN) ontoD(HN). Since 
(JJ*)-l is assumed bounded, similar conclusions about 
(JJ*t1 follow immediately. Q. E. D. 

Related to the operator (JJ*)-l are certain projection 
operators P and Q. Define Q to be the orthogonal pro-
j ection of H onto N(J), the null space of J. Let P=.I - Q. 

~ 

Then P is the orthogonal projection of H onto N(J) 
=R(J*), where N(J)~ denotes the orthogonal complement 
of N(J), and R(J*) denotes the closure of the range of 
J*. 

Lemma 3: P =J*(JJ*)-lJ. (2.34) 

Proof: Let P=.J*(JJ*t1J. Clearly p2=P. Also, 

p* = [(JJ*)-lJl*J =J*(JJ*t1J =p (2.35) 

(cf. Ref. 29, Prob. III-5.26l). Therefore, P is an ortho
gonal projection. If if! E N(P) = N(J) , then Pif! = 0 and if! 
EN(P). On the other hand, if if! EN(P), then 

J*(JJ*)-lJif! = O. (2.36) 

Multiplication of Eq. (2.36) on the left by J yields Jif! 
= O. Hence, if! EN(J). Therefore, P and P are both or
thogonal projections with null space N(J) , and P =P. 

Q.E.D. 

D. Lippman-Schwinger-type equations 

The first step in deriving equations of the Lippmann
Schwinger type is summarized in the following lemma. 

Lemma 4: The transition operator T(z) satisfies the 
identities 

1 + T(z)R(z) =J*J + V*RN(z)J (2.37) 

and 

(2.38) 

The transition operators T(')(z) satisfy the identities 

and 

respectively. 

Proof: By Eqs. (2.13) and (2.21) 

1 + TR =R-1J*RNJ =J*J + V*RNJ. 

The other identities are proved similarly. 

(2.39) 

(2.40) 

(2.41) 
Q.E.D. 

Converting these equations into equations of the 
Lippmann-Schwinger type is now straightforward. 

Theorem 4: The operator T= T(z) is, for z E p(HN), 
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a solution of the equations 

T= (J*J _/)R-1 + V*(JJ*)-lJ + V*(JJ*t1JRT (2.42) 

and 

T =R-1(J*J _ I) + J*(JJ*t1 V + TRJ*(JJ*)-l V. (2.43) 

The operators T<»(z) are solutions of 

T(+) = V*J + T(+)RJ*(JJ*t1 V (2.44) 

and 

respectively. 

Proof: Let 1" be defined by the right side of Eq. 
(2.42), 

1" = (J*J - I)R-1 + V*(JJ*)-lJ[1 + RTl, (2.46) 

with the T on the right side of Eq. (2.46) being given 
by the defining equation (2.13). Then by Lemma 4, 

1" = (J*J _/)R-1 + V*(JJ*)_lJ[J*J +J*RN vl (2.47) 

= (J*J - I)R-1 + V*J + V* RN V. (2.48) 

Comparing Eqs. (2.48) and (2.22), we see that 1" = T, 
and, hence, that T is a solution of Eq. (2.42). The 
other equations are verified in a similar manner. 

Q.E.D. 

Corresponding equations also hold for resolvent oper
ators. In particular, if the" resolvent" operator G : H N 

-H is defined for z E P(HN) by 

then the following theorem is immediate from Eq. 
(2.21) . 

(2.49) 

Theorem 5: The operator G = G(z) is a solution of 

G =RJ* + RV*(JJ*)-lJG. (2.50) 

The importance of Theorem 3 is now apparent. The 
operator V*, for example, is well defined on D (HN ). 

But for Eqs. (2.42), (2.45), and (2.50) to be well de
fined it is necessary that V*(JJ*)-lJ be well defined on 
D (H). By Assumption (A3) the operator J maps D (H) 
intoD(HN). The fact that V*(JJ*)-lJ is well defined on 
D(H) then depends on (JJ*)-l mappingD(HN ) intoD(HN). 
This is just the link provided by Theorem 3. 

E. Uniqueness of solutions 

We now turn to the question of uniqueness for the 
equations of Theorems 4 and 5. An outline of the proof 
of uniqueness for Eq. (2.42) was given in Ref. 30. For 
the first steps of a complete proof, we establish two 
lemmas. 

Lemma 5: If Q is the orthogonal projection of H onto 
N(J) , then the operator QHQ is self-adjoint. The spec
trum of QHQ is contained in the spectrum of H. 

Proof: The operator QHQ is clearly symmetric. To 
prove it is self-adjoint, it is sufficient (Ref. 29, The
orem V-3. 16) to prove that for some y > 0 the ranges of 
the operators 

W" =. QHQ ± iyl (2.51) 

are the entire space H . 
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To prove this we write W' as 

(2.52) 

where P=I - Q. Multiplying Eq. (2.51) from the right 
by P yields 

(2.53) 

It is obvious that for any y > 0, the operator W' P maps 
H onto pH. 

The operator W"Q can be rewritten in the form 

W'Q = Q[HQ ± iyI] (2. 54) 

= Q[H ± iyI - HP] 

= Q[I - HP(H ± ivI)-l](H ± iyI). 

By Lemma 3 and Eq. (2.2), 

HP =HJ*(JJ*)-lJ 

(2.55) 

(2.56) 

(2.57) 

= J*HN(JJ*)-lJ - V*(JJ*)-lJ. (2.58) 

Substitution of this into Eq. (2.56), and noting that 
QJ* = 0, yields 

W"Q = Q[I + V*(JJ*t1J(H ± iyI)-l](H ± iyI). (2.59) 

Since (H ± iyI)-l maps H into D (H), Assumption (A4) im
plies that for every E > ° there is a finite b such that 

II V* (JJ*)-lJ(H ± iyIJ-1<I>11 ~ E IIHN(JJ*)-lJ(H ± iyI)-l <I> I I 

+ bll(JJ*J-1J(H ±iyI)-l<I>ll. 

(2.60) 

By Assumption (A3), Theorem 3, and Ref. 19, Lemma 
1, the operators HN(JJ*t1J(H ± iylt1 are bounded in 
norm for any y~' 0. Let the bounds be Il()'). Further, 
since 

II(H±iy)(H±iy')-l<I>11 ~ II<I>II (2.61) 

for all y' "')" it follows that Il(v') ~ b±(y) for )" ~ y. 

Choose now some .va> ° and choose E so that Eb±Cvo) 
< ~. Then Eb±(V) < ~ for all)' > Yo. Now choose:v so that 
y > 2b II(JJ*t1111IJII. Then the right side of Eq. (2.60) is 
strictly less than II <I> II. It follows that the operator 
1+ V*(JJ*t1J(H ± iyI)-l in Eq. (2.59) has a bounded in
verse and maps H onto H. Since H is self-adjoint, the 
operator H ± iyI in Eq. (2. 59) maps f) (H) onto H. By 
following the sequence of operations in Eq. (2.59), one 
now sees that W'Q maps D (H) onto QH. 

Choose now some >¥ in H. Then P>¥ lies in pH and is 
the image under W" P of vectors e± in H. The vector 
Q>¥ lies in QH and is the image under W'Q of vectors 
<I>± inD(H). Since PQ=QP=O, it follows that >¥=P'lI 
+ Q'lI is the image under W" of pe± + Q<I>±. Since >¥ was 
arbitrary, the operator QHQ is self-adjoint. 

Let a( .) and w( . ) denote the spectrum and closure 
of the numerical range of an operator, respectively. 
Since QHQ is self-adjoint, a(QHQ) c w(QHQ) (cf. Ref. 
31, p. 309). But w(QHQ) c w(H), since (<I>, QHQ<I» 
= ('lI, H'lI) for >¥ =Q<I>. Finally, it follows from Assump-
tion (A2) that fiJ(H)=a(H). Q.E.D. 

LetN(K), !«K), and «(K), respectively, denote the 
null space, range, and closure of the range of an op
erator K. 
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Lemma 6: Let 

H=H + J*(JJ*)-l V 

and 

H* =H + V*(JJ*)-lJ. 

If Z E p(HN ), then 

N(z - ii) =N(z - H*) ={O} 

and 

Proof: Let <I> EU (H) =f) (z - il), and suppose that 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(z-H)<I>=O. (2.66) 

Multiplication of Eq. (2.66) on the left by J yields 

(z - HN)J<I> = 0, (2.67) 

and a multiplication by RN(z) gives J<I> = O. Then <I> (c~N(J) 
=Q/-(, and <I>=Q<I>. Since JQ=O, and Q2=Q, replacing 
<I> by Q<I> in Eq. (2.66) gives 

(z - QHQ)Q<I> = O. (2.68) 

By Lemma 5, the operator QHQ is self-adjoint, and 
z - QHQ is invertible for z E P(HN) c p(QHQ). Hence, Eq. 
(2.68) has only thli trivial solution Q<I> = <I> = O. This 
proves that N(z - H) ={O}. 

Now suppose that <I> (CC N(z - H*). Then 

(z - HQ)<I> =J*HN(JJ*t1J<I>. (2.69) 

Multiplication of Eq. (2.69) on the left by Q again gives 
Eq. (2.68), and Q<I>=O. Substituting Q<I>=O into Eq. 
(2.69) and multiplying on the left by (JJ*)-lJ reduces it 
to 

(2.70) 

A further multiplication by RN (z) gives (JJ*)-lJ<I> = O. 
Hence, P<I> = O. Consequently, <I> =P<I> + Q<I> = O. This 
proves Eqs. (2.64). 

Since the operators (z - Ii) and ('2 - H*) are densely 
defined and adjoint to each other, Eqs. (2.65) follow 
from Eqs. (2.64) by taking orthogonal complements 
(cf. Ref. 29, Sec. III-5.5), Q.E.D. 

Theorem 6: If z E p(HN ), then each of Eqs. (2.42)
(2.45) has a unique solution defined onf)(H), and Eq. 
(2. 50) has a unique solution defined on H N • 

Proof: Suppose there are two solutions of Eq. (2.42) 
or (2.45), and let X denote their difference. Then 

for all <I>ED(H). Let >¥=RX<I>. Then >¥Ef)(H), and 
(z-H)>¥=X<I>. Eq. (2.71) becomes 

(2.71) 

(2.72) 

with Ii* defined by Eq. (2. 63). By Lemma 6, >¥ = O. 
Thus X<I> = ° for all <I> ED (H), and the solutions of Eqs. 
(2.42) and (2.45) are unique. 

Suppose next that there are two solutions, defined on 
[) (H), of Eq. (2.43) or (2.44). Let Y denote their differ
ence. Then 

Y(I - RJ*(JJ*)-l V) <I> = 0 (2.73) 

C. Chandler and A.G. Gibson 2340 



                                                                                                                                    

for all <I> in D (H). This implies that 

(<I>, [I - V*(JJ*,-1JR(Z)]Y*>II) 

= (Y[1 - R(z)J*(JJ*)-1 V] <I> , >II) = 0 (2.74) 

for all <I> and >II in D (H). Since D (H) is dense in H, it 
follows that 

[I - V*(JJ*,-1JR(Z)]Y*>II = 0 (2.75) 

for all >II in[)(H). But then Y*>II=O, as before. Hence, 

(Y<I>, >II) = (<I>, Y*>II) = 0 (2.76) 

for all <I> and >II in[)(H), which implies Y<I>=O. 

Similarly, if there are two solutions of Eq. (2.50), 
with a difference X, then 

(1 - RV*(JJ*)-1J)Xcp = 0 (2.77) 

for all cp in H'I' Eq. (2. 77) implies that X cp lies in [) (H). 
We can then multiply on the left by (z - H) to obtain 

(z - ii*)xcp = o. 
By Lemma 6, Xcp= O. 

3. MULTICHANNEL QUANTUM SCATTERING 
THEORY 

A. Properties of N-body systems 

(2.78) 

Q.E.D. 

To lend substance to the abstract development of the 
last section we review in some detail the pertinent fea
tures of quantum scattering theory for systems of N 
distinguishable spinless particles that interact pairwise 
via short- range forces. 

The system as a whole is described by a wavefunction 
</J(X, t) that depends on the time t and the positions X 
= (xt. ... ,XN) of the particles. For each fixed time t 
the wavefunction </J belongs to the separable Hilbert 
space H N =L 2(RlN) of functions square integrable in the 
variable X. 

The dynamics of the system is specified by the N-body 
Hamiltonian 

HN =~(2mi)-1(_ b..) +~ Vii =Ho + VN, (3.1) 
i i<j 

where units with n = 1 have been adopted. The symbol 
m i denotes the mass of particle i, and b.. i denotes the 
Laplacian with respect to XI' H 0 is the sum over 
Laplacians in Eq. (3.1), and VN is the total N-body 
potential given by the sum over pair potentials Vii in 
Eq. (3.1). 

Assumption B: The pair potentials Vjj(xi - Xj) = Vii 

are assumed to be real-valued and to satisfy the 
condition 

Vii rc.L 2(R3) +U(R3) 

for somep, 2';P<3. 

(3.2) 

Asymptotically the particles are arranged in clusters, 
each of which is in a specific quantum mechanical bound 
state. We denote different clusterings by A, B, C, .... 
A specification of the clustering together with the bound 
states is said to specify a channel. We denote different 
channels by a, 13, Y, .... 

A clustering A is specified by a partitioning of the 
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index set {l, ... ,N} into disjoint subsets (fragments) 
at. ... , a •. We indicate that particle i belongs to frag
ment az by writing i rc. az . 

To specify a particular set of bound states for the 
clustering A one first defines a cluster Hamiltonian 

k 

HA =6HA(aZ), (3.3) 
z =1 

where 

HA(a
Z

) '" B (2111 1)-1(_ b..I) + ~ VIj' (3.4) 
irc.aZ /<i 

i,iEal 

Second, the operators HA(a Z ) are written as 

HA(a Z ) =H1(az ) +iiA(aZ )' (3.5) 

where the Hamiltonian H1 (ar) governs the free motion 
of the center of mass of fragment az and HA(ar) governs 
the motion of the particles in fragment az relative to A 

their center of mass. The normalized eigenvectors 'Pz 
of HA(a Z ) then descr~be the bound states of the fragment 
az• By convention, CPz '" 1 if az contains only one particle, 
and CPz '" 0 if fragment al has more than one particle but 
HA(a l ) has no eigenvectors. 

The channel wavefunctions </J", for a channel a are then 
of the form 

• 
</Jot =f(Y, t) n CPI' (3.6) 

1=1 

where the CPI are the bound state wavefunctions appro
priate to the channel a. The function f describes the 
motion of the centers of mass of the clusters and at 
each time t is a square integrable function of the vari
ables Y. The functions CPI are, of course, also square 
integrable in the variables on which they depend. At 
each time t, therefore, the channel wavefunctions </J", 
belong to the subspace fi ot of fiN consisting of the closed 
linear span of vectors of the form (3.6). 

The dynamics of channel a is governed by a channel 
Hamiltonian H"" which is the restriction to fi", of the 
appropriate cluster Hamiltonian H A. 

The standard scattering theory is now formulated by 
requiring wavefunctions </J(t) of the full system to evolve 
as t - ± 00 to channel wavefunctions </J", (t). This leads to 
the definition and study of the Moller wave operators 

S1~ '" s-lim exp(iHNt) exp(- iHott) Pot, (3.7) 

where Pot is the orthogonal proj ection of H N onto H", . 

Several general properties of the theory can now be 
usefully abstracted. 

Properties: 

(P1) The temporal evolution of the complete N-particle 
system is governed by a one-parameter group 
exp(- iHNt). The Hamiltonian HN is a linear self-adjoint 
operator with domain D (HN) dense in a separable Hilbert 
space HN • 

(P2) The temporal evolution of each channel a is 
governed by a one-parameter group exp(- iHott). The 
channel Hamiltonians Hot are linear self-adjoint opera-
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tors with domains /) (H",) dense in separable Hilbert 
spaces H '" cH N. The Hamiltonians H", are bounded from 
below and have absolutely continuous spectra consisting 
of half-lines. The Hilbert space H 0 corresponding to a 
clustering with onlv one particle per cluster is the en
tire space H N. The Hamiltonians Ha for all channels QI 

with fixed clustering A have a common self-adjoint ex
tension HA , called the cluster Hamiltonian, with domain 
/)(HA) =D(HN) dense inHN • 

(P3) The orthogonal proj ections P a of It N onto H a 

satisfy the limited orthogonality relation 

(3.8) 

where DaB is the Kronecker delta, for channels QI and i3 
with the same clustering. This orthogonality relation 
is not in general true if QI and i3 do not have the same 
clustering. The operator Po which projects HN onto 
H 0 is the identity IN' 

(P4) For all clusterings A the cluster potential VA 
=HN -HA is symmetric and has domainD(VA) that con
tains [)(HN) =[)(HA). For every E > 0 there exists b > 0 
such that the inequality 

II VA </!II "" EIIHA </!II + bll </!II (3.9) 

is true for all </! in [)(HA) =[)(HN). 

(P5) The channel wave operators n~ :Ha -HN defined 
by Eq. (3.7) exist for all channels QI. The orthogonal 
projections EZ. of H N onto the ranges of n; satisfy 

(3.10) 

for all channels QI and i3. F or all Channels QI the inter
twining relation 

(3.11) 

holds on [) (H a). 

(P6) The scattering operators 58a : H a - H 8 are de
fined by 

(3.12) 

All of these properties, except perhaps Property 
(P4), are well-established in the literature (cf. Refs. 
20- 24). Property (P4) is also well known, but to our 
knowledge it has not been stated in quite the same way 
as here. For this reason, we include a proof. 

The proof follows from an easily proved general 
property of relatively bounded operators with relative 
bound zero. 

Definition 1 29 ,32,33: Let K and L be two linear opera
tors with the same domain space (but not necessarily 
with the same range space). Suppose 

(0 the domain/)(K) of K contains the domain/)(L) of 
L, and 

(ii) for every E > 0 there exists beE) > 0 such that the 
inequality 

IIK</!II "" EIIL</!II + bll</!II 

holds for every </!E/)(L). 
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Then the operator K is said to be relatively bounded with 
respect to L with relative bound zero (or infinitesimally 
small with respect to L), writtenK«L. 

Lemma 7: Let K;:X -I), where 1"" i "" ll, and L :X 
- I) be a finite number of operators with domains in a 
Banach space X and ranges in a Banach space I). If 
K j « L for all values of i, then 

t ciK; «L + t d;Ki' (3.13) 
i =1 ;"1 

where the C; and d j are any complex numbers. 

Proof: The domain property (i) of Definition 1 is 
clearly satisfied. Suppose E > 0 is given, and choose 
E1 so that 

E1 <E{E2( ld;1 +2? l c i l}_1 (3.14) 

Then there exists b1 such that 

(3.15) 

for all </! in /) (L) and all i. By the triangle inequality 
and Eq. (3.15) we have 

II~CiKj</!11 "" ~I c i IIIK;</!II "" ~I c j I{E11I L </!1I + b111</!1I} 

(3.16) 

for all </! in /) (L). On the other hand, L = L + 2: djK j 

- 2:d iKj. Again the triangle inequality and Eq. (3.15) 
imply that 

IIL</!II "" II(L +~diKi)</!11 + 61 d j IIIKi</!11 (3.17) 

"" (1- E101 d i 1 )-1{11 (L + BdjKi)</!1i 

+ b1BI d j 1 II </!II}. (3.18) 

Substitution of Eq. (3.18) into Eq. (3.16) yields 

(3.19) 

where 

(3.20) 

and 

(3.21) 

The restriction on El given by Eq. (3.14) is such that 
E2 < E. Since E was arbitrary, the proof is complete. 

Q.E.D. 

Proof of Property (P4): It is well known22 that poten
tials V ij satisfying Eq. (3.2) have the property that 
Vjj«H o, and that the domains of HN, Ho, and all the 
cluster Hamiltonians HA are the same. The potentials 
VA =HN - HA and VA =HA - Hoare then different linear 
sums of the operators ViJ. Property (P4) thus follows 
from Lemma 7 upon identification of the potentials ViJ 
with the operators K j of the lemma, and of Ho with L. 

Q.E.D. 

We now tUrn to verifying the abstract assumptions of 
Sec. 2 on the basis of Properties (Pl)-(P6). 
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B. Verification of assumptions (A 1 HA6) 

In the Appendix to Ref. 19 it was shown how most of 
the abstract assumptions in Sec. 2 follow from the 
properties of N-body systems in the last subsection. 
In that paper a space H' was defined by 

An operator H' was defined by 

H' if> , '= ffJ H cP a a a 

(3.22) 

(3.23) 

for all if> , =ffJ"CPa EH' such that CPa. E/)(H,,). Finally, an 
operator J' (J in Ref. 19): H' -HN was defined by 

J'if>''=~ CPa.. (3.24) 

" 
The space H' and the operators H' and J' play the role 
ofH,H, and JofSec. 2. 

Another formulation which emphasizes the cluster 
structure rather than the channels is also possible. 
Define the operator 

(3.25) 

" 
where L: (A) denotes a strong topology sum over all chan
nels with clustering A. Since the Pa in Eq. (3.25) are a 
countable sequence of proj ections of H N onto orthogonal 
subspaces H" [cf. Property (P3)], it follows that PAis 
an orthogonal projection. Define 

(3.26) 

and 

H'=ffJHA. (3.27) 
A 

The space H A is easily seen to be given alternatively by 

HA=J'AH', (3.28) 

where J'A :H'-HA is defined by 

(3.29) 
a. 

Further define the operator H :/) (H) cH -H by 

Hif> '=ttJHACPA, (3.30) 
A 

for all if> =ttJACPA EH such that CPA E[)(HA). Finally, de
fine J : H - H N by 

Jif> '=~CPA' (3.31) 
A 

The space H and the operators Hand J are then candi
datesfortheH,H, andJofSec. 2. 

Indeed, examination of the proofs of Ref. 19 show 
that the abstract assumptions of Sec. 2 A that were 
verified on the basis of H', H', and J' were simultane
souly verified for the H, H, and J defined in Eqs. (3.25)
(3.31). 

Not demonstrated in Ref. 19 were Assumption (A4) 
and the property in Assumption (A3) that JJ* has a 
bounded inverse. 

Consider first the operator JJ*. Let mN denote the 
number of possible cluster arrangements of the N par-
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ticles. The number mN is thus a constant for any given 
scattering problem. For each clustering A define the 
operator QA by 

QA,=IN-PA, (3.32) 

where IN is the identity on H N. Then the following the
orem establishes the boundedness of (JJ*)-l. 

Theorem 7: The operator JJ* is invertible, and 

(JJ*)-1 = mil B (mil ~ QA) n (3.33) 
n=O \ A"O 

=m;}£(IN-m;l~PA) n. (3.34) 
n=O A 

Specifically, II (JJ*)-1 11 ~ 1. 

Proof: The adjoint operator J* :HN -H is given for 
q;EHN by 

(3.35) 

Therefore, 

JJ* =~PA =IN + ~ PA' (3.36) 
A A"O 

Substituting Eq. (3.32) and dividing by mN gives 

Now 

Ilm;l~ QAII~ni;l[: IIQAII~m;1(mN-1)<1. (3.38) 
A"O A"O 

The inverse of milJJ* is thus the absolutely convergent 
Neumann series 

mN(JJ*)-l =B (m;! ~ QA) n. 
n=o' A"O 

(3.39) 

Equation (3.33) follows immediately from Eq. (3.39), 
and Eq. (3.34) follows upon the further substitution of 
Eq. (3.32) into Eq. (3.33). Finally, from Eq. (3.33) 
and inequality (3.38), 

'" II (JJ*)-lll ~ m;l 0l1m;l.0 QAlln 
n=O A"O 

~ m;l.0 [m;!(mN - 1)]n = 1. 
n=O 

(3.40) 

Q.E.D. 

We remark that there are two simple cases of (JJ*,-l: 
(1) In the case of simple scattering systems one has 
n1N = 1 and JJ* =IN. In this case (JJ*)-l =IN trivially. 
(2) In the case in which the scattering subspaces H A are 
orthogonal for A,* 0 one has 

(JJ*)-l =IN - t~ PA. (3.41) 
A"O 

We emphasize that Eq. (3,41) is not generally true but 
holds only if for all A '* 0 and B,* 0 the orthogonality re
lation P APB = OABPB holds. In particular, if there is 
only one possible nonfree cluster (bound state) arrange
ment A of the scattering system, then niN = 2, and 
(JJ*)-l =IN - tpA• 

A similar result holds for J' J'* . 
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Corollary 1: The operator J' J'* is invertible, and 
II (J'J'*t111 "" 1. 

Proof: The operator J' J'* is given by 

(3.42) 

The sum in Eq. (3.42) is commutatively convergent, 
and hence, the order of summation can be rearranged. 34 
Thus, 

J'J'* =~~ (A)p", =~PA =JJ*. (3.43) 
A '" A 

The result now follows from Theorem 7. Q.E.D. 

It is also interesting from a computational point of 
view that the operator (JJ*)-l can be approximated by 
finite sums of powers of the operators QA and hence 
also of P A. 

Corollary 2: If 

(JJ*)j/ "'mil t Inz;l f) QA) n, 
n=O \ A*O 

(3.44) 

then 

(3.45) 

Proof: Since 

(3.46) 

one has 
~ 

II (JJ*)-1 - (JJ*);lll "" m; .0llm,vl.0 QAll n (3.47) 
n=k+l A*O 

"" m; .0 (1 - lIl,vl)n = (1- l11il>k+l. 
n=k+l 

(3.48) 

Q.E.D. 

We now consider Assumption (A4). With J defined by 
Eq. (3.31) and V defined by Eq. (2.1), we see that 

(3.49) 

for <I> rc iJ (H). It now follows from Property (P4) that 
for any ( > 0, there exists b(() > ° such that 

II V<I>II "" (E IIHA CPAII + bEllcpAII. (3.50) 
A A 

Since 11<I>1I2 =LAllcpAII2, and the number mN of clustering 
A is finite, the Cauchy-Schwarz inequality gives 

(3.51) 

It follows that inequality (2.3) is satisfied, and V« H. 

If V* is defined by Eq. (2.2) and IjJrciJ(HN ), then 

(3.52) 

2344 J. Math. Phys., Vol. 18, No. 12, December 1977 

Since HA =HN - VA, the triangle inequality and inequality 
(3.9) give 

(3.54) 

Substitution_of inequality (3.54) into inequality (3.9) 
shows that VA «HN • It then follows from inequality 
(3.53) that inequality (2.4) is satisfied, and V*«HN. 

The same proofs apply to prove Assumption (A4) for 
V' =HNJ' - J'H'. The proof for the cluster formalism 
carries over virtually intact because of the relation be
tween Hand H' given by Eqs. (3.27) and (3.28), and 
because HAPOI. =H",P", if channel a has clustering A. 

other possible spaces H could be defined by letting 
H a correspond to the space of functions f(Y, t) in Eq. 
(3.6),35 or to functions which are (anti)symmetrized 
versions of functions in HOI.' 36 

C. Matrix elements 

Definition 2: (a) If an operator M maps HN -H or 
H -H N, its restrictions which map HN -H A or H A -HN 
are called the cluster components of A1. If an operator 
M' mapsHN-h' orH'-H'I, its restrictions wtrrc1lmap 
H N -HOI. or H a -HN are called the chanllel ("on/pOllelits 
of M'. 

(b) If an operator A1 (or NI') maps H -H (/-I' -H'), its 
restrictions which map H A - H B (/-I", - H a) are called the 
cluster matrix elements (channel matrix elements) of 
M(M'). 

We note that the words" matrix elements" are used 
here only because of their historical origin, 20 and that 
there are no matrices appearing anywhere in this paper. 

Since P A commutes with HA , the cluster components 
of V =HNJ - JH and V* =J*HN - HJ* are given by 

(3.55) 

and 

(3.56) 

The cluster matrix elements TBA(Z) of the transition 
operator T(z) defined in Eq. (2.13) are 

TBA(Z) =PB[Ril(z)RN(z)R;,.i(z) - OBARi(z)]PA, (3.57) 

whereRA(z)=(z-HA)-\ RN(z)=(z-HN)-\ and 0BA is 
the Kronecker delta. The cluster matrix elements 
Titl(z) of T(±)(z) defined by Eqs. (2.14) and (2.15) can 
be similarly obtained. 

Let T'(z) :f)(H') -H' be defined by 

T'(z) = (z - H')J'*RN(z)J'(z - H') - (z - H'). (3.58) 

If a has clustering A and (3 has clustering E, then 
oBAPaP", = 0e",Pa [cf. Eq. (3.8)], and HAP", =H",P",. 
Hence, the channel matrix elements T~a (z) of T'(z) are 

(3.59) 

If T'(±)(z) are defined by adding primes in Eqs. (2.14) 
and (2.15), then the channel matrix elements T~~±)(z) 
are analogously related to T~±l(z). Consequently, it 
suffices to consider only the cluster transition opera
tors T and T(±). The channel matrix elements of the 
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corresponding channel transition operators T' and T'(') 
can then be easily obtained by adding projections onto 
the channel subspaces H", of hAas in Eq. (3. 59). 

Define the transition operators UBA(z) and u}f)(z) 
mappingD(HN) -HN by 

UBA(z) '=Ri(z)RN(z)R"i(z) - OBAR"i(Z), 

ut.i(z) '= VB + VBRN(z) VA, 

U~1(z) '= VA + VBRN(z) VA, 

respectively, for all clusterings A and Eo 

(3.60) 

(3.61) 

(3.62) 

The operators UBA are the symmetrical Alt
Grassberger-Sandhas transition operators, 6,7 and the 
operators U~'l are the nonsymmetrical transition op
erators used by Lovelace et al. 8-10 Their relationship 
to the T and T<» operators is shown by the following 
theorem. 

Theorem 8: The cluster matrix elements of T(z) and 
T(±)(z) are 

(3.63) 

and 

(3.64) 

respectively. 

Proof; Equation (3.63) is immediate from Eqs. (3.57) 
and (3.60). Equations (3.64) are also immediate from 
Lemma 2 and Eqs. (3.55) and (3.56). Q. E.D. 

D. Systems of N-body equations 

Theorem 8 shows that the cluster matrix elements of 
T(z) and T(')(z) are related to previously used transi
tion operators by the addition of the proj ections P A and 
P B • By taking cluster matrix elements of the Lippmann
Schwinger type Eqs. (2.42)-(2.45), we obtain systems 
of equations which leave in the P A and PB operators. 

Let 6BA '= 1 - 0BA. Then the cluster transition opera
tors TEA = TBA(Z) are, for z E P(HN) , the unique solution 
of the systems of equations 

TBA = 6BAPBR;,1PA +PB VB (JJ*)-iPA 

(3.65) 

and 

TBA = 6BAP BRjfPA +PB(JJ*t1VAP A 

(3.66) 

The operators Tj'J. = Tkl(z) are, for z E p(HN), the 
unique solutions of the systems of equations 

and 

Tj+l=PB VBPA +6 Tj:]RcPe(JJ*t1vAPA 
c 

TtJ.=PB VAPA +PB VB (JJ*)-1 6 Re P c Tkl 
c 

respectively. 

(3.67) 

(3.68) 

Remark: The operators Pc are written in Eqs. (3.65)
(3.68) for emphasis only. Since TBA=PBTBAPA and 
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TftJ. =PB TftlPA, these Pc operators are already present 
without writing them explicitly. 

Let GB(z) =PBRN(z) denote the cluster components of 
the operator G(z) defined in Eq. (2. 49). Then the oper
ators GB = GB (z) are, for z E p(HN ), the unique solution 
of the system of equations 

GB =PBRB +PBRB VB (JJ*)-l BGe . 
c 

(3.69) 

The uniqueness of the solution of Eqs. (3.65)-(3.69) 
follows from Theorem 6, because one of these equa
tions will have a unique solution if and only if the cor
responding Eq. (2.42)-(2.45) or (2.50) has a unique 
solution. 

4. DISCUSSION 

In the preceding sections we have derived some ab
stract equations of the Lippmann-Schwinger type, and 
then applied them to N - body quantum scattering theory. 
The starting point for this derivation was the two
Hilbert-space formulation given in Ref. 19. In this for
mulation an auxiliary direct sum Hilbert space H is 
used as a "bookkeeping" tool to simultaneously keep 
track of all the channels. Mappings between H and the 
N-body Hilbert space HN are provided by the injection 
operator J and its adjoint J*. 

In order to derive equations within the two-Hilbert
space framework, it was necessary to invert the oper
ator JJ*. The presence of the J operators, however, 
considerably complicated the derivation. It was neces
sary to prove certain properties about how these opera
tors interact with the domains and spectra of the 
Hamiltonians HN and H (cf. Theorem 3 and Lemmas 5 
and 6). For this we needed to make some relative 
boundedness assumptions on the potentials [cf. Assump
tion (A4) and Property (P4)]. Assumptions of this type 
have been used previously22 ,29,32 ,35 for other purposes 
in scattering theory, and they do not severely restrict 
the generality of the theory. They have been shown to 
be satisfied if, for example, the pair potentials satisfy 
Assumption B. 

In regard to Lemma 5, we remark that we have only 
shown that the spectrum of QHQ is contained in the 
spectrum of H. It is an open question as to the nature 
of this spectrum. We do not know if the spectrum of 
QHQ is absolutely continuous, or even if it consists of 
a half-line. 

The unknown operators in the systems of N-body 
equations given in Sec. 3 D depend only on the various 
possible clusterings of the N particles. By replacing 
H by the Hilbert space H' defined in Eq. (3.22) and 
taking channel matrix elements of Eqs. (2.42)-(2.45) 
and channel components of Eq. (2.50), systems of equa
tions of the same type can be obtained for the corre
sponding channel operators T;",(z), T;;:)(z), and G;(z) 

=PSRN(z). However, if some clusterings have more than 
one possible bound state, the number of unknowns in 
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these systems would be larger, and possibly even in
finite. For this reason, we have chosen to use the 
Hilbert space H and to distinguish only the different 
clusterings in the equations. Once the cluster opera
tors have been obtained, the corresponding channel 
operators can be obtained by adding the proj ection op
erators POI. as in Eq. (3.59). [It should be noted that 
a, f3, Y, .. , are sometimes used as subscripts by other 
authors to distinguish between different clusterings in 
systems of N-body equations (e. g., Refs. 2,6-8)0 The 
reason that we have used a, {3, Y, ... to denote different 
channels, instead of different clusterings, is because 
our derivation began with the time-dependent theory of 
scattering, and we have adopted the notation commonly 
used there (e. g., Refs. 21-24,35). J 

The systems of equations given in Sec. 3 D are our 
basic transition and resolvent operator equations. For 
N = 2 they reduce to the usual Lippmann-Schwinger and 
resolvent equations. For N> 2 the complexity of the 
equations increases as the number of possible cluster
ings increases. We have shown that there exists a uni
que solution of these equations. 

The distinctive feature of Eqs. (3.65)-(3.69) is that 
the unknown operators act only on the cluster subspaces 
H A of H N. An advantage arises because the cluster 
Hamiltonians HA and their resolvents RA(z) are rela
tively simple operators on H A. In particular, suppose 
that HA is given by Eqs. (3.3)-(3.5), 

(4.1) 

and a is one of the channels with clustering A. Then 

(4.2) 

where 

(4.3) 

and \.: (a1) are the eigenvalues corresponding to the bound 
states of the fragments a1 in channel a. The operators 
HAPA and RA(z)PA are then of the form 

HAPA =6 (A)(H! + \':)POI. (4.4) 
01. 

and 

RA(z)PA =6 (A)(Z - \.: - H1)-lp",. (4.5) 
01. 

The operator H1 is the Laplacian operator governing 
the free motion of the centers of mass of the fragments 
in clustering A. If HN =L 2(R3N), and A is a k-fragment 
clustering, then RA (z)P A is effectively a free resolvent 
in a space of only 3k dimensions (3k- 3 after the center 
of mass is removed), k = 2,3, ... ,N. In momentum 
space, the H1 in Equations (4.4) and (4.5) can be re
placed by a certain quadratic polynomial. In contrast, 
the operators RA(z)QA with QA=IN-PA, which never 
arise in our equations, are considerably more 
complicated. 

One of the nice features of the two-Hilbert-space 
methods used in Sec. 2 is that the abstract equations 
take on the same form for all N. A correct system of 
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N-body equations can be obtained at any stage of the 
derivation by taking cluster components or cluster 
matrix elements. 

On the negative side, Eqs. (3.65)-(3.69) have two 
drawbacks. First, the presence of the operator (JJ*)-l 
is an added complication. In practical computations 
this operator will no doubt have to be approximated 
(cf. Corollary 2 of Theorem 7); however, we believe 
this is quite feasible. 

Second, the kernel of Eqs. (3.65)-(3.69) is connected, 
and compact, only for N = 2. The connectedness struc
ture is, however, improved by the presence of the P A 

operators. We note, for example, that the operator 
P B VB (JJ*)-lRc in the kernel of Eq. (3.65) is connected 
for all N-body clusterings B which have only two frag
ments. Hence, for the three-body problem the kernel 
operator is connected for all clusterings except the free 
particle clustering B = O. The equations do not have to 
be iterated to obtain this connectedness for the two 
fragment clusterings. 

In order to derive N-body equations with a connected 
kernel, it is necessary to first solve all subsystem 
problems for the clusterings A in terms of the cluster
ings which are refinements of A, and then to incor
porate these solutions into the equations. This will be 
done in a subsequent paper. 
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Analytic evaluation of an important integral in collision 
theory 

John Detrich and Robert W. Conn 

Nuclear Engineering Department. University of Wisconsin. Madison. Wisconsin 53706 
(Received 18 April 1977) 

A commonly occurring integral in collision theory when the radial part of the potential has the form 
rtl(-'-a r is 

111:11' (o:;k,k') = fO' drr"+! ,,-urJ1 +!!2(kr)Jl'+!!2(k'r), 

Analytic results for this integral have been found for the most important cases, including those with 
negative values of /1, This permits efficient evaluation of Born matrix clements required in many 
scattering theory applications based on perturbation methods, 

I. INTRODUCTION 

We report here analytic results for integrals of the 
form 

in;zz,(a;k,l?') 

= Jo

oo 

drr"+1 exp(- ar)JZ+1/2(kr)JZ'+1/2(k'r), 

where J Z+ 1 /2(kr) denotes a Bessel function and land l' 

(1) 

are restricted to nonnegative integer values. Such in
tegrals occur in the evaluation of first Born scattering 
matrix elements when the potential has a radial part 
proportional to rn exp(- ar), This is a very frequently en
countered situation since most typical potentials can be 
represented in terms of a linear combination of such 
functions. 

Results for integrals of the type given in Eq. (1) have 
been given previously, 1 but they are both unnecessarily 
general and unnecessarily complicated. Much simpler 
results may be obtained by specialiZing to the case 
where land l' are nonnegative integers. This is im
portant, since the efficient evaluation of first Born 
matrix elements is ,a critical consideration for the 
successful application of many collision theories includ
ing, for example, the 'Operator decomposition approach 
to inelastic molecular scattering proposed by Conn and 
Rabitz.2 

II. MATHEMATICAL DERIVATION 

We assume here that the parameters a, k, and k' in 
Eq. (1) are each real and positive. We also take land 
l' to be nonnegative integers, while n is real, but not 
restricted to integer values. Then the integral in Eq. 
(1) converges whenever we have 

n+1+1'+3>0. (2) 

It is convenient to express the Bessel functions in 
terms of the integral representation3 

(kr!2)z+1/2 f 1 

J z+1/2(kr)= l!fTi dd1-t2 )Zexp(-ikrt). 
-1 

Then, after reversing the order of integration and in
tegrating over r, we find 

in;zz,(a,k,k') 

= (k/2 )Z+1 /2(k' 12)Z'+1 /2r(n + 1 + l' + 3)[7T1! l'! ]-' 

(3) 
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x J 1 d5 (1 - 5 2 )Z J' 1 dt(1 - t2)l'(a + ik5 + ik' t)-n-Z -Z'-3 
_1 _1 ' 

where r(1l + 1 + l' + 3) indicates the usual gamma 
function. 

(4) 

The remaining integrations can be accomplished by a 
repeated integration by parts, a procedure that 
terminates after a finite number of steps when land l' 
are nonnegative integers. With the aid of the result 

[dP(l - 5 2 )Z 1 dsPl.=l = (- l)P[dP(l - 52 )11 d5P]s=_1 

1
(0, 1>j)orp>21, 

= Z 22/
- Pl!p! 

(-1) (2l-p)!(p-z)!' 2l>P?l, 

we obtain 

1 I' 

=Ti-1(kk')-1/2~ ~ (l+p)!(Z'+q)! 
p=O q=O 

x Re[iz+I'-p-q+2Xn+1_p_q(a + ik + ik') 

+ il-P-I'+Qxn+1_p_q(a + if< - ik')], 

where we use 

This expression for X)z) loses its meaning when ZJ is 
an integer less than or equal to zero, in which case 
Eq. (7) should be replaced by 

X)z) = (-1)p+1 zP(lnz - ap)/p!, p? 0, 

where 

p=O, 

(5) 

(6) 

(7) 

(8) 

(9) 

When n is an integer less than 1 + l', Eqs. (6) and (8) 
indicate that two arctangents must be computed in 
order to evaluate In: II' (a ;k, k') since z is in general 
complex. On the other hand, only the real part of one 
logarithm is required, since only the combination 

I I + 'k + 'k' I -In I + 'k - 'k' I = In(1 a + ik + ik' I) n a z z CI' Z Z I ()I + if< _ ik' I 

(10) 
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actually occurs in Eq. (6). One can see that this situa
tion should hold by considering how the integral will be 
affected if each of the parameters 0', k, k' is multiplied 
by a common factor. We give a more straightforward 
demonstration in Appendix A. 

Additional rearrangements of Eq. (6) do not appear to 
be useful from the standpoint of actual computation, ex
cept for some special cases. 4 When 1 and [' are small, 
Eq. (6) clearly yields a compact evaluation of 
In;ll.(a;k,k'). Even for large [ and/or large [', the 
evaluation of the integral is an efficient process, since 
sucessive terms Xn+1_p_q(a + il? ± ik') can be computed 
from the preceding one by only a few arithmetic opera
tions, and this also applies to the terms (I + p)! 
[pI ([- p)! r1(2k)-p. 

Recurrence relations for the integrals In; ll.(a; I? ,k') 
are readily obtained with the help of the recurrence 
relations satisfied by the Bessel functions, and these 
are discussed by Eason, Noble, and Sneddon. 5 We shall 
not present a similar discussion here, since these re
currence relations do not appear to be useful from the 
standpoint of practical computation. 

III. THE CASE a = 0 

The case a = 0 corresponds to potentials with a radial 
part proportional to rn. In addition to Eq. (2), we must 
impose the condition 

n < -1, (11) 

so we are dealing with inverse-power potentials, a case 
of considerable practical interest. We give the 
definition 

In; 11.(0; I?, k') = Jo~ dr r n+1 J l+1 /2(kr)Jl'+ 1 /2(k' r). (12) 

As our notation suggests, we may give 

In; 11.(0; k ,k') = lim In; ll.(a; k ,k'), (13) 
'" ..0+ 

provided that Eq. (11) holds. This permits us to apply 
Eq. (6) to the evaluation of the integral in Eq. (12). 

The integral In;II.(O;k,k') is discussed in detail by 
Watson,6 with the result 

In; ll'(O; k, k') 

= 2n+1k-n-2xl'+1 /2r(m)[r(Z + % - m )r([' + % )]-1 

XF(m,m -l-~;l' +%;X2
), 

where we use the abbreviations 

m = ([ + I' + n + 3)/ 2, x = k' / k , 

(14) 

(15) 

and F(a, b; c; z) denotes the Gauss hypergeometric func
tion. This result applies when k' < k; to handle the case 
k' > k, one interchanges the roles of the pairs k', [' 
and k, Z. In the general case, the hypergeometric func
tion in Eq. (14) is defined in terms of an infinite series, 
while Eq. (6) always contains only a finite number of 
terms. Thus it may frequently be advantageous to 
evaluate In;ll.(O;k,k') in terms of Eqs. (6) and (13) in
stead of Eq. (14). 

Of particular interest is the case where n is integer. 
If n + [ + [' is even, m -[ - ~ is integer, and the hyper-
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geometric series in Eq. (14) truncates for m"; I + ~, 
while in case Tn> l + ~, Eq. (14) gives zero for the in
tegral. Thus Eq. (14) always gives a simple result 
when n + 1 + l' is even. Of course, Eq. (6) can be re
arranged to give the same result, but improvement can 
hardly be expected. 

Our results are more helpful in the case n + l + l' odd. 
It is not obvious from Eq. (14) that In;ll.(O;k,l?') can 
now be evaluated using only a finite number of terms, 
but this becomes clear by examining Eqs. (6) and (13). 
We can use Eq. (6) as it stands, but a simpler expres
sion can be achieved when a=O. The necessary reduc
tion is carried out in Appendix B, and this leads to the 
result 

In;II·(O;/?,k / ) 

where the coefficients an;II';P are given by 
p 

an' ll'" p = z: [q! (111 - n - 2 - q)! (p - q + ~ ) 
" Q=O 

xr(q+~-l')r(Z' -% -m-qW. 

This expression applies only in case 

l' - 1 ~ p, (l' - IZ - 2)/2 ~ p; 

(17) 

(18) 

the remaining values of p are handled by means of the 
relation 

(19) 

Comparison of E'ls. (14) and (16) shows that the first 
[' terms in an expansion of Eq. (16) in a power series in 
x2 will vanish. This indicates that inaccuracy can arise 
when using Eq. (16), due to roundoff error in the sub
traction of nearly equal terms, especially when x is 
small. Computations should be arranged so as to avoid 
this difficulty. Similar remarks apply to the more gen
eral case handled in Eq. (6). 
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APPENDIX A 

To establish that the term given in Eq. (10) is the 
only logarithmic term which occurs in Eq. (6) in case n 
is an integer less than [ + l', it is sufficient to establish 
the relation 

An; ll.(a; k ,k') = - An; ll,(a; k, - k'), 

where 

An;ll.(a; k,k') 

= (- 1)n z: L: c C, k -l",,-! (k,)-l' ""-! 
l,p I ,q 

P q 

x Re[il +1'-p-q+2(a + ik + ik' )p+q-n-1 / (p + q - n - 1)! ]. 

J. Detrich and R.W. Conn 
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Here the summations over p and q range over all values 
forwhichp, q, ([-p), (l'-q), and (p+q-n-1)areall 
positive or zero, and we use the abbreviation 

Cl,p= (- 2)-P([ + p)!/[p! ([-p)!]. (A3) 

In view of Eq. (8), we see that Anill.(a;k,k') and 
Ani !l.(a; k, - k') are, respectively, the coefficients of 
lnla+ik+il~'1 andlnla+ik-ik'i inEq. (6), after 
multiplication by Tfk- l -1 / 2(k' )-1'-1 /2. 

We establish Eq. (A1) with the aid of the differential 
recurrence relations 

~(2~) Ani 11'(0'; k, k') = -An+1i 1+1,1'(0'; k, k'), 

:' ((l~') Ani 11'(0'; k ,k') = -An+1i l,l'+l(a; k ,k'), 

(A4a) 

(A4b) 

which can be verified in straightforward fashion using 
Eqs. (A2) and (A3). In view of these relations, we may 
give 

( 
1 a) l( 1 (1) I' 

= - k ak k' (1k' An-l_l'iOO(a; k,k') 

=(! _.il)l (_ ~ _a_)I'(_1)n+l-1-1'(kk')-' 
Iz ?k k' (lk' 

x Re(a + iI? + ik'j-n-l+l+I'/(l + [' - n - 1)! . (A5) 

We expand to obtain 
l +1'-n-1 

Anill,(a;k,k')= L (- a)PAn+Pill,(O;k,k')/p!, (A6) 
P=O 

From Eq. (A5) we see 

Ani!l,(O;k,k')=O, n+[+l' even, (A7) 

and, after expanding 

Anill,(O;k,k') 
I +l'-n- 1 

=(_1)m-1 L [P!(l+l'-n- p -1)!r1(!.i.)1 
p=O k 3k 

(
1 il) I' 

X - -. - 1 p_' (I' )1+1'-n-2-p + l + l' odd k' 11k' f(, , n , (A8) 

where m is the abbreviation introduced in Eq. (15). In 
Eq. (A8), even powers of k occur only in terms con
taining even powers of k', and such terms vanish unless 
both of the conditions 

2l < P - 1, 2[' < [ + l' - n - 2 - P 

can be satisfied. But this possibility is ruled out by 
Eq. (2), so Anil!,(O;k,k') contains only odd powers of 
Il and k'. Therefore, we have 

Ani 11,(0; I, ,I,') = - Ani ll'(0; k, - k'), (A9) 

which we can combine with Eq. (A6) to establish Eq. 
(At). 

APPENDIX B 

It is convenient to use the definitions for Ani !l'(0; k, k') 
and Cl,p given, respectively, by Eqs. (A2) and (A3) in 
Appendix A. Then, in view of Eq. (A1) in Appendix A, 
Eq. (6) yields, in case 11 + l + l' is odd, 
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I nill ,(O; k,k') 

= Tf- ' (kk')-' / 2{k l +1 (k' )1'+lAni 11'(0; k, k') 

xln[(k + k')/ I k - k' I) - Bnill.(k,k')}, 

where 

Bnill,(k,k') 
f I' 

= (_l)m-l L-J L C I pCI' qk-P(k,)-qup+q_n_1 
p=O q=O ' , 

X[(k +k,)p+q-n-1 + (_1)1'+q+1(k _k,)p+q-n-1]/ 

(p+q-n-l)!. 

(B1) 

(B2) 

Most of the reduction of Anill' (O;k,k') is given in 
Appendix A, so we need merely carry out the differentia
tions indicated in Eqo (A8). With the help of the doubling 
formula 

r(p + 1) = 2pr(p/2 + 1/2) r(p/2 + l)/V;- , 

we may cast the result into the form 

2n+1(_ 1)m-1k-2m -21'-1 
A (O'k k')- x Tf 

ni!l' ., -(m-11-2)!r(l'+1-m)r(~-[') 

xF(n + 2,m, m -l' -~; ~ -l';x2
). 

The Euler relation 

F(a, b;c; z) = (1 - z)c-a-b F(c - a, c - b; c; z) 

can be used to rewrite Eq. (B4) as 

2n+1( _ l)m-lk-2mx-21 '-'(1 _ x2t n-1 

Anill,(O;k,k') = (m - n - 2)! r([' +1 - m)r(~ -l') 

x F([ + 1 - m, 1 - m ; ~ - [' ; x 2
) • 

(B3) 

(B4) 

(B5) 

(B6) 

According to Eq. (2), m is a positive integer, since 
[ + [' + 11 is odd, so the hypergeometric series here 
again truncates, and is shorter than the one in Eq. (B4), 
since 11 + 2 < 1, according to Eq. (11). 

The term Bnil)k,k') can be reduced by applying a 
binomial expansion to obtain 

m-n- 3 

B (k k')=(_1)m-1k-n-1 H'" b 2p 
n;11' , X ~ nill';p x , (B7) 

where 

b n' II" P = 2LL; C I C I' U + 1 r, Q. r ,q ,r q r-n-

X[(q +l' -n - 2 - 2p)! (2p +r-l' + 1)! ]-', (B8) 

with the summations over q and r running over all values 
forwhichq,r, (l-q), (Z'-r), (2p+r-l'+1), and 
(q + 1'- n - 2 - 2p) are all positive or zero. Since we have 

u
q 

= r dt (t - 1 \_1 (t" - 1), 
o 

we may rewrite Eq. (B8) to give 

where 

C l ,q(t)=6r C l •r t"+r/(q + r)!. 

It is useful to note the relations 

dnCl,.(t)/ dtn = Cz,q_n(t), 

CZ,q(O)=O, q>O. 

J. Detrich and R.w. Conn 
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(B12) 
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Also, we have 

G
1 

(t)=(t</q!)F(z+I,-l;q+l;t/2), q~O. 
,q 

(BI3) 

and in particular, 

G1, I(t} = t l (1 - t/2)ljl! = (21l1 )-1[1 - (t _ 1)2]1. (BI4) 

For q ~ 0, we may obtain G1,.(t) from Eq. (BI3), since 
F(l + 1, - l; q + 1; ~) can be evaluated in closed form. 7 

With the aid of Eq. (B3) we find 

G
1 

(1) = 7T
1

/ 22-'[r(q/2 + l/2 + 1) r(q/2 -l/2 + 1/2)]-1. 
,q (BI5) 

For q ~ l, this result may also be obtained using Eqs. 
(B11) and (BI4), which also shows that it remains valid 
for q < O. In addition, we note 

G
1
,.(1)=0 for q< land l-q odd. (BI6) 

We first consider the case where we have the the two 
conditions 

p ~ l' - 1, l' - n - 2 - 2p?- o. (BI7) 

Then we may expand G1, 2P+l-z,(t) in a Taylor series about 
t= 1 and apply Eq. (B16) to bring Eq. (B9) to the form 

p 

bn; ll';P = 2~GI" 2p_2 q _l,(1) 

(BI8) 

The integrals here are readily reduced by repeated 
integration by parts, using Eq. (B11). In view of the 
second condition in Eq. (BI7), Eq. (BI2) applies, and we 
obtain 
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p 

bn; ll~p =q~GI';2P-2q-l ,(1 )G1, 1'-n-1+2(>-2p (1)/ (q + ~) 
p 

=2n+17T .B[q! (m -n - 2 -q)! (p -q + 1/2) 
q=o 

xr(q + 1/2 -l') r(l' + 3/2 - m _q)]-l. 

We claim that if either condition in Eq. (B17) is 
invalid, then both of the conditions 

(BI9) 

m-n-3-p~l-1, 2p+l-l'?-0, (B20) 

will be valid. If the first condition in Eq. (BI7) is 
invalid, we have p ?-l', which assures 2p + 1 -l?- O. 
The other condition in Eq. (20) must also hold, because 
the alternative would contradict Eq. (2). Also, if 
l' - n - 1 - 2p ~ 0, this insures the first condition in Eq. 
(B20) , and the second condition must also hold, in 
order to avoid contradicting Eq. (11). Therefore, the 
cases not handled by Eqs. (BI7) and (BI9) may be dis
posed of by the relation 

lA. Erdelyi, et al., Higher Transcendental Functions, 
Vol. II (McGraw-Hill, New York, 1954), p. 48. 

(B21) 

2R. Conn and H. Rabitz, J. Chem. Phys. 61, 600 (1974). 
3G.N. Watson, A Treatise on the Theory of Bessel Functions 
(CambridgeU.P., Cambridge, 1944), p. 48. 

4For the case I = I', see Ref. 3, p. 389. For other special 
cases (most notably, n=~), seeW.N. Bailey, Proc. Lond. 
Math. Soc. (2) 40, 37 (1936), 

5G. Eason, B. Noble, and 1. N. Sneddon, Phil. Trans. Roy. 
Soc. London A 247, 529 (1955). 

6Reference 3, p. 401. 
lL.J. Slater, Generalized Hypergeometric Functions (Cam
bridgeU.P., Cambridge, 1966), p. 32. 
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Mirror planes in Newtonian stars with stratified flowsa) 

Lee Lindblom 

Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College 
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(Received 7 June 1977) 

This paper shows that a certain class of Newtonian stellar models must possess a plane of mirror 
symmetry, A corollary of this result is that static Newtonian stars must be spherical. The new features of 
the results given here are that: (a) The assumptions about the velocity distribution of the fluid are weaker 
than previous treatments and (b) the method of proof given here does not depend as strongly on the 
linearity of the gravitational field equations as the previously published treatments. Therefore, this proof 
may serve as a model for a general relativistic generalization of the mirror plane theorem. 

1. INTRODUCTION 

An interesting feature of equilibrium stellar models is 
that extra symmetries are acquired from the field equa
tions and the boundary conditions by the stationary 
equilibrium configurations, Perhaps the oldest known 
result of this type is Lichtensteinl

,2 and Wavre' S3 proof 
that rotating Newtonian stellar models must have a 
plane of mirror symmetry which is perpendicular to the 
rotation axis of the star. A related theorem by 
Carleman4 and Lichtenstein2 shows that static 
Newtonian stellar models must be spherical. A few re
sults are also known for general relativistic models: 
static black holes are spherical'; stationary black holes 
are axisymmetric6

; and stationary viscous stars are 
axisymmetric. 7 

This paper will present a new type of proof of the 
mirror plane theorem for Newtonian stellar models. 
The assumptions on which the present proof is based 
are somewhat weaker than those used previously. It had 
been assumed that the fluid motion in the star was pure
ly azimuthal; here we assume that there is a Cartesian 
coordinate system in which the z component of the velo
city vanishes. (Thus, the velocity field of the fluid will 
be called stratified, ) This weaker assumption allows us 
to consider somewhat more complex velocity distribu
tions such as those in the Dedekind ellipsoids. 8 Further
more, we do not make any assumption about stationarity 
here, Thus, we are able to prove the existence of mirror 
symmetry for objects which are nonaxisymmetric and 
rotate with respect to the inertial frame of reference 
(e. g., the Jacobi and Riemann S ellipsoidsB

), 

The method of proof employed in the present work 
may also be of some interest. This proof is based on 
the maximum principles (see the Appendix) which must 
be satisfied by the solutions to certain elliptic differen
tial equations. This proof depends in a less crucial way 
on the linearity of the gravitational field equations than 
the Green's function approach taken by Lichtenstein2 and 
Wavre. 3 Therefore, the present type of proof is more 
likely to form the basis for a general relativistic 
generalization of this theorem than the previous 
approaches to this problem. 

a)This research was supported by the National Science 
Foundation Grant GP-25548. 
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We now give a qualitative outline of the proof which is 
given in detail in the following sections, Section 2 makes 
explicit the physical and mathematical assumptions on 
which the proof of this theorem is based. The purpose 
of Sec. 3 is to construct the plane which is shown to be 
a mirror plane in Sec. 4. We begin by considering the 
set of chords which are parallel to the z axiS, and which 
have both endpoints on the same level surface of the 
gravitational potential function. Lemma 2 is used to 
show that every point is the endpoint of some such 
chord. Next we consider the set of midpoints of those 
chords. For this purpose we define a function 111." which 
maps the endpoints of chords into their midpoints. In 
Lemma 3 we show that there is a chord whose midpoints 
Z component, zm' is larger than or equal to the Z com
ponent of the midpoint of any other chord. We will de
compose each of the functions into even and odd parts 
with respect to reflection about the plane Z= zm; and we 
will show that this plane is a mirror plane of the star. 
In Lemma 4 we derive the important fact that the odd 
part of the mass density, E-, is negative for all Z ex
ceeding zm' In Sec. 4 we prove the main theorem. We 
show that the odd part of the gravitational potential, 
cp-, must satisfy the differential equation VjVicp-
= - 41TGE- ~ 0 for all Z ~ zm; this follows from Lemma 4. 
In addition we argue that cp- must have a maximum in 
the half space Z > zm' The maximum principles for this 
type of differential equation are then invoked to show 
that in fact cp -= 0 everywhere. It follows that the odd 
parts of the mass density and pressure must vanish 
also. Thus the star must have a plane of mirror 
symmetry. 

2. NEWTONIAN STELLAR MODELS 

We will be conSidering the properties of stratified 
Newtonian stellar models. These models are completely 
defined by the following functions of the Cartesian 
coordinates x, V, z: 

cp -gravitational potential, 

E -mass density, 

p-pressure, 

v j -velocity of fluid, 

a j -acceleration of fluid. 
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These functions are assumed to satisfy the usual differ
ential equations which describe a Newtonian fluid stellar 
model: 

ai=avjat+vjVjV i · 

In addition we make the following assumptions: 

(a) The Z component of the velocity of the fluid 
vanishes (this defines our meaning of stratified). 

(1) 

(2) 

(3) 

(b) The density is a function of the pressure: E(p) with 
dE/dp?o 0, E?o 0, and p?o O. 

(c) The density has compact support at every instant 
of time. 

(d) The gravitational potential, cp, vanishes as x 2 + y2 

+ Z2_ 00. 

(e) The gravitational potential is C3 except at the 
boundary of the star, where it is C1 with respect to 
normal derivatives and C2 with respect to tangential 
derivatives. 

(f) The magnitudes of the functions E, p, and cp are 
bounded. 

The following lemma shows that if the velocity field 
of the star is stratified, then the Euler's equation (2) 
can be written in an important simplified form. 

Lemma 1: The Euler'S equation for a Newtonian 
stellar model which satisifes assumptions (a) and (b) 
may be written in the form 

ViP=EVil/!, (4) 

where I/! = cp - T and T is some function which is inde
pendent of z. 

Proof: Equation (2) may be written in the form a i 

= - E-1V iP + V iCP. When assumption (b) is satisfied, the 
right-hand side is a gradient, thus ai=ViT =-E-lViP 
+ ViCP. This can be re-arranged into the form of Eq. (4). 
Also since v z = 0 by assumption (a), it follows that a z = 0 
by Eq. (3). Therefore a z= aT /az = o. • 

We note that for the special case of an azimuthal 
velocity field, v ~ = n, the potential T takes the familiar 
form of the centrifugal potential, V iT = - tn2v i(X2 + y2). 

3. PRELIMINARY LEMMAS 

To construct the plane, Z = const, which we show in 
Sec. 4 is a plane of mirror symmetry of the stellar 
model, we need to classify the points in the star, based 
on the nearby behavior of the gravitational potential cp. 

Definition: A point (x, y, z) will be called normal if 
acp/az(x, y, z)*O; and a point will be called special if 
acp/az(x, y, z) = O. 

Lemma 2: Let cp be the gravitational potential of a 
stratified Newtonian stellar model satisfying assump
tions (a) through (f). For every normal point (x, y, z) 
there exists a unique associated point (x, y, z) which has 
the property cp(x, y, z)= cp(x, y, z) and cp(x, y, z) 
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<Cp(X,y,z') for all z' between z and z. (A special point 
is said to be associated with itself. ) 

Proof: Let us first show that cp(x, y, z) >0 every
where. If there is a point with cp(x, y, z).;; 0, then we 
could find some point, say (x', V', z'), with cp(x', V', z') 
.;; cp(x, y, z) for all pOints (x, y, z). By Eqo (1) and 
assumption (b) we have V5 i cp.;; O. Using Theorem 2A 
(see the Appendix) one can show that if the point 
(x', V', z') eXists, then cp=O everywhere. If the point 
(x', y', z,) lies on the boundary of the star, a slightly 
different argument using Theorem 1A gives the same 
result, rp = O. Thus we can conclude that cp must be 
positive everywhere. 

We next consider the normal point (x, y, z). One can 
start at (x, y, z) and proceed along the line (x, y) 

= const in the direction of increasing cp. When one 
reaches pOints having sufficiently large values of 
x2 + y2 + Z2, the potential cp will become arbitrarily 
small. This guarantees that a point, say (x, y, z), will 
be reached along the line at which cp(x, y, z) = cp(x, y, z). 
If one takes the first such point reached along the line, 
say (x, y, z), then ¢(x, y, z') > cp(x, y, z) for all z' be
tween z and Z. Thus (x, y, z) is associated with (x, y, 2) 
and the lemma is proved. • 

To assist in the construction of the plane which is 
shown to be a symmetry plane of the model in Sec. 4, 
we will consider the following function, 

Definition: The function m0 maps pOints (x, y, 2) from 
the support of the mass density function into some 
subset of R3. We define 

m 0 (x, y, z)=(x, y, Hz+zj), (5) 

where (x, y, z) is the pOint associated with (x, y, 2). 

The next lemma will derive an important property of 
the function m 0' 

Lemma 3: There exists a point (xo, Yo, 20) in the do
main of m 0 , whose image (xo, Yo, zm)=m 0 (XO, Yo, 20) is 
a least upper bound of the z component of the range of 
m 0 ; i. e. , for every point (x, y, z) in the range of m 0 , 

2m ?o 2. 

PrOOf: Let us first argue that the z components of the 
range of 1110 are bounded. We can consider the total 
potential I/!, defined in Lemma 1. The function m"" con
structed using I/! rather than cp, is identical to the func
tion m0 because cp -I/!=T is independent of z. By Eq. 
(4) the level surfaces of I/! coincide with the level sur
faces of the functions E and p. Therefore the points which 
are associated with normal points within the support of 
the density will also lie within the support of the density. 
Thus, the range of m 0 must be bounded since the domain 
is bounded by assumption (c). Since the range of m0 is 
bounded, the 2 component of the range must also be 
bounded and therefore must have a least upper bound, 
say zm' 

We will now show that 2m is the z component of some 
element in the range of 111 0 , In any case, there must be 
a sequence of numbers &n each of which is the 2 compo
nent of some element of the range of ml/>' and lim&n= zm' 
There must also be a corresponding sequence of pOints 
~n in the domain of 1110 whose images have &" as 2 com-
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ponents: 111"'(~n)= (xn, Yn' 1;n)' The domain of 111", is com
pact, therefore, there is a subsequence ~~ of ~n which 
converges to a point in the domain, say lim~~ 
= (xo, Yo, zo)' It follows that limI110(~~)= (xo, Yo, zm)' The 
prime will henceforth be dropped from the name of the 
sequence of points !;~. If 1110 were a continuous function, 
it would follow that 111 ",(xo, Vo, 20)= (Xo, Yo, 2m) and the 
proof would be complete, 11Z0 is not necessarily con
tinuous however. 

Let us first consider the case where there is a sub
sequence ~~ of !;n which are all special points. At each 
of these points we have a¢/a2(!;~)=0; and since arp/a2 
is a continuous function, (?rp/(l2)(2 0 , Yo, 20) = O. For 
special points m 0 (x, y, z) = (x, 1', 2), therefore 
limm0(~~)= (xo, Yo, 20)= (XO, Yo, 2m)' Therefore 
(xo, Yo, zm) must be an element of the domain of m <I> with 
the property 1J1",(xo, Yo, 2m)= (xo, Yo, 2m)' Thus we have 
shown that the lemma follows if there exists a subse
quence !;~ of special points. 

The other case we need to consider is when !;n are all 
normal points when n becomes sufficiently large. To 
each of the normal points !;n (with z component w n) there 
is an associated point ~n (with 2 component wn ). We also 
know that limwn = 20 and lim~(wn + c;:\) = 2 m , thus limwm 

= 2zm - ZOo There are three possibilities: 20= 2m, Zo 

>zm' and 20 <2m , We will consider first the case where 
20 = 2m' The chord connecting each pair of points !;n to 
~n in our sequence must contain a point !;~, where 
21J/?2(!;~)=O, Thus, the sequence !;~ are all special 
points. Furthermore lim!;~ = limsn= lim~n= (xo, Yo, zo). 
Thus, we have a sequence of special points whose limit 
point is (xo, Yo,G o)' We have shown above that the lemma 
follows in this case. We next consider the case where 
2o > 2m; then ('\0' )'0' 2o) must be a normal point with 
associated point (xo, 1'0' 20 ), It follows that 20 ~ 2zm - 20 
because 2m is the least upper bound. Since rp i~ a con
tinuous function limcp(U= 1;(xo, Yo, zo)=limc6(!;n) 
= cp(xo, Yo, 2zm - zo)· Therefore the point (xo, Yo, 2zm - zo) 
must be the point associated with (xo, Yo, zo) and as a 
result 1J1 0 (XO, \'0,20)= (xo, Yo, 2m) and the lemma follows. 
The last possibility is that 20 < zm' In this case the 
sequence of associated points ~n must converge to 
(xo, Yo, 22m - 20) and 22m - Zo > 2m' The same argument 
as the one given for the case Zo > 2m shows that 
(xo, Yo, 20) is the point associated with (xo, Yo, 22m - zo). 
In this case m <t>(xo, Yo, 22m - 20) = (xo, Yo, 2m) and the 
lemma follows. • 

We can now derive a very important inequality for the 
old part of the density function, when it is taken with 
respect to the plane 2 = zm' 

Lemma 4: Let E be the mass density of a stratified 
Newtonian stellar model satisfying assumptions (a) 
through (fl. Then, 

E-(X, y, z) ""~E(X, y, z) -~E(X, y, 2zm -z) ~ 0 'fI 2> zm' 

Proof: Consider a point (x, y, z) with Z >zm' If 
(x, y, z) is not in the support of E, then E-(X, y, 2) 
= - h(x, y, 22m - 2) ~ 0 by assumption (b). Next suppose 
that (x, y, Z) is in the support of E. Since zm is the least 
upper bound of the midpOints, (x,)I, z) must be a normal 
point and the associated point (x, y, z) must satisfy 
2 ~ 2zm - 2 ~ 2. Lemma 2 implies rp(x, y, 22m - Z) 
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3 cp(x,)I, z) so that cp-(x, y, z)=~cp(x, y, z) 
- ~ cp(x, y, 2 zm - z) ~ O. The total potential iJ!, defined in 
Lemma 1 satisfies IV = cp-, because T is independent of 
z; consequently ,nX,)I, z) ~ O. From Eq. (4) it follows 
that the level surfaces of E, p, and if! all coincide. This 
fact and the requirement that f> 0, p 3 0 and dE/dj) 3 0 
from assumption (b) imply that f-(X, )I, 2) ~ 0 for all 

4. THE MAIN THEOREM 

We can now prove that these stratified Newtonian 
stellar models have a plane of mirror symmetry. 

• 

Theorem: Consider a stratified Newtonian stellar 
model which satisfies assumptions (a) through (f). There 
exists a plane Z =zm, such that the odd parts of the 
functions rp, € and p vanish when taken with respect to 
the plane Z =zm' Thus, the star has a plane of mirror 
symmetry for these functions 

PY()()f~ From Lemma 3 we know that there is a point 
(xo, Yo, zo) such that 1n 0 (XO, Yo, zo)= (xo, Yo, 2m)' We will 
consider two separate cases. In the first case 
(xo, Yo, 20) is assumed to be a normal point, in the 
second case it is assumed to be a special point. 

Case 1: Associated with the point (xo, Yo, 20) is the 
point (xo, Yo, 2 0 ) with 20 = 2zm - ZOo Since rp-(xo, Yo, zo) 
=~rp(xo, Yo, 20) -~<!J(xo, Vo, zo)=O, there exists a point 
[either (xo, Yo, zo) or (xo, Yo, 20 ) 1 say (xo, Yo, zo) with 
2 o > zm' where c6- vanishes. The function cp- vanishes 
on the boundary of the half space 2 > 2m' In the interior 
of this region dJ - is bounded due to assumption (f); 
therefore there must exist a point (i, y, z) in this half 
space where 1;- is maximal. The odd part of Eq. (1) is 
given by VjVicp-= -41TGE-. From Lemma 4 we have 
ViVirjJ-> 0 for all 2 >Zm' This inequality, the existence 
of a point where rp- is maximal and Theorem 2A (see 
the Appendix) guarantee that rp- = 0 everywhere. That 
E- = Y = 0 follows trivially. 

The argument given above is not strictly correct for 
the case where the maximum of rp- lies on the boundary 
of the star. The density E need not be continuous at the 
surface of the star, and consequently the potential 1; 

need not be sufficiently differentiable there to apply 
Theorem 2A. Consider now the case where the maximum 
of 1; -, C;-",.1>, z) lie s on the boundary of the star. Find 
an open ball B which has (x, 51, z) as a point on its 
boundary, which is tangent to the surface of the star at 
(x, y, z) and which is sufficiently small that all of the 
points of B lie in the exterior of the star. Within B, 1>
will be C" and cp- is C 1 at (x, .1', z). Furthermore 
¢- ~ c6-(.Y, .v, z) at all points in B and V iCP-(X, y, z) = 0, 
since <!J- is a maximum at ex, .y, i). From Theorem lA 
if follows that cp- has the constant value cp-(ic, 51, z) 
everywhere in B and consequently everywhere, This 
constant value must be zero since rp- vanishes on the 
boundary of the half -space Z > 2m' 

Case 2: We now consider the case where (xo, Yo, zo) 
is a special point. We have shown that rp-.-S: 0 and E- ~ 0 
for all z 3 zm' Similarly rp- '" 0 and E- '" 0 for all z ~ zm' 
It follows that there is a neighborhood U of the plane 
Z = 2m in which the following inequalities must hold: 
01>- ~ 0, Of-/02-S: O. From Eq. (1) it follows that 
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V jVj(2cp-/2z)= -47TCiJE-/iJZ, hence VjV\iJcp-/2z)~0 in 
U. At a special point ocp/2z= 0= ocP+/iJz+ ocp-/iJz, but 
at z= zm' ocp+/iJz vanishes, therefore iJcp-jiJz(xo, Yo, zm) 
= 0 ~ a cp fa z for all pOints in U. By Theorem 2A it 
follows that acp-/oz= 0 everywhere in U, and consequent
ly cp-= 0 everywhere in U, and as a result cp-= 0 
everywhere. 

As in Case 1 special consideration must be given to 
the case that (xo, Yo, zm) is on the boundary of the star. 
From assumption (e) we know that cp must be at least C1 

in the normal direction, and C2 in the tangential direc
tion at the surface of the star. Therefore Theorem 2A 
cannot be applied and Theorem lA must be used. Since 
(xo,Yo,z.,) is a special point, it follows that ocp/oz = 
= (1)1/iJz= O. There a/oz is a tangential derivative to the 
surface at this point; it follows that ocp-/oz is C1 at 
(xo, Yo, zm)' We have argued that acp-/iJze<;O in the set U. 
Thus, orp-jaz will be a maximum at (xo,Yo,zm) so that 
Vj(iJrp-/az) = 0 there also. Construct an open ball B 
which contains (xo,Yo,zm) as one of its boundary points, 
which is tangent to the surface of the star at (XO, Yo, zm), 
and which is sufficiently small that B lies completely 
within U and completely within the exterior of the star. 
Within B, ViVi(Orp-joZ) = 0 and iJrp-/az is C2. Thus by 
Theorem lA, arp-/az = 0 in B, and therefore rp-= 0 in B 
(the plane z =zm intersects the center of B). It follows 
that rp- = 0 everywhere since it vanishes at an interior 
point of the half space Z > zm. • 

5. DISCUSSION 

In the special case of static stellar models (v i = 0) 
there is no orientation picked out by the velocity stratifi
cation. Therefore, the Theorem proved in the last sec
tion shows that a mirror plane must exist for any choice 
of orientation. As a result, one can show that the star 
must be spherical. 2,4 We also note that the mirror plane 
theorem in the last section is in a sense incomplete. We 
have shown that the functions E, p, and rp must all have 
mirror symmetry. However, it appears that no simple 
analogous result exists for the velocity field of the fluid, 
Vi. For example, consider a stationary axisymmetric 
star with azimuthal velocity field. An infinite number of 
related stellar models may be constructed by keeping 
the functions E, p, and cp fixed while defining a new 
velocity field v Ii = hv i, where h is an arbitrary function 
which is independent of azimuthal angle and h2 = 1. Note 
that h may be discontinuous, so that parts of the fluid 
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may rotate one direction while other parts rotate the 
other way. These related stellar models need not have 
simple mirror symmetry in the velocity field. A final 
point to note is that asumption (a), that the velocity field 
is stratified, is only used to prove Lemma 1. This 
assumption could be replaced by the weaker (but physi
cally less transparent) assumption 0 = a,= ov.lot 
+ vj'iljV z' 
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APPENDIX 

We reproduce here the version of the maximum 
principle on which the proof of the mirror plane theorem 
is based. Reference 9 may be consulted for discussions 
of these results, and also for stronger versions of the 
theorems than are needed here. 

Theorem 1A: Let B be an open ball, and X o a point on 
its boundary. Assume that j is a C2 function everywhere 
in B, and CO in the closure of B. Let VjVij~ 0 and 
j e<; j(xo) everywhere in B. Then the outward normal 
derivative dj/dn >0 at xo, or j=j(xo) everywhere in B. 

Theorem 2A: Assume that j is a C2 function every
where in a bounded open neighborhood U, and that 
ViVij~ 0 everywhere in U. If there is a point X o in U 
such that j(xo) ~j(x) for all x in U, then j(xo) = j(x) for 
all x in U. 
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FIii.ssigkeiten (Springer Verlag, Berlin, 1933). 
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Paris, 1932). 

4T • Carleman, Math. Z. B 3, 1 (1919). 
5W. Israel, Phys. Rev. 164, 1776 (1967). 
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as. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale 
Univers ity, New Haven, 1969). 
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Some solutions of stationary, axially-symmetric gravitational 
field equations a) 
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Stationary, axially-symmetric solutions of the gravitational field equations for vacuum, perfect fluid, and 
massless scalar field are considered. For the vacuum case, a similiar formulation to the one introduced by 
Ernst is presented by use of quarternions. Null dust solutions are found, and it is shown that they match 
with the van Stockum exterior solutions. An extension of the theorem by Eri§ and Gurses is given which 
enables one to construct solutions to the gravitational field equations coupled with a charged dust and a 
massless scalar field from the solutions of the field equations coupled only with a charged dust. 

1. INTRODUCTION 

Stationary, axially-symmetric solutions of the vacuum 
and electrovacuum gravitational field equations have 
been extensively studied, and certain classes of solu
tions have been found. Some of these classes are the 
Lewis,l van Stockum, 2 Papapetrou,3 and Tomimatsu
Sat04 solutions. The first three classes assume a func
tional relationship between the metric coefficients while 
the last one has been obtained by using computer logic. 
It is a three-parameter solution class with parameters 
describing deformation, mass, and angular momentum 
where the sum of the squares of the last two parameters 
is unity. Among all formulations of the vacuum and 
electrovacuum field equations, the Ernst' complex
potential formalism has certain advantages, one of 
these being generation of new vacuum and electrovacuum 
solutions from the old ones. Such a generation of solu
tions follows from the invariance of the Ernst equation 
under a bilinear transformation. Geroch6 has shown 
that the same invariance exists in the vacuum field equa
tions of any space-time having only a nonnull Killing 
vector. 

In the second section of the this work we present a 
similar formulation of the va,cuum field equations to the 
one introduced by Ernst, by use of quaternionic poten
tials. In this formalism the Lewis and van Stockum 
classes of solutions follow immediately. We obtain a 
Tomimatsu-Sato type class where in this case the dif
ference of the squares of the parameters corresponding 
to mass and rotation is unity. The field equations are 
invariant under a quaternionic bilinear transformation. 

Construction of stationary, axially-symmetric interior 
solutions to the gravitational field equations is one of 
the most difficult problems in general relativity < The 
difficulty arises from the complexity of the field equa
tions. Some approximate7 and nonfluid8 solutions have 
been found but unfortunately no exact rotating fluid solu
tion exists which matches with the Kerr metric. In or
der to approach such a solution, one should start with 
simple systems, such as null and nonnull dust distribu
tions, In the third section we study the interior gravi
tational field equations for the null-dust case and give 
a complete solution. We obtain the general relativistic 
form of the Euler equation for a null rotating perfect fluid 

a)Research partially supported by the Scientific and Technical 
Research Council of Turkey. 
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and also prove that the energy conservation equation 
(the Euler equation) is nothing but the integrability condi
tion for one of the metric functions. This equation turns 
out to be very useful in the integration of the field equa
tions for the case of dust distributions. It is interesting 
that all null dust solutions can be matched with an ap
propriate exterior solution of the van Stockum class. 

Works on the solutions of the gravitational field equa
tions coupled with a massless scalar field are quite 
recent and most of them have considered static9 or 
conformally flat10

,l1 space-times. Recently,12 it was 
shown that it is possible to generate the axially-sym
metric solutions of the field equations coupled with the 
electromagnetic and scalar fields from the Einstein
Maxwell solutions. In the fourth section, a generaliza
tion of this theorem to gravitational field equations 
coupled with charged dust and massless scalar field is 
given, 

The components of the Ricci tensor in an orthonormal 
tetrad are given in the Appendix. 

2. QUATERNIONIC POTENTIALS FOR VACUUM 
FIELD EQUATIONS 

Gravitational field equations for vacuum are (see 
Appendix) 

y"2i/J+ exp(4i/J) (Y"W)2=0 (1) 
2p2 , 

Y" . (p-2 exp(4i/J)Y"w) = O. (2) 

Once wand i/J are found the remaining metric coefficient 
y can be found by use of quadratures (A10) and (All). 
Defining a new function j 

~, = ~ In (PifL 

Eqs. (1) and (2) become 

fY"2j _ (Y"j)2 _ (Y"W)2 = 0, 

y". (f-2y"w) = o. 

(3) 

(4) 

(5) 

We now introduce a quaternionic potential £ such that 

£=j+ew, (6) 

where e is one of the three quaternionic units with e2 = 10 
Similar to complex conjugation we define the quater
nionic conjugation as 

£*=j-ew. (7) 

Functions j and ware, respectively, the scalar and 
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vector parts of the quaternionic function 1:. Hence it is 
clear that Eqs. (4) and (5) are the scalar and vector 
parts of the following differential equation: 

(8) 

In terms of a new quaternionic function ~ defined by 

I: = (~- 1)/(U 1), (9) 

Eq. (8) is written as 

Equation (10) can be obtained from the Lagrangian 
density 

L =v~.v~*/(~~*-1)2, (11) 

which is nothing but the Einstein Lagrantian density 
~ R. This Lagrangian density is invariant under the 
bilinear transformation 

(12) 

where a, b, c, and d represent eight real constants of 
which only three are independent. The group of this 
three-parameter transformation is isomorphic to one 
of the well-known two-dimensional noncompact groups. 
Invariance of the Lagrangian density (11) under the 
transformations (12) leads to the generation of the new 
solutions of the vacuum field equations from the known 
solutions. Using the Ernst trick, one may also obtain 
solutions to the electrovacuum field equations. 

The norm of a quaternion Q = Q s + eQu is defined as 

(13) 

Hence, vanishing of the norm does not necessarily lead 
to the vanishing of the scalar and vector parts of Q. 
With the properties of quaternions, we give three sim
ple solutions to Eq. (10). They are 

~ = exp(ea)cothe, 

~ = e exp(ea) tane, 

~=(I±e)e, 

where e is a real function satisfying 

v2e= 0, 

(14) 

(15) 

(16) 

(17) 

and a is an arbitrary real constanL The solutions (14), 
(15), and (16) are called LewiS, Lewis, and van Stockum 
classes,13 respectively, These classes of solutions are 
not eaSily seen in the Ernst complex potential formula
tion. On the other hand, the Papapetrou class can not 
be directly obtained in our formulation. The other well
known class is the Tomimatsu-Sato solutions. These 
solutions are the twisting generalization of the Weyl 
static vacuum metrics. They have three parameters, 
o (distortion), p (mass), and q (twist) with p2 + q2 = 1. 
We have a similar class of solutions with p2 _ q2 = 1. 
For example, in the oblate spheroidal coordinates 

~=px+eq}', (P2_q2=1) 

is one of the solutions of (10), corresponding to 0 = 1. 
One can also generate the NUT parameter using the in
variance of (10) under the transformation e = exp(ea)~. 
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3. NULL FLUID 

The Einstein field equations with a null fluid in a 
tetrad basis are 

(18) 

where p and EO are the pressure and the energy density 
of the fluid and lI

a are the components of the fluid 4-
velocity, with uaua = O. In a stationary, axially sym
metric space-time the only nonvanishing components 
of the fluid velocity vector ua are UO and u3

• For the 
case of null fluid 

uO=Tr1/3=u.1J=±I, 

and the field equations are 

pA-1V. (p-1AV<jJ) + (exp(4<jJ)!2 A2 )(Vw)2 

= K exp(2y - 27jJ)(P.u2 + p), 

A-1pV 0 (p-I VA) = 2K exp(2y _ 27jJ)p, 

pV . (p_l A-I exp(47jJ)'Vw) = _ 2K1J exp(2y)p.u2• 

(19) 

(20) 

(21) 

Equations (13) and (14) will be considered as the equa
tions to determine the metric function y. Instead of (A 11) 
we take the following equation as one of the field equa
tions which is nothing but the energy conservation equa
tion (contracted Bianchi identity): 

'Vp/P. =lh-1 exp(27jJ)'V(A exp(- 21/1) - 1/w), (22) 

where p. =p + E. The p component of this equation is 
obtained through the addition of the derivatives of (A 13) 
and (A14) with respect to z and p, respectively, while 
the z component is obtained by subtracting the deriva
tives of (AI3) and (AI4) with respect to p and z, re
spectively. It is obvious that when p = 0 (null-dust or 
noninteracting null gaseous), the field equations become 
much simpler. First we can use the coordinate condi
tion (A12) and obtain the following relation between w 
and w by use of Eq, (22) 

w = 1/P exp(- 2ib), (23) 

This relation enables us to integrate completely the 
quadratures for y given in (AI3) and (A141. The result 
of the integration is 

exp(2y _ 27jJ) = p-l /2. (24) 

Then the line element becomes 

ds 2 = _ exp(21/1) dt2 + 21/p d¢ dt + p_l /2 (dp2 + dz 2), (25) 

where 7jJ satisfies 

'V2U + VU == 0, 

with 

U =p_l exp(21jJ) 

V = 2 Kp-l /2EU2 • 

(26) 

(27) 

(28) 

Hence for a given Source EU2, the metric in (25) with 
(26) defines the gravitational field of a noninteracting 
null dust (or simply the null electromagnetic field). 
When EU

2 is a constant, the solution of (26) may be re
duced to one type of a Bessel function. These solutions 
may be matched exactly to the van Stockum exterior 
metrics Which are of the form given in Eq. (25) with 
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(29) 

In the coordinate basis the only nonvanishing covariant 
component of the Ricci tensor is Roo; hence 

where 

and 

.,,0 
n~ = e u~, 

EO = KEU
2

• 

4. MASSLESS SCALAR FIELD 

(30) 

(31) 

(32) 

Recently13 it was shown that one can generate the 
solutions to the coupled Einstein-Maxwell massless 
scalar field equations from the known solutions of the 
Einstein-Maxwell equations. Here, we give an exten
sion of the above theorem to the case when the source 
is a charged dust and a massless scalar field. 

Theorem: Let </J, w,y,Ao,A3 , and 11 be a solutions of 
the Einstein field equations coupled with an electromag
netic field, and a dust distribution, where A o and A3 
are the nonzero components of the electromagnetic vec
tor potential and 11 is the energy density of the dust 
distribution. Then </J, w, y + y<l>, Ao, A 3 , 11 exp(- 2y<l» , and 
<I> form a solution to the Einstein field equations coupled 
with an electromagnetic field, a dust distribution, and 
a massless scalar field <I> , where 

and 

Using this theorem, one may obtain solutions to the 
gravitational field equations coupled to a null dust and 
a massless scalar field once a solution of Eqo (26) is 
given. 

5. CONCLUDING REMARKS 

We presented a quaternionic potential formulation of 
the stationary, axially-symmetric vacuum gravitational 
field equations and obtained a class of" Tomimatsu
Sato" -like solutions which does not contain any alge
braically special metrics. 

We gave the complete solution of the stationary, 
axially-symmetric gravitational field equations coupled 
with a null dust or a null-electromagnetic field. For 
the case of the null-electromagnetic field, Fab 
= 2E1 /zun[albl' where lb is a unit spacelike vector which 
is orthogonal to nao 14 These solutions match with the 
van Stockum exterior solutions on a cylindrical bound
ary. We showed that the energy conservation or the 
contracted Bianchi identity is the integrability condition 
for the metric coefficient y. This is, in fact, true for 
any energy- momentum distribution. 

We presented a theorem to produce the solutions of 
the gravitational field equations coupled to a charged 
dust and a massless scalar field from the solutions of 
the field equations coupled with a charged dust. In fact, 
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it is possible to extend this theorem further for any co
variantly conserved energy-momentum tensor Tg plus 
a massless scalar field when the condition (A12) is satis
fied for stationary, axially-symmetric space-times. 
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APPENDIX 

The stationary, axially symmetric metric is given by 

ds2 =- exp(2</J)(dt- wd¢)2 + exp(- 2</J)[exp(2y)(dp2 

Choosing the basis 1-forms as 

W
a = ha~ dx~, 

the vier bein components hap. are 

h°'O = exp(</J), hOs = - W exp(</J), 

h3; = X exp(- </J), h1i = h22 = exp(y - </J), 

and the inverse components ha'" can be found using 
relations 

(A1) 

(A2) 

(A3) 

(A4) 

Here the Latin indices denote the orthonormal tetrad 
components and run from 0 and 3 and the Greek indices 
denote the coordinate components running from 6 to 3. 
Nonvanishing components of the Ricci tensor with the 
convention 

are found as 

RO 0= exp(2</J _ 2y)[pX-1v 0 (p_1 XV</J) 

+ (exp(4</J)/2X2)(Vw)2], 

R0
3 

= - tp exp(- 2y)V . (p-1 X-1 exp(4</J)Vw), 

RO 0+ R33 = px-1 exp(2</J - 2y)V . (p-1 VX), 

R\ =exp(2</J- 2y)[2</J,p</J,. - (exp(4</J)/2X2)w,pw,. 

+ X-1(\P' - \py," _ X"y ,p)], 

R\ - R22 = exp(2</J - 2y)[2(</J:p - </J:.) 

- (exp(4</J) /2XZ)(w;p - w:.) 

+ X-1(\pp _ \ .. _ 2X,py,p + 2\.y)], 

R\ + R22 = exp(2</J - 2y)[ - 2pX -lV . (pol XV</J) 

+ 2(V</J)2 - (exp(41/J)/2X2)(Vw)2 

+ 2(y,pp + y".) + X-1(\pp + \.e)], 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(A10) 

(All) 

where V, V " and V2 are the grad, the divergence, and 
the Laplace operators defined in flat space cylindrical 
coordinates, respectively. Throughout this work we 
consider the case 

(A12) 

which enables us to use the coordinate condition X=P. 
We will discuss the other possible case X = const in a 
later communication. 
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For the perfect fluid case R\ and Rll - R22 vanish; 
hence we have 

A,p'Y ,I! + A,1!'Y,p = A(Z</J,p</J,I! - (exp(4</J)/ZA2
)W ,pw ,I!) + A,PI!' 

(A13) 

A,p'Y,p - A,I!'Y,I! = A(</J:p - ~I!) - (exp(4</J)/4A)(w:p - w:l!) 

+i(A,pp-A,u). (A 14) 
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The singularity structure of the universal singular functions in local field theory is simply seen by the 
stationary-phase method applied to the Lorentz group manifold. 

I. INTRODUCTION 

The universal singular functions in local field theory 
were defined about twenty years ago. t.2 One assumes 
that it is important to know the set of vacuum expecta
tion values of products of local field operators, in the 
sense that knowing all the moments of a field essentially 
characterizes the field itself. 3 In the Fourier analysis 
of these Wightman functions, a covariant decomposition 
of the momentum-space-support permits a group theo
retic extraction of the "angular" part from the volume 
integral while leaving behind the "radial" (or scalar 
product) part where the dynamics enters. 

The extraction of the universal singular functions is 
done as follows. 2 Consider the (n + I)-fold product as a 
function of n 4-vectors, 

F(n) (t k ) -= <0 [At (Xt) ••• An+t (xn+t) [0), 'k =Xk+t - Xk , 

!? = 1, ... ,n, (1) 

= const . J Il dPk exp(- i"6 Pk ·l:k) C(") (Pl' ... ,Pn) 

(2) 

== const· J Il d(APk) exp[ - i"6 (APk) 0 'k] 

X c(n)(APt, ... , APn) 

=const· J dV(w) c(n)(w) A (i'vI). 

(3) 

(4) 

In going from (2) to (3), we emphasize the invariance 
under P - Ap; A is an element of the homogeneous proper 
orthochronous Lorentz group. The universal singular 
function A(M) is simply the properly written covariant 
expression of the "angular" integral of the Fourier ex
ponential factors, namely 

A (M) = J d/-L (A) exp[- itr (AM)], (5) 

where d/-L(A) denotes the Haar measure on the Lorentz 
group, and}V[ is a matrix whose elements are formed 
by the mixed products of p and t, 

n 

/\;1'"" ="6 pt 'kv . 
k:l 

(6) 

The formalism can be set up for Lorentz spaces of 
arbitrary (m + 1) space-time dimensions where M and 
A are (m + 1) x (m + 1) matrices. For the cases n <S m, 
there is a certain economy in studying F(n) in a (n + 1)
dimensional space-time, the nontrivial cases are 
therefore those for which the number of independent 
vectors equals the rank of the matrices, i. e., n = m + 1. 

Analytic structure and explicit evaluation of A(M) 
would be items of obvious interest. Let us first sum
marize what is known on these. 

(a) Explicit forms of A(M) are known only for some 
special cases, namely n == 1, 2 for m = 3 t,2 and n <S 3 
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for m = 1. 2 There have been attempts to evaluate the 
integrals for higher nand m, but the results are by 
no means complete. 4 

(b) The analytic structure of A{!vI) of course can be 
read off in cases where the singularities of the inte
grand can be suitably displayed. The Lorentz group 
manifold technique (4) is an alternate (and hopefully 
more transparent) approach to the analyticity of the 
vacuum expectation values. The other approach is the 
so-called generalized singular functions A~+l' 5_9 Of 
course, the A(M) function and the A;:"t(z;a) function are 
closely related, but the spirit and the techniques in
volved are sufficiently different to warrant a separate 
analysis of A(M). The main result on the A~+l(z;a) func
tions is that their singularity domains are given by the 
following trace manifold5- 9 

n 

"6 (±~) = real, 
k=1 

(7) 

where Tk'S are the eigenvalues of the product matrix 
Za, Z and a are the Gram matrices in the x space and 
P space respectively, 

(8) 

The present work is prompted by the desire of finding 
a simpler way to see the sources of singularities of 
A(M), namely the manifold 

Im{tr[± (K:l]vI)1/2]} = O. (9) 

,i(:'1 is the transpose with the built in metric, 

(M)'"v =Mv'"· 

In matrix notation, we have 

M=GMTG, 

(lOa) 

(lOb) 

where MT denotes the ordinary matrix transpose and 
G is the matrix of g,," (goo = 1, gji = - 1, and zero other
wise). We note in passing that the result (9) stated 
above for A(}\;I) is consistent with the result (7) on A~+l 
by virtue of the following identity, 

tr(MM)=tr(Za). (11) 

The method of stationary phase is used here to es
tablish the following relation, 

tr(AM).tat1onary = tr[± (MM)11 2]. (12) 
phalo 

In this way, the singularity source of Eq. (9) is viewed 
as that coming from the ceasing of the exponential 
damping subject to the stationary phase prescription. 
The present analysis shows that result (9) can be es
tablished directly from (5) in a reasonably transparent 
manner 0 A simple way of visualizing result (12) is that 
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the right-hand side of (12) is actually a minimum as a 
consequence of the extremum principle. This minimum 
can perhaps be seen by invoking the Schwarz 
inequality. 10 

The motivation for the stationary phase method is 
briefly discussed in Sec. II. For the sake of readability, 
the parametrization of the Lorentz transformation A is 
stated in Sec. III. The two-dimensional case is reviewed 
in Seco IV where the result of the stationary phase 
method is compared with that obtained by the explicit 
evaluation. In Sec. V, higher rank cases are discussed 
with the aid of the diagonalization procedure on the 
matrix M. 

II. MOTIVATION FOR THE STATIONARY PHASE 
METHOD 

The method of stationary phasell is used here as a 
device of handling oscillatory exponential termso Tech
nically, the applicability of the method requires a limit
ing procedure such as a large parameter which enhances 
the oscillation. This may be understood by an appeal 
to the classical path integral by recovering a pz-1 factor 
in the exponential and taking the limit Pz - O. A similar 
approach to the Feynman integral was discussed by 
Nakanishi. 12 Application to the A~+l functions was studied 
by Faldt. 9 

,III. LORENTZ GROUP MANIFOLD: 
PARAMETRIZATION OF A AND dp(A) 

For a given space-time dimension m + 1, the parame
trization of the Lorentz transformation A and the in
variant volume element dll (A) can be worked out by 
standard procedure. One convenient scheme of param
etrizing a general Lorentz transformation A is to de
compose it into product form of a pure boost sandwiched 
between appropriate space rotations. 13 As is well known, 
this is a judicious generalization of the Euler angle de
composition for the rotation in 3-space. Explicitly, we 
have 

(a) m = 1 (I-space, I-time) 

A = (COShX sinhX):; A 
sinhX coshX 01' 

d(2) J.L (A) == dx, - 00 < X < 00; 

(b) m =2 (2-space, I-time) 

A =R12 (e) A01 (X) R 12 (¢), 

(

1 0 
R12 = 0 cose 

o - sine 
si~e) 
cose 

(13a) 

(13b) 

(14a) 

(14b) 

A.(X) ~ (:~~~ ~~r:, n, (14,) 

d(3)1l(A) = sinhxdxded¢, 0<s8, ¢<S21T, _oo<X<oo; 

(14d) 

(c) m =3 (3-space, I-time) 

A = R 23 (e) R 13 (1/J) R23 (¢) A01 (X) R 13 (CI) R 23 ({3), (15a) 
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where Rij (e) denotes a rotation in the (Xi, xi) plane, 
e. g., 

R 23 (e) = (:00 ~O c}se Si~e)' (15b) 
- sine cose 

A01 (X) denotes a boost [like (14c)] except here it is 4x4, 
and 

O<X<oo, O<SCI,I/J<S1T, 0<se,{3,cp<s21T. 

(d) For general (m + l)-space-time, we may write 

(16a) 

where R1 denotes a rotation in m-space, R2 would be 
a rotation in m-space also except for two reasons. One 
reason is that this would yield ~(111 - 1)(111 - 2) excessive 
parameters. The other reason is that the A01 matrix 
has a (m - 1) x (m - 1) identity submatrix in it which 
permits a tunnelling of a rotation in (m - I)-space. 
These two situations can be reconciled if R2 is the 
quotient of Rm/Rm_1' which yields (111 - 1) parameterso 
[CL Eqo (15a).] The volume element may be written as 

d(m+1> Il (A) = sinhm-1X dX dll (Rm) dll (R m/Rm_1). (16b) 

In the next section, we study the simplest case m = 1, 
n=2o 

IV. A TWO-DIMENSIONAL EXAMPLE REVISITED: 
EXPLICIT EVALUATION VERSUS STATIONARY 
PHASE PRESCRIPTION 

For the sake of illustration, consider the following 
example m = 1, n = 2, namely, the case of a three-point 
function in two-dimensional space-timeo 

A. Explicit evaluation 

Write 

M= (~: ~:) , ",= (~ :), 
with A given by (13a), we have 

tr(AM) = (trM) coshX + tr(1v1u1) sinhX 

where 

= [(tr2VZ"j2 - (tr(2vlu1))2]1/2 cosh(X + Xo) 

= [trC~IM) + 2 detM]1/2 cosh(X + Xo) 

= tr[± 0\12\11)1/2] cosh(X + Xo), 

(17) 

(18) 

(19) 

(20) 

The Lorentz transpose M was defined in (10). In the 
last step leading to (19), use has been made of the trace 
identity for a rank two matrix, namely 

trA 2 - (trA)2 + 2 detA = 0, 

with A = OI1M) 1 12. 

In this case, evaluation of A(1VI) readily gives 

AP> (M) = 1: dx {expi(tr[± (MM)1/2])} cosh(x + Xo) 

(21) 

=i1TH~ll(tr[± (MM) 1 1 2». (22) 
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From (22) it is seen that the source of singularities 
is at those points where there is no damping for the 
Hankel function, and that is where the argument for the 
Hankel function becomes real and positive, which lies 
on the manifold (9). 

B. Stationary phase prescription 

We indicate here how the stationary phase method can 
be made to give the desired result. The zeros of 
(a/ax) tr(AAJ) may be found from (18) or (19). The 
stationary phase prescription gives 

x=- xo 
and 

tr(AJvI) isp =tr[± UWM)1/2], 

verifying (12) for this simple example. 

(23) 

(24) 

It is obvious that as (n, m) goes up, the control of the 
integration scheme becomes increasingly difficult. On 
the other hand, the stationary phase prescription which 
is easier to handle, hopefully will give the desired 
result on the singularity structure. 

We note in passing that on account of the extreme 
simplicity of the above example, there is no need to in
voke the diagonalization of the 11'[ matrix in (18). How
ever, the diagonalization technique will become highly 
desirable in the treatment of higher rank cases. 

IV. HIGHER RANK CASES 
A. Two lemmas on diagonalization 

To facilitate algebraic manipulations, it will be con
venient to utilize two lemmas on matrix diagonaliza
tion. The first is due to Hall, 14 and the second one is 
an obviously parallel statemenL 

LelJl mn 1 (HaZZ14 ): A 2 x 2 matrix }vI, i'vI ~" = 'j}k=l PkJl.Y/k"' 
with positive timelike Pk' Y/k can be diagonalized by two 
boosts 

,11' = A(X1) MA(X2), (25) 

where A is of the form (13a). 

Proof: We simply exhibit the angles that will render 
AI' diagonal. They are 

tanh2X1 = - tr (:l1ia2;vI)/tr (iiia3M) , 

tanh2X2 = tr(Mia21W)/tr (Ala3}W), 

where 

(26a) 

(26b) 

(26c) 

Remark: The timelike condition on Pk and Y/k guaran
tees that such real A(X1) and A(X2) of the form (13a) 
exist. The usefulness of this lemma lies in the invari
ance of the volume element and the integrand in (5) under 
(25)0 In applying this lemma to the configuration space 
difference vectors lying in the tube domain,15 it suffices 
to take ~k = - iY/k with Y/k positive timelike and to continue 
analytically from there. 

Lemma 2: A 2x2 matrix N can be diagonalized by two 
rotations [N is understood to consist of spatial indices 
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only] 

N' =R(e1)NR(e2), 

where R(e) is of the form 

(
cose - Sine) 
sine cose • 

(27) 

Proof: The diagonalization is achieved with the angles 
e1 and e2 given by 

tan2e1 =- tr(NTa1N)/tr(NTa3N), (28a) 

(28b) 

Remark: Actually, the spatial part N of the matrix 
M being a symmetric submatrix can be diagonalized 
by orthogonal similarity transformations (spatial rota
tions). Then Lemma 1 can be repeatedly applied in the 
(Ok) planes to remove the nondiagonal elements in the 
first row and the first column. It should be realized 
that prior spatial diagonalization is essential because 
of the noncommutativity of boosts AOi and AOj in the 
different directions. 

B. Successive rotations and boosts 

As stated in Sec. III, a general Lorentz transforma
tion in the (m + l)-dimensional space-time may be 
parametrized as a product of a pure boost [say in the 
(01) plane] sandwiched between two sets of spatial 
rotations. The latter may be decomposed into suitable 
products of plane rotations. We may utilize the rota
tional freedom to effect first the block diagonalization 
of }'vi in the spatial indices in accordance with the re
mark following Lemma 2. Thus 

tr (AiH) = tr (R 1 A01 R 2M) = tr (A 01 R21vIR1) 

= tr(A 01 R2 XIR1) = tr(R1 A01 R2 M) 
=tr(A,VI), 

where 

J.[ = R2 ,l,lR1 
is diagonal in the spatial indices 

~ ~ ~ 

A=R1 A 01 R2• 

(29) 

What remains to be done is to use Hall's lemma re
peatedly to render 1M diagoanl in the time components 
also. 

We conclude that without loss of generality the M 

matrix in the integrand of (5) can be suitably 
diagonalized. 

C. Stationariness of the trace manifold 

Suitable parametrization of the Lorentz transforma
tion and the proper diagonalization of the matrix "vI are 
thus two technical devices which considerably simplify 
the evaluation of the trace quantity. We have (the matrix 
i'vI below is understood to be diagonal) 

tr(AM) = tr(A01 Rl'vIS), R, S are rotations 

= (MOo + R\ lVlkJ SJ 1) coshX + tr(lBi 5), 
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where the double bar quantities denote the correspond
ing (m - 2) x (m - 2) submatrices with indices running 
from 2 to m. The sinhX term is absent on account of the 
accomplished diagonalization of M. The demand of the 
stationary phase in each of the angle variable (Lorentz 
as well as Euclidean) then results in the following. 
First the stationariness in the boost angle X which im
plies X = 0 gives 

tr(AM) Istat. boost =JI,,f)O +tr(R'M), (30) 

where the single bar quantities denote the correspond
ing (m - 1 ) x (m - 1) submatrices with the indices run
ning from 1 to m, and R' =SR. For the remaining 
spatial indices, it is obvious that the orthogonal mani
fold for the rotational matrices would simply reduce the 
trace quantity in (30) to assume the value tr[± (MTM)1/2]. 
Hence 

tr(AM) Isp =tr[±(MM)1/2] 

which is the result stated in (12). 
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Using an abstract algebraic approach, we obtain a new derivation of the KMS condition from a stability 
property of an infinite system via a classical version of the Tomita-Takesaki theorem. 

1. INTRODUCTION 

In a recent work1 the problem of characterizing the 
equilibrium state of an infinite classical particle system 
has been studied. Invariant states under the infinite 
Hamiltonian dynamics have been analyzed and it has 
been shown that an invariant state "regular enough" 
must satisfy the equilibrium condition. An analogous 
result had been previously obtained for quantum sys
tems2 and later improvements had been given in Refs. 3 
and 4, where it was shown that it is possible to relax 
the order of a cluster assumption; the explicit use of 
the modular automorphism made clearer in some sense 
the proof. For classical systems an equivalent of the 
Tomita-Takesaki theorem was given in Ref. 5, and the 
main theorem there can be summarized as follows: 

Theorem 1.1: Let (K, M, w) be a probability space, 
iL be a se1£- adjoint operator, and A be a self- adjoint 
algebra of essentially bounded functions with identity 
contained in the domain of iL, such that A is a core for 
iL and 

L (r;=gLf+/Lg V f,g eA. 

Then there exists a one-parameter (modO) family of 
measure preserving transformations T t , tER of K such 
that 

f(Ttx)=(eLt/)(x) , xEK, fEL 2 (K,w) , tER. 

In our paper we mimic the proofs in Refs. 3 and 4 in 
order to obtain an analogous result for classical sys
tems USing Theorem 1.1 instead of the Tomita-Takesaki 
theorem; unfortunately we are not able to relax the or
der of clustering assumption. We need the same condi
tion of threefold mixing as in Ref. 1; this is not too 
bad however, since there is not any known mixing dy
namical system which is not also n-mixing. 

Further remarks on the difference between our paper 
and Ref. 1 will be found in Sec. 2. 

2. NOTATION, DEFINITIONS, AND RESULTS 

Let (K, ~,w) be a probability Lebesgue space and let 
Cit:K-K, tER be a representation of R as one-to-one 
w-preserving transformation of K into itself. We re
quire that 

*Partially supported from CNR under contract no. 75/0042202. 
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t- w(A rl CitB) 

be measurable for all A and B in 6. 

We denote by U t the action of the group transforma
tion on the functions 

The measurability requirement implies the weak mea
surability of U t . Therefore, there exists a self-adjoint 
operator H on the separable Hilbert space L2(W) such 
that Ut = e iHt (see Ref. 6). 

We suppose that a L 2 (w)-dense, self-adjoint algebra 
with identity, Ii C L~(w) exists with the following pro
perties: 

(1) A C [)(H) , 

(2) utli e Ii V t=:R. 

Remark: It follows that A is a core for H. 

A bilinear map (Poisson brackets) 

{. ,.}: Ii x Ii - L 2(W) 

with the following properties is supposed to exist: 

(i) {r,r;} = - {g,/}, 

(ii) {r,g} = {J,g} , 

(iii) {r,gh} = {f,g}h + {r,h}g , 

(iv) {utf, Utg} = U ttt,g}. 

Definition 2, 1: A system Y = (K, Cl', w, A, { • }) with the 
above properties will be called a Poisson system. 

Definition 2.2: For allf,gEA two functions are de
fined as follows: 

F,,/f(t)=w(fUtg)- w(f)w(g) , 

Gf,g(t) = w({r, utg}) , 

Definition 2. 3: A Poisson system is said to satisfy the 
KMS' condition at some temperature {3 _1 if the following 
holds: 

Definition 2. 4: A dynamical flow (J(, Cl', w) is said to be 
k-fold mixing if 
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w(Ut/ l ••• UtKf K) mini ti_tjl':~ W(f1) ••• w(f K) 
iJ 

"if fl' ··fKEL~(W). 

A twofold mixing system is said to be simply mixing. 

Definition 2.5: A Poisson system Y is said to have 
correlations L1 decreasing in time if 

FI,g(t) E L 1 (R) "if f,gr=. A. 

Definition 2.6: A Poisson system Y is said to be p
dispersive if 

Definition 2.7: A Poisson system Y is said to be 
stable if: 

(i) "iffr=.A,f=l, 30r=.R:"ifAr=.(O,O) there exists aprob
ability measure WXf formally invariant for the perturbed 
dynamics generated by L + A {f • • }, where L = iH is the 
Liouville operator, i. e., 

wXf(Lg+A{f,g})=O "ifgr=.Q. 

(ii) wXf« w; we denote by Pv the L 1(w) density giving 
wV. 

(iii) PXfr=.L~(w) and limx_owXf(g)=w(g) "ifgr=.L 1(w). 

Our main result is the following: 

Theorem 2.1: Let Y be a Poisson system which is 
stable, I-dispersive, threefold mixing and with corre
lations L1 decreaSing in time. If the functions 
w({Utf,U,gUuh}) are polynomially bounded in l,s,1i for 
all f,g, hE A, then there exists a temperature {3 -1 for 
which Y is KMS. 

We shall prove the above theorem in the next section. 
It may be useful now to say a few words about the de
finitions given above and to compare our result with the 
similar one in Ref. 1. In our approach we deal with the 
abstract structure of the Poisson system without any 
reference to concrete physical systems. Nevertheless 
we have in mind, as in Ref. 1, an infinite classical sys
tem, where K is the phase space, Cl! is the almost every
where defined time evolution, and w is an invariant 
measure. A is an algebra of nice observables on which 
the formal Poisson brackets make sense. The choice of 
A is delicate and not unique. If A is large one can show 
that the KMS condition is equivalent to the equilibrium 
condition. 7

•
8 However in our present context A may not 

be chosen too large since it would then be difficult to 
prove the dispersivity and clustering properties. Ac
tually such difficulty can be overcome only in the free 
gas case. For a deeper discussion of this point see 
Ref. 1. Finally we observe that we use the weaker 1-
dispersivity rather than the 2-dispersivity as in Ref. 1; 
the price we pay is the strengthening of the stability 
property, requiring PX/r=.L~(w) rather than PX/EL2(W). 
The polynomial boundedness in Theorem 2.1 and the L 1 

decrease in time of the correlation functions lead to a 
KMS condition valid for all t rather than for almost all 
t as in Ref. 1 where such a property is not required. On 
the other hand, it would be sufficient there to require 
the continuity of the G functions to recover the same 
stronger result, which is needed in order to show the 
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equivalence between the KMS and the equilibrium condi
tions. 

We conclude this section deriving the only conse
quence of the stability we will use in the sequel. For 
allf,gr=.A, f=lthe invariance property gives 

:t wV(Utg) = _AWV({f, utg})· 

Then 

w(pv Utg) - W(Pll UTg) = -A 1:~ XTw(P1Af, Utg})dt , 

where XT =" X [-T, Tl is the characteristic function of the set 
[-T, T]. Taking the limit T- 00 and using the dominated 
convergence theorem and I-dispersivity we obtain 

1: W(P1/{f, Utg})dt = O. 

When A - 0 the sequence of L1 functions w(PAAf, Utg}) 
converges pointWise to the measurable function 
w({f. Utg}); the uniform boundedness theorem gives 
the following estimate: 

'W(PA/{f, Utg}) , ~ cll{f, u tg}11 1 E L1 (R) , 

and so 

(2.1) 

Finally one gets the same equality for complexf USing 
the self-adjointness of A and the linearity of the Poisson 
brackets. 

3. PROOFS 

In the proof of Theorem 2.1 we need two lemmas 
which we state separately and will prove later. Lemma 
3.1 below is essentially contained in Ref. 1 and Lemma 
3.2 is based on an Abelian version of arguments given in 
Ref. 4. We give here the proofs for sake of complete
ness. 

Lemma 3.1: Let Y be a Poisson system verifying the 
hypotheses of Theorem 2.1. Then the following identity 
holds: 

Gg1g2 (A)F 11/2 (A) = G 11/2 (A)F glg2(A) . 

G and F are the Fourier transforms of G and F, re
spectively. 

Lemma 3.2: Let (K, w) be a measure space and H be 
a self-adjoint operator on L 2 (W) such that e iHt gives a 
mixing automorphism of L~(W) for all fER. Let rp be a 
real measurable function such that ell/> (Hlt gives an auto
morphism of L~(w) for all tr=.R. Then there exists {3 
r=. R such that rp(x) = {3x. 

Proof of Theorem 2.1: Let DCR be the set of all 
those A for which there exists ~ome f,g r=. 1/ with F 1,g(A) 
"* O. D is open because all the F's are continuous. As a 
consequence of Lemma 3.1, for all A in D there exist 
f 1'/2 E A such that 

G g1g2 (A) :: [G /r/2 (A)\F 11/2 (A) JF g1g2 (A) "if gIg 2 r=. A . 

The function A - G frlz\F fr/2 =" if! does not depend clearly on 
the choice of 1i.'/2; it is £ontinuous because of the con
tinuity of the FI,/S and GI,/s,f,gr=. A, and purely imag
inary because GIg(t) = -GgI(-t) due to the symmetry pro-
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perties of the Poisson brackets. If 0 E: D it follows from 
Eq. (2.1) that .p(O)=O. We extend IJ! (denoting 
it also by i/J) on the whole real line by put-
ting i/J(A)==O if A tED. Let us put ¢==-ii/J. In 
order to investigate the self-iadjointness pro-
perty of ¢(H) we introduce two sets of functions, D D' D D' 

D D is the set of functions in L (R) with compact support 
contained in D; D D is the set of functions whose Fourier 
transforms are in DD' We define 

Doo ={f.p II .. =- J ({J(t)Utfdt , ({J E: '0 D' IE:Ii}. 

Doo is dense in L 2(w). In fact, take a sequence {({J/,}:l 
suchthatqJn'XJ>, (PnE:!J D , where XD is the characteristic 
function of D. Then for all IE: II, 

lim fipn = lim '(pn(H)1 = XD(H)I 
"_00 n_oo 

and, if w(f) == 0 

II X D(H)I - f liZ ,,; J I XD(A) - 1111dE~W 

"'" JH\D F7.t(A)dA == 0 • 

The density of D", follows from the density of Q. D", is 
a set of analytic vectors for ¢(H). This follows from 

the estimate 

J j¢(A)12n(f({J, dEd({J}=J 1¢1 2n lcPh/,dEx/) 

,,; Ilfl@I({Jlli supp I ¢(A) 12
". 

).~ BUPPfP 

r!J(H) is therefore essentially self-adjoint on D",. 

We show next that, if 1100 is the algebra generated by 
D

oo
, then ¢(H) is defined on II", and acts on it as a deri

vation. If/,gE: Ii 

w({l,g}) == i J ¢(A}(/, dExg) . (3.1) 

Then, if e E: '0 D 

(g, r!J(H)/8)= J &(A)r!J(A}(g,dExf)==i J e(A)Gg,,(A)dA 

= i J e(t)G1.f(t)dt == J dt e(t) J (g, dE). Uti) r!J(A) • 

(3.2) 

Let uS now putj==f8 , g=g"" h=h/, e,({J,~E:OD' Then 
using (3.2), 

i(gii, <P(H)j) ==i J ds ({J(s) J du ~(u)(UsgUJi, <p(H)fe) 

== i J ds ((J(s) J du ~(u) J dt e(t) 

x J (UsgUuh,dExUtf)CP(A) 

= J ds ((J(s) J du ~(u) J dt e(t)w({u;guJi, Utf}) 

:= J ds ((J(s) J du Hu) J dt e(l)[w({us,:r,u)iUtf}) 

+w({u)i, UsgUtf})}· 

Because of the polynomial boundedness of the w's we 
may change the order of integration and obtain, using 
(3.1) , 

i(gh, <P(H)j)==i J dt e(t) J ds ((J(s) J du ~(u) 

x J <P(A) (dE (A)Uuh, UsgUtf) 
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+i J dt e(t) J du ~(u) J ds ((J(s) 

X J <P(A)(dE(A)Usg, UJzUtf) . 

Finally, using (3.2), 

i(gh, <P(H)j) = i(j,g<P(H)h) +i(j,h¢(H)g) . 

We have shown that ¢(H) is an essentially self-adjoint 
derivation on the algebra of bounded functions II", and 
therefore, by Theorem 1.1 eill>!lilt implements a group 
of automorphisms of L",(w). From Lemma 3.2 and Eq. 
(3.2) the thesis of the theorem follows, since there 
exists a real !3 such that 

w({J,g}) = - {3(f,Lg) V l,gE: Ii. 

Prool of Lemma 3.2: We follow closely the proof of 
Lemma 1 in Ref. 1. Let us define 

G(t, u, s) = W({gl Uuf2' Ut(g, UU- S f2)})' 

From (2.1) 

J G(t,u, s)dt: J dtw(UuUl , Ut-sfZ}gPtg2) 

+ J dtW({gl' Utgz}UuU1Ut-sf2» 

+ J dtw({Uu/l,Utg2}glUt+u-sj~) 
+ J dt W({gl' U t+u-sfz} UJ1 Utgz) == O. 

Let us take the limit u - 00; the integrands of the first 
two terms are bounded respectively by 

Igll '" Ig21 ",w(1 Ul , Ut-sf2}!) E: Ll (R) , 

1/11 ",1/2 1 ",w(l{gl' utgz}\) c: L 1(R). 

The mixing property, the invariance of the state, the 
bounded convergence theorem and (2.1), when u - 00, make 
the first two terms equal to 

The last two terms can be written as 

J dt w({/l1 Ut g 2}U-ugl Ut+u-sfz) , 

J dtW({gl' Ut_sfJuJ, ut-ug 2) 

The integrands are bounded respectively by 

Igl \ '" \121 ",w(1 Up Ut g 2} I) c: Ll (R) , 

\/1 \ ",lg21 ",w(l{gl' ut-sfz}J) E: Ll(R) , 

so the last two terms converge to 0 because their inte
grands converge pointwise (threefold mixing), respec

tively to 

w(U
1

, u
t
g 2})W(g)W(f2) and W({gl' Ut_sf2})WUl)W(g2)' 

Finally we have 

(F
glgz 

* G f
l
f

2
)(l) := (F f

l
'2 * G gl(2)(t) 't/ I, g c: II 

and this completes the proof. 

Prool 01 Lemma 3.2: Let us define the two-parame
ter group V(t, s) "" e-iHte-11l> (H)8. The closed set 

SpV={AE:Rzl~(.\)=O 't/({JE:Ll such that V({J:=O}, 
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where Vw '" J cp(T)VTdT is additive, as can be seen 
adapting to the Abelian case Theorem 4.1 in Ref. 4. 
Then, 

Vw = J $(;\, cfJ(;\»)dE)., 
where E). is the spectral family of H. Hence, 

Sp V= {(;\, cfJ(;\» 1;\ E SpH}. 

The additivity of Sp V implies cfJ(;\l + ;\2) = cfJ(;\) + ¢(;\2)' 
The lemma is then proved. 
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Classical particles with spin. I. The WKBJ approximation 
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This is the first of a series of papers developing the classical theory of a spinning particle. The equations 
of motion will be derived from a Lagrangian. and solutions for the classical trajectory and spin precession 
in external fields will be given. In this paper an abstract spin vector is introduced to characterize the spin 
of a classical particle. Lagrangians for the classical trajectories and for the motion of the abstract spin 
vector are derived from corresponding quantum-mechanical Lagrangians by the WKBJ approximation 
method for nonrelativistic and relativistic particles. The equations of motion for the trajectory and the 
abstract spin vector following from the extremalization of these Lagrangians are given. The equations of 
motion for the precession in an external electromagnetic field of the spin vector (or tensor) in space-time 
is derived from the equations of motion for the abstract spin vector. In the relativistic case. they are 
equivalent to the Bargmann-Michel-Telegdi equations [Phys. Rev. Lett. 2. 435 (1959)). The 
relationship between the ensemble and single-particle points of view is also elucidated. 

I. INTRODUCTION 

In this series of papers we discuss the theory of clas
sical particles with spin. That subject has a long history, 
which we will not review here, although we will give 
some references to the most relevant literature in the 
course of our work. 1 What distinguishes our approach 
from most of the existing work in the field is that we 
do not consider the spin tensor (or vector) as a primary 
quantity in defining the theory, but rather as derived 
from some more fundamental representation of the rota
tion or Lorentz group, depending on whether it is a non
relativistic or special-relativistic particle that is being 
treated. This, of course, is the way that spin enters 
into quantum mechanics, where the wavefunction cor
responding to a particle with spin is taken to be a multi
component entity, with the approriate transformation 
properties under the relevant groups. The point is 
that there is nothing fundamentally quantum mechanical 
about such a concept of a particle, and the same ideas 
may be applied at the classical level. 

So our basic concepts are a trajectory in space-time, 
to be picked out by some equation of motion, and a 
spinor, vector, tensor-what have you-attached to 
each point of that trajectory with appropriate transforma
tion properties under the rotation group (for nonrelati
vistic theories) or the homogeneous Lorentz group (for 
special-relativistic theories) which also obeys some 
equation of motion along the trajectory, We shall refer 
to this entity as the abstract spin-vector since it is a 
vector in some abstract space on which a representation 
of the appropriate group acts. Then, the usual spin 
tensor (or vector) is derived from this basic spin rep
resentation by some operation on it which produces an 
antisymmetric tensor (or vector) in the Galilei-Newton-

a)On leave from the Department of Physics, Boston University. 
This material is based upon research supported by the Na
tional Science Foundation under Grant No. INT76-05769. 

b)On leave from the University of Warsaw, Warsaw, Poland. 
Partially supported by C. O. N. A. C. Y. T. de Mexico. 
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ian or Minkowski space of the trajectory. 
In the earlier literature, we find this point of view in 

Schiller, 2,3 who starts from such a classical theory of 
the electron; and implicitly in Pauli, 4 Rubinow and 
Keller,5 who treat the classical motion by means of a 
WKB expansion of the Dirac equation. Rafanelli and 
Schiller6 show that the classical equations of motion 
for the electron may be derived from the WKB approxi
mation to either the Dirac equation or the squared Dirac 
equation. 

Our approach is also characterized by the assumption 
that the trajectory is not influenced by the spin cha
racteristics of the particle. Thus, we eschew all those 
theories of the spinning particle in which momentum 
need not be parallel to velocity, with their accompany
ing classical Zitterbewegungen. Such theories have 
their interest, and indeed may also be motivated by 
certain types of approximation to quantum mechanical 
equations of motion, just as we shall motivate our ap
proach in this paper, by a discussion of the WKBJ or 
eikonal type of approximation. However, they are not 
the type of theory that we wish to develop here, in which 
the trajectory of the particle is not affected by its spin. 7 

We could, at this point, just betiin to consider such 
classical systems, for example, by writing down a 
Lagrangian giving rise to the desired equations of mo
tion. However, we shall motivate our approach by show
ing that the equations that we shall consider can be 
looked upon as the WKBJ or quasiclassical limit of 
well-known quantum mechanical equations. 

The WKBJ approximation4 consists in making an 
asymptotic expansion of the wavefunction in powers of 
If, 

~! = exp(iS/If) = exp(i/If)[So + (1f/i)Sl + (1f/'i)2S2 + ... ], 

(1. 1) 

with the assumption that So is a real scalar function of 
the coordinates and time, while Sj (i = 1, 2, 3, ... ) are 
abstract spin vectors like ~) itselL This is equivalent 
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to assuming the expansion to be of the form 

~ = [Ro + (1i/i)R1 + ... J exp(iSo/lf) (1. 2) 

as Pauli4 points out, where the R j (i = 0, 1, 2, ... ) are 
abstract spin vectors. This expansion is then usually 
inserted into the wave equation for ~. However, we 
shall insert it into the variational principle for the 
wave equation, thus getting an expansion of the variation
al principle to various orders in If. We shall refer to the 
terms of this expansion as zeroth order, first order, 
etc., meaning order in powers of If, and not the order 
of the highest derivatives in the variational integrand. 
Variation of the nth order term will then yield the cor
responding order in the expansion of the wave equation. 
Of course, since the zeroth order in the WKBJ expan
sion of a wavefunction corresponds to a classical en
semble, 8 we must expect to get the ensemble form of 
our classical equations, involving the action function 
S, Hamilton-Jacobi equations, etc., rather than getting 
the trajectories directly. But, of course, since any 
solution to the Hamilton-Jacobi equation corresponds 
to an ensemble of mechanical trajectories which can be 
derived from it, this constitutes no problem. 

In this paper, we shall first discuss the spinless 
particle, nonrelativistic and relativistic, in an external 
electromagnetic field in order to demonstrate some 
features of our approach, which works from the action 
principle directly, in the simplest possible context. 
Then we shall discuss the Pauli and Dirac equations 
for nonrelativistic and relativistic particles of spin t, 
both interacting with external electromagnetic fields. 
We could easily extend our results formally to particles 
of any spin interacting with the electromagnetic field. 
However, in view of the well known difficulties with the 
external field problem for higher spin particles, 9 it is 
doubtful if these results would have more than formal 
significance. It is interesting, of course, that these 
difficulties do not manifest themselves at the level of 
the quasiclassical approximation. Of course, there is 
no difficulty with extending the results of this paper to 
free particles of arbitrary spin, but the results then 
are rather trivial: The abstract spin-vector is just 
parallel transported along the free particle trajectory. 
Finally, we shall consider the transition from the en
semble to the single-particle Lagrangian. 

In the next paper we shall generalize the particle 
Lagrangian for the relativistic particle with spin t in
teracting with an external electromagnetic field, de
veloped here, to the most general possible relativis
tically invariant interaction, and discuss the solution 
of the resulting equations of motion. 

II. NONRELATIVISTIC SPINLESS PARTICLE 

We start from the well-known variational principle 
for the Schrodinger equation, 

{j J ~* (iff :t - Ii) 1)J(]'Jx dt = 0, (2.1) 

where H is the Hamiltonian for the particle 

~ 1 [ n e ]2 H=- \1--;--A + V 
2m 1 c ' 

(2.1') 
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where V includes erp, the electric potential energy, as 
well as any other scalar potentials, and A is the mag
netic potential. We now insert the WKBJ ansatz10 ~ 
=Ro exp(iS/n) directly into the variational principle, 
giving 

{j J Rt [- ~~ - 2~ (\1S-~Ar - V] Ro(]'Jxdt=O, (2.2) 

where we have omitted all terms of first or higher order 
in n. 

Variation of (2.2) with respect to Rt, yields 

[~~+2~ (\1S-~Ar +V]Ro=O, (2.3) 

and we see that if Ro does not vanish, the nonrelati
vistic Hamilton-Jacobi equation must hold for S. Vari
ation of (2.2) with respect to S gives 

alRol2 +\1. [ IR oI2 (\1S-!!.A\] =0. (2.4) 
at n1 \ c 1 

The Hamilton equations for the trajectories correspond
ing to solutions of the Hamilton-Jacobi equation (2.3) 
show that 

e 
mv =\1S --A, 

c 
(2.5) 

so that (2.4) is just the equation of continuity for IRoI2, 
the density of trajectories in configuration space. 

Thus, we have derived the equations of motion for an 
ensemble of trajectories, from the zeroth-order WKBJ 
approximation to the Lagrangian for the Schrodinger 
equation. The density of trajectories IRo 12 is also de
termined by the equation of continuity, which is easily 
converted into an equation for the ordinary derivative 
of I Ro 12 along a mechanical trajectory determined by S, 

dlR ol2 + IRoI2\1. [\1S-!!.A] =00 
dt m c 

(2.6) 

But this does not enable us to determine Ro itself, which 
contains a phase factor, undetermined so far. As we 
shall see, this phase factor can be determined from the 
first-order approximation to the Lagrangian. This is 
the reflection, at the spinless particle level, of the 
same feature we shall find for particles with spin: To 
determine the trajectories, we only need S, which is 
fixed by the zeroth-order approximation to the Lagran
gian as a solution to the Hamilton-Jacobi equation. 
However, to fix the motion of the abstract spin vector 
(in this case just the phase of R o), the next approxima
tion must be calculated, even though the resulting equa
tion of motion for the spin is independent of n, and in
deed of any other quantities characterizing the next 
approximation. 

We shall not bother to give the derivation of the equa
tion of motion for Ro from the first-order approxima
tion, since it can be deduced immediately from our dis
cussion for the Pauli equation in Sec. III, by setting 
the terms with a= ° in Eq. (4.7). We merely note that 
the result is 

dR o = _ _ l_ R o \1. (\1S -!!.c A) . 
dt 2m 

(2.7) 
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Comparing (2.6) and (2.7), it follows that the phase 
of R o is constant along a mechanical trajectory, 

(2.8) 

Summarizing our results, we see that the zeroth
order WKBJ approximation yields the nonrelativistic 
Hamilton-Jacobi equation; a class of mechanical tra
jectories can be derived from a solution to this in the 
well-known way. It also gives the continuity equation, 
which enables us to determine the evolution of the mag
nitude of Ro, along a mechanical trajectory, given a 
solution to the Hamilton-Jacobi equation. Thus, the 
magnitude of Ro is determined for an ensemble of tra
jectories; it corresponds to the denSity in configura
tion space of the particles in the ensemble, but it is 
not a quantity which has any meaning for an individual 
trajectory independently of an ensemble. So it is not 
surprising that its evolution cannot be determined in
dependently of S. On the other hand, the phase of Ro 
along a mechanical trajectory is obtained from the 
first-order WKBJ approximation. Its evolution is mean
ingful for an individual trajectory, quite apart from any 
ensemble to which the latter may belong. In our case, 
this equation is trivial-the phase stays constant. But 
this feature of the results will generalize to other cases 
with spin: The magnitude of the abstract spin-vector 
will be meaningful only for the ensemble point of view, 
while the evolution of the "unit" abstract spin vector 
will be determined by an equation of motion along a 
single trajectory. 

III. RELATIVISTIC SPINLESS PARTICLE 

We start from the Lagrangian for the Klein-Gordon 
equation with external electromagnetic fieldll

: 

J[(-/"V-~A) ~*.(~"V-~A) ~_m2e2~*~]d4X. 
(3.1) 

Inserting the WKBJ ansatz ~ = ¢ exp(iS/1f) into (3.1) and 
again keeping only terms independent of 1f, we get 

Variation with respect to ¢* gives 

[("VS-~AY _m2e?]¢=0; (3 0 3) 

and again, if ¢ does not vanish, the relativistic 
Hamilton-Jacobi equation must hold (variation of ¢ 
again leads to the conjugate equation) 0 Variation with 
respect to S leads to 

Since the Hamilton-Jacobi equation (3.3) implies 
Hamilton's equations of motion for the trajectories, 

(304) 

we again see that (2.5) holds, now as a 4-vector equa
tion; and thus (3.4) is a continuity equation for ¢*¢, 
the density of trajectories. Thus, the zeroth-order 
WKBJ approximation again determines the relativistic 
Hamilton-Jacobi equation, a solution to which yields 
an ensemble of mechanical trajectories; as well as the 
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equation of continuity, which determines the evolution 
of the magnitude of ¢ along each trajectory, given a 
solution SoW e omit the details of the proof that the 
first- order WKBJ approximation determines the evolu
tion of ¢ along a trajectory given S; from which it fol
lows that the phase along each trajectory is constanL 

IV. NONRELATIVISTIC PARTICLE OF SPIN t (PAULI EQUATION) 

We start from a variational principle for the Pauli 
equation, 

5 

where 

Here, ~ is a two-component spinor, f its Hermitian 
adjoint, (J" the Pauli matrices, A the electromagnetic 
vector potential, and V a scalar potential energy which 
includes e¢, where ¢ is the scalar electrostatic poten
tiaL We again insert the WKBJ ansatz, but this time 
the coefficient of exp(iS/1f) is a two-component spinor. 
Since we shall have to consider both the zero- and first
order approximations, we include two terms in our 
ansatz: 

~+ = (D~ -~ nr ) exp(- is/n), 
(403) 

where Do and Dl are two-component spinor fields, In
serting this into (4.1) we expand the Lagrangian up to 
first order in 1f, 

t: + [as 1 ( e) 2 ] 3 L=JDo -at-2m "VS-cA -V Dodx 

+ r{ ~ (D~Dl _ DrDo) [_ as _ ~ ("VS _ £A) 2 _ V] 'J l at 2m e 

_'!.D+[iJDo+_1_("V2S)D +~ (,..,S e A ) ""D i 0 at 2m 0 m v - C 0 v 0 

- 2
ie 

(J". B Do]} rf3x c 

me 

Variation of the first-, or zeroth-order term gives 

(4.4) 

5D~=~[~~+2~1I ("VS-~A)2+VJDo=0, (4c5a) 

5S =.."> :t (D~Do) + "V . [ D~Do ("VS - f~~/ e)A ) ] = o. (4.5b) 

Variation with respect to Do yields the Hermitian con
jugate of (4. 5a) and thus nothing new. If Do'" 0, we see 
that (4. 5a) implies that S obeys the nonrelativistic 
Hamilton-Jacobi equation; while (4, 5b) is again a con
servation law for the magnitude of Du from which it 
follows that 

~ (D+ D )-1/2 =_1_ "V2S(D+ D )-1/? 
dt 0 0 2m 0 u 

(4.6) 

Thus, the evolution of the magnitude of Do along each 
mechanical trajectory is again fixed by S which deter
mines an ensemble of trajectories, To determine the 
evolution of do = Do/(D~Do)1/2, the "unit" abstract spin 

J. Stachel and J. Pleba~sk i 2370 



                                                                                                                                    

vector (dOdo = 1), we need to look at the first-order 
variation of (4.4). 

Notice that variation of the term in (D~D1 - DiDo) with 
respect to the D's will yield nothing new, since its co
efficient vanishes by virtue of the zeroth-order equation 
(4.5a). Thus, it may be omitted from the Lagrangian if 
only results involving Do are desired. 12 Variation of the 
remaining term with respect to D~ yields 

aD 1 ( e) 1 2 ie _0+_ VS--A .VDo+-(VS)Do--
2
-(a.B)Do=O. 

at m e 2m me 

(4.7) 

Variation with respect to Do yields the Hermitian con
jugate of (4.7) [it is easily checked that (4. 5b) actually 
follows as a consequence of these two equations]. Now, 
the first two terms in (4.7) are seen to equal dDo/dt, 
since mv=VS- (e/e)A along a mechanical trajectory, 
as a consequence of the Hamilton-Jacobi equation. 
Thus, (4.7) is indeed the equation required for deter
mining the evolution of Do, given a solution of the 
Hamilton-Jacobi equation. Our previous work suggests 
that the equation of evolution of do will be independent 
of S. Indeed it is easily shown that 

d ie ( ) -do=-- a·B do 
dt 2me (4.8) 

Thus, the motion of the particle and of its abstract 
spin-vector in an external electromagnetic field are 
given. It only remains to see how the spin-vector in 
Galilei space-time is determined as a consequence of 
this equation of motion. Since dOado -= S will transform 
as a 3-vector in space as a result of the transformation 
properties of the two-component spinors and the a 
matrices, it is natural to take this as the definition of 
the spin-vector (actually, any multiple of this could be 
used, since the resulting equation is linear homogene
ous in S). Using (4.8) and its Hermitian conjugate for 
dO, we find immediately that 

dS -e -=-(SXB) 
dt me ' (4.9) 

the equation of motion for spin precession in a magnetic 
field, for a particle with gyromagnetic ratio two, as 
might be expected from the Pauli equation. 

Note that if we break up Do into an amplitude R times 
do, 

(4.10) 

we get a representation of Do similar to the amplitude
phase representation of a complex number. We shall 
use this breakup in our discussion of particle Lagran
gians in Sec. VI. 

V. RELATIVISTIC PARTICLE OF SPIN t (DIRAC EQUATION) 

Now that our approach is (hopefully) clear, we take 
up the most complicated example we shall consider in 
this paper, the relativistic spin- ~ particle in an external 
electromagnetic field, described quantum mechanically 
by the Dirac equation. We start from the variational 

2371 J. Math. Phys., Vol. 18, No. 12, December 1977 

principle, 

o {~[T(a" +~A.) if+yif -ifY (TO' - ~A.) if] 
+mefif}d"x=O, (5.1) 

where if is a four-component spinor field, if+ its "adjoint" 
field defined by 

if+=if*Y\ (5.2) 

and if* is the Hermitian adjoint of if.13 Inserting the 
WKBJ ansatz 

if = (Do + TD1) exp(- is/if), if" = (UO - TD1) exp(- is/if) 

(5.3) 

(note that we have used the same notation, Do and Db 
for the 4-spinors here that we used for the 2-spinors 
of the last section), into the variational principle, we 
get the expansion of the Lagrangian up to first order in 
If, 

JD~[- yK (OKS - ~AK) + me] Do (rX +/ T[~ yK Do 

- D~yKD1»)(aKS - ~AK) + me(UoD1 - D;Do) 

+ % (OKD'OY Do - D~yKa.Do)] d"x. (5.4) 

Variation of the zeroth-order terms in (5.4) gives 

oD~ => [Y (a.s -~AK) - me] Do = 0, (5.5a) 

oS => aK(D~y Do) = O. (5.5b) 

[Again, variation with respect to Do yields the adjoint 
equation to (5. 5a).]14 Equation (5. 5a) will not have any 
solutions, for nonvanishing Do, unless the determinant 
of the matrix in brackets vanishes. This condition is 
easily seen to be equivalent to the relativistic Hamilton
Jacobi equation 

rt'v(a"S-~A,,) (avs-~~)_nz2c2=0. (5.6) 

The matrix is of rank two, as Rubinow and Keller 
noted,5 so that there are only two linearly independent 
solutions to (5. 5a), once S satisfies (5.6). We will not 
have to use the form of these solutions, given by Rubinow 
and Keller, but will continue to work with an arbitrary 
solution. 

Now we look at the variations of the first order terms 
in (5.4). Again, variation with respect to Dl and Di 
merely reproduce equations (5. 5a) and its adjoint. Thus, 
the first equations we require result from the variation 
of the first- order part of (5. 4) with respect to Do and 
D~, 

yOKDO + [Y (aKs - ~AK) - me] Dl = 0, 

oKD~yK + Di [Y (ilKS - ~AK) - me] = O. (5.7b) 

Note that, because of the first-order derivative form 
of the Dirac equation, we cannot avoid the appearance 

J. Stachel and J. Pleba~ski 2371 



                                                                                                                                    

of D1 and Di in our first-order equations, as we could 
in the previous second-order wave equations. Our task 
is to derive equations of motion for Do which will not 
include D1 • We can do this by straightforward computa
tion of d/dr(Do), using our previous equations and a 
little manipulation of y matrices. By definition, 

dDo=a D dx
K 

dr K 0 dr (5.8) 

along any mechanical trajectory, where r is the proper 
time along the trajectory, But the equations for the 
trajectory following from the relativistic Hamilton
Jacobi equation show that 

(5.9) 

substituting this into (5.8), 
= H yK.y- + .y-yK) , we get 

and remembering that rf~ 

dDo 
dr 

(5,10) 

When we expand the parenthesis in (5.10), we get two 
terms, the second of which is 

.y-yKaKDo (iJ~S _ ~A,) . (5.11) 
2m e 

By using (5. 7a), and (5.6) this can be reduced to 

e 
-zyaKDoo 

The first term in (5.10) is 

Y
2

Y' aKDO (a,s -~A~\ 
111 e ~ 

By writing this as 

(5.13) 

2~1 {OK [y.y- (a~s -~ AX)DoJ - ~~ OK (axs -~Ax) Do} , 

(5.14) 

and by using (5. 5a) (and adopting the Lorentz gauge 
condition aKAK = 0 to avoid some additional steps) the 
first term reduces to 

(5.15) 

where DS means the D'Alembertian of S, and d'~ 
'" i(yK.y- _ Y'Y) means the commutator of the y's. So 
finally, the required equation of motion for Do is 

dDo DS e K~ 
----;IT = - 2m Do + 2me FKXa Do· (5.16) 

Again, S is required to determine the evolution of Do 
along a mechanical trajectory. However, it is easily 
shown that 

so, again defining do = Do/(D'oDO)1/2, we find the equation 
of motion for do, 

(5.18) 
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Note the close analogy with (4.8), which can be made 
closer by using the operator SKX = iaK~, in Eq. (5.18), 
which is more directly related to the spin-tensor in 
Minkowski space, 

d ie d 
drdo=-2meFKXS do· (5. 18a) 

Indeed, we must now relate this equation to the equation 
of motion of the spin-tensor in Minkowski space. As 
is well known, ,jtsIJ.vljJ transforms like an antisymmetric 
tensor of second rank, so that it seems natural to define 
the spin-tensor by 

~V =d~sIJ.Vdo. 

Thus, 

d ~ v (d a+,) IJ. v d + IJ.V (d ) dr = dr 0 s o+dos drdo , 

and substituting (5. 18a) and its adjoint equation into 
(5,20), we get 

USing the commutation relations between S"V, which are 
essentially those for the generators of the homogeneous 
Lorentz transformations 

=i(s~Vrf''' _ sKV71'IJ. + s"xrfv _ S"K~V), 

we finally get 

c!.~v=_~(~vrflJ. _~"71KV)F . 
d me 'I K~ 

(5.22) 

(5.23) 

This is the required equation of motion for the spin 
tensor, which is seen to be the relativistic generaliza
tion of (4.9) for the nonrelativistic spin vector. Indeed, 
we may introduce a relativistic spin vector S" by 

(5024) 

where e"VK~ is the Levi-Civita tensor, equal to 
(- 7))1/2 EILVK~' Clearly, SILt'IL = 0, and the S of Sec, IV 
represents the nonrelativistic version of S". On the 
other hand, it is easily shown that ~Vp:Och=O, where 
p:edl = aILS _ (e/ e)A,,: 

= D~(y"yV _ yVy" )p:Odl Do 

=D'o(y"y"p:ech_ mey")Do=D~(y'"p:OCh_ me)y"Do=O, 

(5.25) 

where we have used (50 5a) and its Hermitian conjugate. 
This is the well-known Frenkel condition on the spin 
tensor1; it also guarantees, as we shall see in the next 
section, that pmoch and v" are parallel. Note that it is 
not an additional postulate here, but a consequence of 
the equations of motion. When the Frenkel condition 
holds, ~v can be derived from S", so that the two are 
entirely equivalent, 

(5.26) 
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where e IH"A is again the tensor formed from the 
Levi-Civita tensor density: e J'V"A = (_ 1))-1 /2(.J'V"A. 

Equations (5.23), or the corresponding equations for 
SJ' are equivalent to the Bargmann-Michel-Telegdi 
equations. 14 

VI. SINGLE-PARTICLE LAGRANGIANS 

In the last five sections, we have seen how to develop 
ensemble Lagrangians, the variation of which lead to 
partial differential equations of motion for functions de
scribing ensembles of classical particles without and 
with spin, by WKBJ expansions of the quantum mechani
cal Lagrangians for relativistic and nonrelativistic par
ticles of spin zero and spin t. We are now ready to dis
cuss the transition to single-particle Lagrangians, 
whose variation leads to ordinary differential equations 
for the mechanical trajectories and abstract spin vector. 
As we have seen, we cannot hope to find equations of 
motion for the magnitude of the abstract spin vector 
along a single trajectory, as this is basically a charac
teristic of an ensemble density. Thus, we must expect 
the magnitude of the abstract spin vector to be left un
determined by the equations of motion; however, this 
indeterminacy can be absorbed by a reparametrization 
of the equations as we shall see. 

If we remember that the integrand of the zeroth order 
part of our variational principle is essentially the 
Hamiltonian written in terms of S plus as/at for the 
nonrelativistic Lagrangians-and a similar expression 
in the relativistic case-it will not be surprising that 
we can form a homogeneous particle Hamiltonian by 
taking this expression, and replacing all derivatives of 
S by the corresponding particle variables. That is, by 
letting as/at => - E, 'VS => P in the nonrelativistic action 
principles, and letting 01' S => PI' in the relativistic cases, 
we get a particle Hamiltonian. Subtracting this from 
p. (dr/dA) - E(dt/dA) in the nonrelativistic cases; and 
from PI' (dxl' / dA) in the relativistic cases we get a par
ticle Lagrangian. We have here introduced a parameter 
A along the path in space-time, to enable us to vary 
with respect to the time t in the nonrelativistic case, 
and with respect to all four xl' in the relativistic case, 
without worrying about constraints. The variational 
principle is now homogeneous in A, and precisely this 
enables us to get rid of the unwanted freedom in the 
length of the abstract spin-vector. 

We proceed to write down the variation of the Lagran
gian for each of our four cases, and briefly discuss the 
resulting equations of motion. 

(a) Nonrelativistic spinless particle: 

I5f[ . dr _ Edt -RtR ([p- (e/c)A]2 + V - E)J dA=O. 
P dA dA 0 2111 

(6.1) 

Variation with respect to: 

(6.2) 

which relates the parameter A to the norm of R; 

I5p- dr -[R [2[(P- (e/c)A] 
~> dA - 0 111 • (6.3) 
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USing (6.2), this reduces to 

dr [(p- (e/c)A] 
dt 111 

(6.3') 

(from now on, we shall omit this intermediate step, and 
write time derivatives directly); 

dp e e
2 

A (6.4) I5r=> dt =- 'VV+ mC p.'VA- 2mc2 . 'VA, 

which, using (6.3') is easily proved equivalent to the 
Lorentz force law. 

15Rt => ([p - (e/c)A]2 + V _ E) Ro = 0, (6.5) 
2m 

the expression for the total energy as sum of kinetic 
plus potential energy (with a similar expression from 
I5R o), 

I5t='> dE =~_ ~ (P-~A) . aA (6.6) 
- dt at m c at ' 

which expresses the rate at which the particle's energy 
changes in a time-dependent external electric field. 

Similarly, the first-order term in the expansion of 
the Lagrangian for the spinless particle can be convert
ed into a Lagrangian for the phase of Ro. But since the 
equation of motion for the phase is so trivial (phase 
= const), and the result can be obtained from the Pauli 
equation results to be given later, we omit the details. 

(b) Relativistic spinless particle: 

of {PI' d~~ -~¢*¢[rtv~I'-~AJ') 

X (Pv - ~~) - 1/12 c2J} dA = 0, 

op => dxl' = dJ*rl-. (PI' _ ~AI') I' dA . 'I' c ' 

oxl' =>-=-- P --A -dPI' e ( e) aAv 
dA c v c vaxI" 

(6.7) 

(6.8) 

(6.9) 

which is again easily proved equivalent to the Lorentz 
force law. 

15¢*=> [rtv(pJ' -~AI') (Pv -~~) - m
2
c

2J ¢ =0, 

(6.10) 

the relativistic energy-momentum relation for a par
ticle of mass m. It follows from (6.8) and (6. 10) that 

(6. 11) 

so that dT/dA=m¢*¢, where T is the proper time along 
the world line. Thus, all A derivatives can be converted 
to T derivatives, giving the correct relativistic 
relations hips. 

Again, we omit detailS of the derivation of the trivial 
equation of motion for the phase of ¢ from the first
order Lagrangian. 
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(c) Nonrelativistic particles of spin t; 

oj[p. dr _ Edt _ In ([a. (p- (ele)A)]2 + V _ E)D] d>..-O 
d>" d>.. 0 2m 0 -. 

(6.12) 

The analysis for the mechanical trajectories goes much 
as in the previous cases, except that now variation with 
respect to E gives 

oE=> dt =D+n d>" 1)'-'0, (6.13) 

so that it is the norm of the abstract spin vector which 
is related to >... 

Now we shall derive the Lagrangian for the evolution 
of the unit abstract spin vector along the trajectory. 
To do this, we need to consider the first-order terms 
in the Lagrangian (4.4), As noted in Sec. IV, the term 
in (DtD1 - D;Do) may be omitted, since its coefficient 
vanishes by virtue of the zero-order equations of mo
tion. The second term may be rewritten 

fDt (~ Do - 2i1~lC (a· B)Do + 2~1 (V2S)Do) d3x. (6.14) 

Breaking up Do into an amplitude times do (Do =Rdo), 
and inserting this into (6.14), we get (remembering that 
d'Qdo = 1) 

f[R (~R + 2~ (V
2S)R) + R2d'Q (:t do - ;1:e (a· B) d~] asx. 

(6.15) 

But the first term vanishes, using (4.6), and since we 
are interested in a single-particle Lagrangian we may 
take R2 as a delta function centered on the position of 
the particle. So we finally arrive at the variational 
principle for dO,15 

r (d ie ) OJd'Q dt do -2me(a.B)do dt=O. (6.16) 

(d) Relativistic particle of spin t; 

oj{ p" dt" - D~ [Y' (PK - ~A.) -me] Do} d>" = 0, (6.17) 

" dxIL '.J' op =>---a>:=Dor Do, (6.18) 

" dp" e D+ KD a A ox =>---a>:=c o'Y 0" K' (6.19) 

oD~ ~ [Y' (PK - ~A.) -me] Do = O. (6.20) 

(6.20) can only hold for nonvanishing Do if the determi
nant of the matrix in brackets vanishes, which gives 
the relativistic energy- momentum relation 

rf"(p" - ~A,,) (p" -~A") - m2e2 = O. (6.21) 

Multiplication of (6.20) from the left by D~y gives 
[remembering (5.25)] 

rfK(PK-~AK)DQDo=med;: , (6.22) 

and we see that by chOOSing dT I d>" = D~Do we can go over 
to the proper time parameterization of the equations of 
motion. Letting v"oedxIL Idr, it is easily seen that (6.19) 
is the Lorentz force law of motion. The equations of 
motion for the 4-spinor do may be obtained by adjoining 
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the Lagrangian 

(6.23) 

which may again be derived from the first-order terms 
in (5.4).16 We omit the details. 
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We consider the properties of causally continuous space-time with a closed spacelike hypersurfaceS, i.e., 
a closed universe. We show that a closed universe does not collide with other universes. 

1. INTRODUCTION 

There are several stages of causality condition and 
they are classified by the following causality hierarchy: 
Globally hyperbolic - causally simple - causally con
tinuous - stably causal - strongly causal - distinguish
ing - causal - chronological. From the physical point 
of view the causality condition should be loose, and, to 
give a definite property (for example, to prove the exis
existence of singularities in an open universe), it should 
be to some extent strong. Up to now, the stable causal
ityl is the acceptable strongest causality condition from 
the physical point of view (the stable causality is equiva
lent to the existence of a cosmic time). But the stable 
causality is too wide to discuss the general properties 
of space-time structure; for example, the manifold 
structure of space-time is completely arbitrary. The 
global hyperbolicity has very nice properties, but this 
condition is too restrictive from the physical point of 
view; for example, the Kerr-Newmann rotating charged 
black hole solution2 or plane wave space-time3 is not 
globally hyperbolic. 

Several years ago Hawking and Sachs4 introduced 
the concept "causal continuity." This condition is weak
er than the global hyperbolicity but stronger than the 
stable causality. The causal continuity is acceptable 
from the physical point of view in some sense, as was 
discussed by Hawking and Sachs, because, if the space
time is not causally continuous in the past direction, 
some observer finds that all his predictions are upset 
by the new information which come from the indenfinite
ly large regions of the space-time. Such behavior 
destroys the possibility of doing physics. Thus we may 
assume that r(z) is continuous and, if we accept time 
symmetry, r(z) is also continuous. Since it is reason
able to assume that the space-time is to be distinguish
ing, causal continuity of the space-time is a reaonable 
condition. Furthermore, as was discussed by Budic 
and Sachs, 5 the causally continuous space-time has 
very nice properties in constructing the causal rela
tions on causal boundaries. In this paper, we want to 
concern our attention to a causally continuous space
time with closed spacelike hypersurface. 

In Sec. 2 we review briefly the fundamental concepts 
and properties which are used in Sec. 3. In Sec. 3 we 
give the theorems. 

2. BASIC CONCEPTS 

The manifold we consider here is always connected, 
Hausdorff, paracompact and differentiable. The word 
"closed" means compact and without boundaries. The 
notations, sign conventions, etc., used in this paper 
are the same as those used in Hawking and Ellis. 6 
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A space-time is said to be distinguishing if either 
r(x)=r(y) or [-(x)=r(y) implies x=y. 

Suppose F is a function which assigns to each point p 
in /i1 an open set F(p) in /i1. F is called inner continuous 
if, for any p and any compact set K in F(p), there is an 
open neighborhood U of p such that K is contained in 
F(q) for all q in U. Apparently rand r are inner con
tinuous. F is called outer continuous if, for any p and 
any compact set K in /i1-Clouser [F(p)], there is a 
neighborhood U of p such that K is contained in /i1-
Clouser [F(q)] for all q in U. 

A causally continuous space-time is defined as 
follows4: 

Definition 2.1: A space-time /i1 is said to be causally 
continuous if it is distinguishing and rand [- are outer 
continuous. This condition is equivalent to the condition 
that the space-time is reflecting, i. e., for all events 
x and yin M, r(y) ::Jr(x) if and only if rex) ::Jr(y). 

3. THEOREMS 

Our result is the following one: 

Proposition 3.1: Let the space-time (/i1,g) be causal
ly continuous; then for any closed spacelike hyper
surface Sin/i1, Bd[[+(S)U[-(S)]=S. 

Before proving the proposition we prove the following 
lemma. 

Lemma 3.2: For any closed spacelike hypersurface 
S, there exists hyper surfaces S+ and S- such that S+ 
and S- are strictly located to the future and past of S 
respectively and such that they are both diffeomorphic 
to S and every future and past directed timelike curve 
from S intersects S+ and S- respectively. Furthermore, 
the boundary of [+(5) U [-(5) is disjoint union of 
Bd[r(s)] - S, Bd[I-(S)] - Sand S. 

Proof: By using the compactness of S, we can cover 
S with finite number of normal neighborhoods. We can 
obtain S+ and S- by using the orthogonal trajectories of 
the surface S and the partition of unity. Since S is 
boundaryless and spacelike, a sufficiently small 
neighorhood of S is divided into two parts by S, and 
the surfaces S+ and S- can be chosen such that they 
are the boundaries of the neighborhood divided into 
two parts by S (i. e., S is two- sided in the sense of 
Milner7). Thus every future and past directed timelike 
curve from S intersects S+ and S- respectively. The 
last statement follows from the fact that S U res) U [-( S) 
is an open neighborhood of S and the boundary of r (S) 
is disconnected union of Bd[r( S) J- Sand S. D 

By using the fact that S+ is compact and every future 
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FIG. 1. 

directed timelike curve from S intersects S+ we can 
prove the proposition. 

Proof of the proposition: Suppose there exists a point 
x in Bd[r(s)] - S. From Lemma 3.2 we may assume 
that x is not in J-(S+). Choose a timelike curve y 
through x; then for any point y in y with x« y, Clouser 
[I"(y)]n S+*~. LetA be a collection of the subsets of 
the form {Clouser [I-(y)] n S+: x« y, y E Y}, thenA has 
a finite intersection property. 8 Thus there exists a point 
p common to all members of A in S+. If we assume the 
causal continuity, then p is contained in Clouser [I-(x)]. 
Since p lies in r( S), I-(p) n r( S) cannot be contained 
in any I-(z) for z «x. Thus at the point x causal con
tinuity does not hold, which leads to a contradiction. 
Thus Bd[r( S)] - S is empty. Similarly Bd[I-( S)] - S 
is empty. By Lemma 3.2 this proposition is trivial. 0 

Since we assumed that IrJ is to be connected following 
corollary may be easily derived from Proposition 3.1. 

Corollary 3.3: If there exists a closed spacelike 
hyper surface S such that sur(s) u I-(S) *" 1rJ, then IrJ 
is not causally continuous. 0 

In other words, in causally continuous space-time 
with closed spacelike hypersurface S, someone on S 
can see every spacelike singularities9 in the past, if 

they exist, and for every event in the future of S, one 
can send a message to the event from S. 

As a simple consequence of the Corollary 3.3 we 
discuss a trouser world. to According to Kundt,11 one 
may define a trouser world as the space-time M with 
closed spacelike hypersurfaces SI (i = 1,2, ... , n, 2 ~ n) 
such that the space-time is divided into (n + 1) parts 
by suppressing S 1 ••• S"' the pasts of S i' the future 
of U S i' This space-time apparently satisfies the con
dition of Corollary 3.3; thus it is not causally continu
ous. That is to say, a closed universe does not collide 
with other universes if we accept the causal continuity. 
If we drop the condition of the compactness of S i, there 
can exist a trouser world with the property of causal 
continuity. This can be seen in the usual Friedmann 
universe. 
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In conclusion, we mention the following point. If we 
allow noncausally continuous space-time a pathological 
space-time may be possible. Suppose C- is the set of 
points where 1- is not outer continuous. The set C- is 
not an open subset of 1rJ, 13 but it can be almost open, 
i. e., dense in some open subset of 1rJ. In this kind of 
space-time the observers who travel in such a region 
cannot perform physics during some time interval be
cause of the indefinitely large, unpredictable amount 
of information. This kind of behavior should be exclud
ed. This fact gives some reason to assume that the 
space-time should be causally continuous. 
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Slowly convergent lattice summations arise when ab initio quantum-mechanical studies of electronic 
structure in crystalline solids are carried out by Fourier representation methods. Summations of this type 
are identified and discussed. and it is shown how a technique related to. but not identical with, that of 
Ewald can be used to accelerate their convergence. The presentation is illustrated with numerical 
examples. 

I. INTRODUCTION 

It is well known that lattice sums of electrostatic 
energy contributions (Madelung sums) converge so 
slowly that convergence acceleration schemes are of 
great importance. This observation is not only relevant 
for the conditionally convergent summations describing 
the potentials of charge arrays, but also applies to 
systems of higher-order multipoles for which there 
are no formal convergence difficulties. Illustrative of 
the problem is the summation of r-s over the nonzero 
points of a simple cubic lattice. To obtain this sum to 
five significant figures, it is necessary to include points 
out to approximately r = 10, a total of over 4,000 points. 
Allowance for the crystal symmetry would reduce the 
sum to that of approximately 150 inequivalent points, 
but in actual applications the distances may be 
measured from a low-symmetry point or occur with an 
offset (e.g., Ir+62 1-4). We see that from a practical 
viewpoint the convergence difficulties of inverse power 
summations persist to surprisingly high powers. 

The two best-known methods for accelerating conver
gence of Madelung sums are those of Evjen! and Ewald. 2 

The Ejven method consists of grouping together the 
contributions of shells of points in such a way that the 
low-order multipole moments of each shell vanish. The 
result is that the contributions of shells fall off with 
increasing distance more rapidly than do the contri
butions of individual points. We shall not discuss the 
Evjen method further in this paper, because it is not 
directly applicable to summations where all points 
make contributions of the same sign. The Ewald method 
involves the introduction of an integral transform for 
the potential, followed by a division of the transform 
integration into two ranges, each of which is then 
treated separately. From one integration range there 
emerges a summation which converges more rapidly 
than the original sum. For the other integration range, 
the Poisson summation formula 3 is used to replace the 
summands by their Fourier transforms, after which that 
sum also becomes rapidly convergent. 

When ab initio quantum-mechanical studies of the 
electronic structures of crystalline solids are developed 

a)Supported in part by the National Science Foundation, under 
Grant No. CHE-7501284. 

b) Permanent address: Department of Physics, University of 
utah, Salt Lake City, UT 84112. 
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in a Fourier representation formulation, 4 there arise 
Madelung-type summations of the sorts and with the 
problems identified above. It is therefore highly desir
able to apply convergence acceleration techniques to 
such summations, but they differ from those previously 
studied to an extent which renders impractical the usual 
acceleration techniques. The purpose of this paper is to 
present and illustrate a method by which the most time
consuming summations in ab initio quantum-mechanical 
calculations on solids can be evaluated more accurately 
and conveniently. 

In succeeding sections of this paper we describe 
briefly the physical problems giving rise to the sum
mations whose evaluations we seek, we give alternative 
(unaccelerated) forms of these sums, and we present an 
acceleration technique in the spirit of, but not identical 
with that of Ewald. Illustrative results indicate the 
effectiveness of the method. 

II. PHYSICAL BACKGROUND 

Fourier representation techniques have been used for 
the evaluation of the multicenter integrals arising in 
electronic structure calculations. 5 In such approaches 
a key quantity is the Fourier transform of a product 
of atomic orbitals. For example, the electron repulsion 
integral < ifJ.ifJ c I r;~ I ifJbifJ II) is given by the well-known 
formula 

< ifJ.ifJc I r;~ I ifJbifJd) = 2;2 f:~ exp( - iq • R.c) 

X <I>~b(q)<I>~d( - q), 

with R.c=Rc-R., R. the center for orbital ifJ., and 

<I>~b(q) = < ifJ.(r) I exp(iq· r) I ifJb(r - Rob)' 

Equation (2) shows <I>;b to be the Fourier transform of 
ifJ:ifJb in a coordinate system with origin at R •. When 

(1 ) 

(2) 

ifJ. and ifJb are Slater-type orbitals (STO's), the right
hand side of Eq. (2) is cumbersome to evaluate but can 
be reduced either to a single quadrature5 or to an infinite 
series of Bessel functions. 6 However, for q = 0, <I>~b 
assumes a simple form; it is then the overlap integral 
<ifJo1ifJb)' 

Expressions parallel to Eqs. (1) and (2) arise when 
Fourier representation methods are used for electronic
structure calculations on crystalline solids. 4 As an 
example, consider the use of Bloch-wave crystal 
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orbitals I kd ), defined as 

I kd) = exp(ik' r).0 <Pd(r - R,,), 
" 

(3) 

where k is the Bloch wave vector and the R" are the 
lattice vectors. The index "a" denotes the functional 
form of <Pa' This definition of I kd) is of what we call 
"mudulated plane wave" type, and shares with the usual 
linear-combination-of-atomic-orbital (LCAO) or 
"tight-binding" orbitals the calculational features 
described below. In terms of these crystal orbitals, 
the electron repulsion integrals of interest are 
(kdk~ I r~~ I kbk~) and (k.k~ I r~~ I k~kd >; the first of these 
integrals diverges faster than the sample size increases, 
but the divergence is offset by those of the electron
nuclear attraction integrals (k. 12:" I r - R" 1-1 1 kb) and the 
nuclear-nuclear repulsions. 

The nondivergent (i. e., properly extensive) part of 
(k.k~ I r~~ I kbk~) may be reduced to the form 

(k.k~ I r~~ I kbk~) = 41TN L:' ; q,~b(q,,)q, ~i - q,,), 
Vo " q" 

(4) 

where N is the number of unit cells in the sample, the 
q" are the vectors of the lattice reciprocal to the R", 
and 1,'0 is the unit-cell volume of the R" lattice. The 
prime on the summation sign indicates that the point 
q" = 0 is to be omitted from the sum. The q,T are trans
forms of lattice sums of atomic-orbital products, and 
are therefore linear combinations of the ¢ T appearing 
in Eq. (2): 

(5) 

The integrals (kdk~ I rI~ I k~kd) and the nondivergent part 
of (k. 12:" I r - R" I -1 I kb) also reduce to summations 
involving q,T. The overlap integral (k,.1 kb) assumes the 
simple form 

(6) 

Crystalline solids appear to be far more economically 
described when the atomic orbitals appearing in Eq. (3) 
are chosen to be STO's rather than the historially more 
popular Gaussian-type orbitals. Fortunately, an STO
based formulation is practical, as the quantities q,~b of 
Eq. (5) can be reduced to readily manipulable forms. 
Although the individual summands of Eq. (5) are difficult 
to calculate [cf. the discussion immediately following 
Eq. (2)], the equation can be made tractable by taking 
advantage of the presence of the lattice sum. A number 
of calculations based on Eqs. (4) and (5) have now been 
reported. 

While the work done to date suffices to demonstrate 
the practicality of Fourier representation methods for 
solid-state electronic structure studies, it has also 
shown that the evaluation of Eq. (5) consumes the bulk 
of the required computational effort, and that the root 
of the problem is the slow rate of convergence of the 
lattice sum involved. We therefore turn our attention 
to methods for the evaluation of Eq. (5), and more 
specifically to the introduction of convergence accelera
tion techniques of the kinds already found to be useful 
in Madelung summations. 
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III. EVALUATION OF CP;b (q) 

We now consider more specifically the evaluation of 
Eq. (5) when <Po and <Pb are normalized Is STO's: 

<Pa = (£';/1T)1/2 exp(- £'dr). (7) 

Expressions involving STO's of higher quantum numbers 
can be derived by analogy or by differentiating the 
results given here with respect to the screening param
eters sa and Sb' Inserting Eq. (7) into Eq. (5), 

q,~b(q) = [(£'dSb)3/2/1T]L:j dr 

" 
(8) 

The integral on the right-hand side of Eq. (8) is that 
which was earlier identified as cumbersome to evaluate. 
For simplicity we assume a simple cubic lattice. 

The most straightforward evaluation of q,~b is obtained 
by using the Fourier convolution theorem to write 

(9) 

IntrodUCing the expression for the transform of the Is 
STO, 

<p~(q) = 81T1/2S~/2/(q2 + S;)2, 

and noting that 

[<p(r - R.,)]T(p) = exp(iR" • p)<pT(p), 

we have 

exp(iR,,' p) 
(p2 + S~)2 

(10) 

(11 ) 

(12) 

Next, we interchange the order of summation and 
integration in Eq. (12), reaching thereby a lattice sum 
satisfying7 

(13) 

where the p" are reciprocal-lattice vectors. Equation 
(13) is sometimes referred to as a "lattice orthogonality 
relation", and is a special case of a Poisson summation 
formula, the summands on its right-hand side being 
Fourier transforms of those on its left. When the right 
side of Eq. (13) is substituted into Eq. (12), the p inte
gration reduces to a lattice sum, and we have the final 
result 

1 
x~ ( Iq _ p" 12 + t;)2(p~ + s~)2 (14) 

Equations (8) and (14) may be regarded as the two 
"standard" ways to express q,~b as a lattice sumo To 
simplify further discussion, we recapitulate these 
equations in a dimensionless notation in which the sum
mations are over a unit lattice of vectors /J., and write 
vo=a3

, oj=as/21T, q=21Tv/a: 

q,T (v)= (OaO b)3/2 6 fdr db 1T" J ( 
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Xexp(-oar-oblr-27T~I+ivor) (15) 

8(040b)5/2 1 
7T2 Z;;:(lv_~12+0~)2(~2+on2 (16) 

Leaving aside for the moment the very real differences 
in ease of evaluation of the summands of Eqs. (15) and 
(16), we note that the summation of Eq. (15) will con
verge rapidly when 0. or Ob is large, but only slowly 
when both 04 and Ob are small. We note also that the 
convergence will be exponential (as that of a three
dimensional geometric series). On the other hand, Eq. 
(16) will converge rapidly when 04 or 0b is small, but 
will become inappropriate when oa and 0b are both large. 
The summation of Eq. (16) approaches for large Jl that 
of Jl-8

, with the disadvantages identified for such sums 
in the introduction. 

Remembering now that the summands of Eq. (15) are 
relatively difficult to evaluate, we may appreciate the 
real problem in the evaluation of <l>Ib' We should like to 
have at least part of the convenience of Eq. (16), but 
in a context improving its convergence, particularly for 
large oa and 0b' We cannot really afford to use Eq. (15) 
unless oa and 0b are so large that extremely few terms 
are required. 

IV. ACCELERATION OF CONVERGENCE 

Following the general idea of the Ewald method, we 
introduce integral transforms for CP4 and CPb in Eq. (5), 
planning to divide the integrations into regions each of 
which will receive optimal further processing. The 
transform we have found most suitable is that suggested 
by Kikuchi8 and subsequently used by Shavitt and 
Karplus9

: 

a 1~ exp(- or) =-:::rT2 dx X-1/2 exp(- x02 - r/4x). 
7T 0 

(17) 

Insertion of Eq. (17) for exp(- oar) and exp(- 0b I r - 27T~ I) 
in Eq. (15) [the dimensionless equivalent of Eq. (5)] 
yields 

(0 a )5/2 ,r~ .I~ 
<I> Ib (II) a ;2 Ii} 0 dx.J 0 dy(xytl/2 

( 2 2) £ (r Ir_27T~12 
xexp - O.x - 0bY jdrexp - 4x - 4y 

+iv' r). (18) 

The r integration may now be carried out, leading to 
the result 

8(0 a )5/
2 f~ _ r'" xv 

<l>Ib(V) 7Ta17~ ~ 0 dx}o dy (X+y)372 

x exp - a x - 0bY - -- - -- + . ( 
2 2 rlxy 7T

2 
Jl2 27Tix~ • V) (19) 

a X+y X+y x+y 

We next notice that the Jl summation will converge at 
a rate mainly determined by the magnitude of x + y. 
We therefore change variables from x, Y to s, t, where 
s=x+y, t=(x-y)/(x+y), with limits O-"'s<oo, -1-"'t 
-'" 1, and with dx dy = i s ds dt: 

<I>~b(V)= (Oa:lb):/2 '6 r dsjl dt S3/2(1_ t2 ) 

lAo} 0 -1 

Xexp(-ys _7T2~2/S + 7Ti(1 + t)~· v), (20) 

2379 J. Math. Phys .• Vol. 18. No. 12. December 1977 

with 

(21) 

We are now ready to divide the range of s into the 
two intervals (0, Z) and (Z, 00), where Z is arbitrary 
and will be specified later. For the first of these inter
vals the Jl sum will be strongly convergent, in fact con
verging as exp( - 7T2 Jl2 / Z). For the remaining interval, 
the convergence is poor, but can be improved by use 
of the Poisson summation formula 

6 exp(-7T2 Jl2/ S + 7Ti(l + t) p.' V) .. 

(
S)3/2 

=:;; ~exp[- sl ~ - i(1 + t)vI 2
]. (22) 

After substitution of Eq. (22) for (Z, 00), the integrations 
in both sand t may be carried out, leading to the final 
result 

<I> T (v) = (OaOb)5/2 6fZ ds ~~ s3/2( 1 _ t2) 
ab 7T l / 2 ~ 0 'J~ 

with 

xexp[ - ys _7T2 Jl2/ S + 7Ti(1 + t) ~. v] 

+ 8( O.Ob)5/
2 6 [exp( - aZ) (_2_ + 2 + z) 

7T2 .. a(a _(3)2 a -j3 a 

exp(- j3Z) (2 1 )] 
+ {3({3 - a)2 {3 _ a + j3 + Z , 

a = 1 p. - II 12 + 0;, 
j3=j.I.2+0~. 

(23) 

(24) 

(25) 

If there is a ~ value such that a =(3, the square bracket 
on the right-hand side of Eq. (23) must be replaced for 
that ~ value by 

[ ] 
= exp(- Q'Z)(Z3 + Z2 ~ ~) ( -(3) 

6 2 + 2+ 3 a-. 
Q' a Q' Q' 

(26) 

We note that the portion of Eq. (23) corresponding to the 
interval (Z, 00) now exhibits convergence as exp(- Jl2 Z). 

Equation (23) possesses the convergence acceleration 
properties we seek. The value of Z remains to be 
chosen; it determines the relative importance of the two 
~ summations. In the limit Z - 0, the first sum vanish
es while the second approaches that of Eq. (16); in the 
limit Z - 00 only the first sum survives, and it can be 
shown equivalent to Eq. (15). Intermediate values of Z 
give pairs of series corresponding roughly to Eqs. (15) 
and (16), but each converging more rapidly than the 
limiting series to which it corresponds. Remembering 
that the first summation contains summands which are 
harder to evaluate than those of the second sum, we 
may choose Z small enough that very few terms of the 
first summation are needed, but with Z sufficiently far 
from zero that we have effective exponential conver
gence in the second sum. 

V. NUMERICAL EXAMPLES 

For illustrative purposes we elect to aim for seven 
Significant figures and to choose Z small enough that in 
the first sum of Eq. (23) we will need to keep only 
iJ. =0 and the six members of the (1, 0, 0) star 
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(J.l=(I, 0, 0), (-1, 0, 0), (0,1,0), (0, -1, 0), (0,0,1), 
(0,0, -1)]. The leading terms omitted from the first 
sum will have JJ.2 = 2, and can be expected to be smaller 
than the IJ. =0 term by approximately the factor 
exp(- 21T2/Z), ignoring any additional convergence which 
may be produced by large values of 0. or Db' We there
fore tentatively take Z = 1, causing the six omitted 
terms with JJ.2 = 2 to aggregate to about 10-8 or less of 
the leading term. Details of the calculation of the above
described terms are given in an appendix, 

In evaluating the second sum, we note that the 
exp(- aZ) portion of the summand is maximal when 
IJ.""v, while the exp(-j3Z) portion peaks at f..L=0. We 
therefore reorganize the sum so as to keep for each 
portion a set of terms radiating spherically out from its 
respective maximum, With Z = 1 our accuracy require
ments will be met if we keep f..L values within spheres 
of radius ,,118+ about the maxima. There are 20 stars 
of jJ. values within such a sphere. 

For the purpose of presenting numerical results, we 
write Eq. (23) in the form 

<I>~b(V) =5Z(0)+5Z(I, 0, O)+LZ, (27) 

where 5Z(0) and 5Z(1, 0, 0) are the respective contribu
tions of the f..L = 0 and (1, 0, 0) stars to the first (small
Z) summation, and LZ is the contribution of the 
second (large-Z) summation, Table I gives the results 
of a number of calculations for various 0., Db' and v 
values, both for Z = 1 and for other Z values. The 
accuracy of the results is attested to by their substantial 
independence of Z; the effectiveness of the formulation 
is indicated by the fact that some of the quoted results 
would have required thousands of terms if evaluated 
without a convergence acceleration technique, 
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APPENDIX: EVALUATION OF "SMALL-Z" 
SUMMANDS 

The f..L = 0 term, denoted 5Z(0) in Eq. (27), can be 
completely reduced to a closed expression involving 
the error function. It is convenient to introduce the 
definitions 

F(II) = /1-1 /2 erf(lI ' /2) = In f' exp( - Ul,2) dc, 

o 

G(u)=u-1 / 2e" erf(u ' / 2 )= 2;:." (, exp(-uv2 )dl" 
VTf Jo 

(AI) 

(A2) 

In the material to follow, G(u) occurs for negative 11, 

and therefore involves error functions of imaginary 
argument, We have prepared a computer program for 
rapid and accurate evaluation of G(lI) with negative 
II. 

The actual reduction of 5Z(0) is tedious, but can be 
accomplished with a judicious choice of standard pro
cedures, The results can be expressed in terms of the 
auxiliary quantities ex = ~v(l + d), f3 = ~v(l- d), 
a= Ho! + a!) + ~V2, /) = ~(o! - o~), c = i(o! + o! + a 2 + 132

), 

and d = (o~ - 0;)/ v2
• The final formulas depend upon 

whether v or b vanish; we distinguish three cases as 
set forth below: 

5Z(0) = [4 (0. 0b)5 /2 Z! /2/ 1T! /2CV 3] 

X«1T' / 2v/2c){[ a 2 + dO;]F(O!Z) + [(32 - do~]F(o~Z)} 

+ exp(- o!Z){p - a[c - (4ap/v2 )(1 + Zc)] G(- a 2Z)} 

+ exp(- 6~Z) {a - {3[C - (40' {3/ J) 

x(1+Zc)]G(-!32Z)( (v*O) (A3) 

TABLE I. Lattice sums <I>';b(ll) of Eqs. (23) and (27) and the "small-Z" and "large-Z" contributions thereto for various values of 
the convergence acceleration parameter Z. 

lia 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
lib 1.0 1.0 1.0 1.0 1.0 1,0 1.0 1.0 1.0 
Vx 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 8.0 
Vy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 
Vz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 
Z 0.50 0.75 1.00 1.10 1.20 0.80 1.00 1.20 1.00 
5Z(0) 0.13143383 0.25054432 0.36571232 0.40785898 0.44726064 0.24930055 0.32635939 0.39299372 3.8222328(- 3) 
5Z(1,0,0) 0.00000000 0.00000027 0.00001192 0.00003330 0.00007819 0.00000036 0.00000615 0.00004025 0.0000146(- 3) 
LZ 0.75903396 0.63993161 0.52475204 0.48258395 0.44313733 0.45821558 0.38115115 0.31448285 0.5628282(- 3) 
<f>';b(ll) 0.89046779 0.89047620 0.89047628 0.89047623 0.89047615 0.70751649 0.70751669 0.70751681 4.3850756(- 3) 

oa 2.0 6.0 6.0 6.0 0.2 0.2 0.2 0.2 
(,b 1.0 1,0 1.0 1.0 0.1 0.1 0.1 0.1 
Vx 8.0 0.0 0.0 0.0 0.0 0.0 8.0 8.0 
Vy 6.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 
V z 4.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 
Z 1.20 0.80 1.00 1.20 0.50 1. 00 0.50 1.00 
5Z(0) 3.9458438(- 3) 0.22931254 0.25550774 0.27513503 0.00000 0.00002 0.0049480(- 5) 0.0072523(- 5) 
5Z(1,0,0) 0.0000892(- 3) 0.00000024 0.00000333 0.00001895 0.00000 0.00000 0.0000000(- 5) 0.0000000(- 5) 
LZ 0.4391423(- 3) 0.12086336 0.09466506 0.07502213 286. 57986 286.57985 3.6241185(- 5) 3.6218148(- 5) 
iP';b(ll) 4.3850753(- 3) 0.35017614 0.35017613 0.35017610 286.57986 286. 57986 3.6290665(- 5) 3.6290671(- 5) 
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X {(l/7T! /2Z)[ exp(- o~z) - exp(- o!z)] 

+(n-b)F(o~Z)-(a+b)F(o!Z)} (v=O, b*O) (A4)' 

= (0~ZI/2/ a2 )[F(o!Z) - (2/1T 1
/

2 )(1 + 2aZ/3) 

xexp(-o!z)] (v=b=O). (A5) 

The other contribution we require is that when JJ. is 
a member of the (1,0,0) star; this contribution was 
denoted SZ(1, 0, 0). Starting from Eq. (23), we proceed 
by expanding exp( - Ys) in a Taylor series about s = Z, 
after which the sand t integrations separate in each 
term: 

(0 0 )5/2 ~ /1 
sz(1,O,O)= ·l

b
/2 6An(Z) dtyn(1-t2)exp(-yZ) 

1T n=o _1 

X{cos[1T(l + t)vxl + cos[1T(l + t)Vy] 

+ COS[ 1T(1 + t)V z]}' (A6) 

with 

A n(Zl=4!ZdS S3/2(Z - s)n exp(_1T2 / s). 
n. 0 

(A7) 

The quantities An(Z) depend only upon nand Z, so that 
once Z is fixed they may be determined once and for all. 
For Z = 1 they decrease rapidly with increasing n; for 
seven-significant-figure results they are not needed 
beyond n = 40 
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The t integration could be reduced analytically to 
error functions of complex argument, but it is never 
needed with an accuracy of more than about four signi
ficant figures and is easily handled by numerical inte
gration. We have obtained satisfactory results both 
from the use of Simpson's rule and from Lobatto 
quadratures. 1o 
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Casimir invariants and vector operators in simple and classical 
Lie algebras a ) 

Susumu Okubo 
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A method of computing eigenvalues of certain types of Casimir invariants has been developed for simple 
and classical Lie algebras. Especially these eigenvalues for algebras An' Bn, Cn, Dn, and G2 have been 
computed in closed terms. We also enumerate numbers and functional forms of all linearly independent 
vector operators in terms of generators in any irreducible representation of these algebras. Some 
polynomial identities among infinitesimal generators of these algebras are derived by means of the same 
technique. 

INTRODUCTION 

The Lie group and Lie algebra are very useful math
ematical tools in dealing with various branches1 of 
theoretical physics. It is known2 that any simple Lie 
algebra L of rank n has precisely n algebraically in
dependent Casimir invariants whose structures are de
termined by Betti numbers and Poincare polynomial of 
the group. We also know from pioneering works of 
Racah3 and Gel'fand4 that any irreducible representation 
of L can be labelled by eigenvalues of these n invariants. 
Since then, the problem has been exhaustively investi
gated by many authors, 5_12 especially for algebras An' 

En' Cn' Dn, and G2 because of its physical relevance to 
many-body problems. However, some related problems 
are not yet completely solved. First, eigenvalues of 
these Casimir invariants for the algebra An have been 
computed in a closed form by Popov and Perelomov13 

and by Louck and Biedenharn, 10 while those of En' Cn' 
and Dn have been calculated by Wong and Yeh14 and by 
Nwachuku and Rashid. 15 The methods employed by these 
authors utilize heavily special properties inherent in 
these particular algebras, so that its extension to other 
algebras does not appear to be straightforward. So far, 
no general unified formula for this problem seems to 
exist. Here in this paper, we shall present a partial 
solution for the problem in the sense that we can com
pute eigenvalues of certain types of Casimir invariants 
for any simple and classical Lie algebras. As examples, 
we computed them in closed forms for algebras An' 
En' Cn' Dn, and G2, reproducing some of the previously 
known results. 

Secondly, we often have a problem of finding numbers 
and explicit forms (as functions of generators of the 
algebra) of all linearly independent vector operators of 
L. The problem has been solved for the algebra An by 
the present author, 16 and subsequently the same techni
que has been extended with some partial success by 
Nwachuku and Rashid1

? for the algebras En' Cn' and 
Dn' Again, the method depends heavily upon special 
properties enjoyed by these algebras. In this paper, we 
shall develop another method applicable to more gen
eral class of algebras and will enumerate numbers and 
functional forms (in terms of generators) of all linearly 
independent vector operators of algebras An' En' Cn' 

a)Work supported in part by the U. S. Energy Research and 
Development Administration. 
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D n , and G2 in any given irreducible representation. 

Third, the infinitesimal generators of some Lie al
gebras are known16.18-20 to satisfy various polynomial 
identities in given irreducible representations. We shall 
present a more systematic way of finding such iden
tities, which is applicable to any simple Lie algebra. 

The main advantage of the technique to be developed 
in this paper is that it is straightforward and can be 
applicable to a wider class of algebras. Also, we can 
simultaneously treat three problems described above. 

2. CASIMIR INVARIANTS AND VECTOR 
OPERATORS 

Let L be a finite-dimensional Lie algebra over the 
complex number field, and let X" (/1 = 1,2, ... ,b) be a 
basis of L. Then we have the Lie equation 

(2.1) 

where the repeated index over A automatically implies a 
summation of A over values 1,2, ... ,b. Then, a set 
consis ting of b elements T" (/1 = 1 , 2, ... , b) w~ich are 
members of the universal enveloping algebra L of L is 
called a vector operator in i, if they satisfy the com
mutation relation 

[X"' TJ=C~vT~. (2.2) 

Comparing (2.1) and (2.2), we see that the generator 
X" is a vector operator. However, it is in general not 
the only one. Similarly, a Casimir invariant K in i, 
is defined as any element K of i, satisfying 

[X",Kj=O (2.3) 

for all /1 = 1 , 2, ... , b. We may also define vector op
erators in a given representation of L. If d is the dimen
sion of the representation, and if X" are now dXd ma
trix representations of L, then any d x d matrices T" 
will be called a vector operator in the representation, 
provided that the commutation relation (2.2) is satisfied. 

Analogous to T", we may define a covariant vector 
operator T" by the commutation relation 

(2.4) 

either in i or in a given representation of L. If T" and 
5" are covariant vector and vector operators respec
tively, then the product 
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(2.5) 

is a Casimir invariant, as we may check easily. Con
versely, if K is a Casimir invariant in i, then we can 
find a covariant vector operator T" such that 

(2.6) 

However, since we do not directly utilize this fact in 
the present paper, we will not prove it. 

Lrat us, as usual, define the adjoint representation 
adX~by 

(2.7) 

Moreover, let us assume that its conjugate representa
tion specified by - (adX~) T (where the superscript T 
stands for the transpose matrix) is equivalent to adX~, 
i.e., that we have a nonsingular bXb matrix g,.v with 
its invers e (g-l),.v = g"v satisfying 

(2.8) 

Then we shall call any such L to be a classical Lie al
gebra, following Freund and Kaplansky. 21 In terms of 
component, (2.8) is rewritten as 

(2.9) 

A sufficient condition for L being classical is as follows. 
If we can find at least one nontrivial representation 
{Ao} of L such that a symmetric bilinear form 

(2.10) 

is nondegenerate, then L is classical. Here x,. 
(Jl = 1,2, ... ,b) are the representation matrices of XjL 
in {Ao}. The fact that gjLV defined by (2.10) satisfies 
(2.9) is a simple consequence of an identity 

tr(xJxv , xT ]) = tr(xJxjL' xJ). 

Especially, any semisimple Lie algebra is automatically 
claSSical, since we can choose {Ao} to be the adjoint 
representation with xjL = adXjL and we use Cartan's 
criteria of semisimplicity. Actually, for semisimple 
Lie algebras, any nontrivial representation {Ao} can be 
used22 for this purpose to define gjLV as in (2.10), lead
ing to the same conclusion. Moreover, if L is simple, 
then we can prove that any g"v defined by (2.10) [or 
more generally by (2.9)] can be expressed as 

g JLV = Ctr(adX,. adX) (2.10') 

where C is a nonzero constant which depends upon {Ao}. 
The Lie algebra of l-dimensional unitary group U(l) is 
not semisimple but classical. This fact will be used in 
Sec. 4. 

If L is classical, then there is a one-to-one corre
spondence between a vector operator T" and a covariant 
vector operator T" by 

(2.11) 

Indeed, Eqs. (2.2) and (2.4) are mutually consistent 
with (2.11), if we note (2.9). Hereafter, we assume L 
to be classical, and designate X" to be either the basis 
of L or its representation matrices in a generic ir
reducible representation {A} of L. Let x" be an arbitrary 
but fixed nontrivial representation {Ao} of L, which we 
shall call the reference representation. In order to 
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avoid possible confusion, we identify this reference 
representation with the one in which g"v given by (2.10) 
is non-degenerate, whenever such a {Ao} exists. We now 
define 

for p'> 1. If L is semisimple, then we have 

(2.11a) 

(2.11b) 

(2.11c) 

(2.12) 

for the case p = 1, since trx" = 0, but this is not nec
essarily valid for cases of classical Lie algebras. 
Moreover, if we define 

K(P)=g"1"2·· ·"pX X . ··X 
"1 "2 "p' 

s(p) =g X"lX"2 ... X"p 
~ ~"1"2' • • ,.p , 

(2.13) 

(2.14) 

then K(P) and S~P) are, respectively, 
and vector operators. Also, note 

Casimir invariants 

K(p+l) =~SiP)=SiP)X\ (2.15) 

which is the analog of (2.6). The proof is simple. Let 
X,. be representation matrices of a generic representa
tion {A}. Consider a tensor product space {A}0{Ao}, and 
set 

Y"=X,,0Eo+E0x,,, (2.16) 

where E and Eo are identity matrices in the spaces {A} 
{Ao}, respectively. Then Y" are easily seen to satisfy 

(2.17) 

so that Y" are the representation matrices of L in the 
product space {A}0{Ao}. Moreover, let us set 

Q =X" 0 x" =g"VX" 0 xv. 

Then we find 

[Y",Q]=O. 

When we define the pth power QP (p'> 0) by 

QP+l =QQP, 

QO=E0Eo=E (p=O), 

this leads to 

[Y", QP] = 0, 

[Y", QP(E0 x)] = C~vQP(E0 x~). 

(2. 18) 

(2.19) 

(2.21a) 

(2.21b) 

If we now take the partial trace tr{~ol of both sides of 
(2.21) with respect to the reference representation {Ao} 
(but not with respect to the generic space {A}), we ob
tain the desired relations 

[X",K<P)]= 0, 

[ X SiP)] = C~ S(p) 
/.1' II UV ). • 

(2.22a) 

(2.22b) 

We notice that we can define K(O) and S~O) for the case 
p = 0 by this procedure to be 

K(O) = doE, 

S~O) = Etrx,., 

(2.23a) 

(2.23b) 

where do is the dimension of the reference space {Ao}. 

If L is semisimple, then S~O) = 0 identically. We can re-
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peat essentially the same argument when Xv. are basis 
of L. 

Let us now prescribe a procedure to enable us to 
compute eigenvalues of K(p). To this end, let us assume 
that L is either semisimple or a classical Lie algebra 
with symmetric gv.v which can be derived from a com
pact Lie group. For the latter case, we assume also 
that all representations such as {Ao} and {A} refer to in
finitesimal representations of the corresponding classi
cal compact Lie group. Then, any representation of L 
is fully reducible by Weyl's theorem, so that we can 
decompose the product {A}0 {Ao} as a direct sum of ir
reducible representations {~}: 

{A} 0 {Ao} = 6 ttl C(X;A,Ao)F}, 
i 

(2.24) 

where the summation is over all inequivalent irreducible 
representations {x} of L, and the constant C(x; A, Ao) is 
the multiplicity of the representation F} contained in 
the reduction of the product {A} ® {AO}' It is convenient 
for our purpose to proceed as follows. For a given 
{A}, let us enumerate all irreducible representations 
{~} appearing nontrivially [i. e., those with C(~;A, Ao) 
*0] in the right side of (2.24) as {AJ, {A2}, ••• ,{AN}' If 
the multiplicity of {x} is more than one, then we count 
the same irreducible representation more than once as 
many times as the multiplicity, labelling them by dif
ferent indices. In this way, we rewrite (2.24) as 

N 

{A}0{AO}= EEB{AJ} , (2.25) 

N = ~ C(X;A, Ao). (2.26) 
~ 

Note that N depends in general upon {A} and {Ao}, and 
that two representations {A

J
} and {\} for j*k in (2.25) 

could be equivalent to each other. 

Let P
J 

and X~J) (j = 1 , 2, ... ,N) be respectively the 
proj ection operators and the representation matrices of 
Xv. in the jth irreducible representation space {A

J
}, 

appearing in the right side of (2.25). We have then, of 
course, 

N 

Y = 6 x(J)p 
v. J=1 v. J' 

N 

6 PJ =E0Eo=E. ,=1 

(2.27a) 

(2.27b) 

(2.27c) 

In a suitabl chosen matrix basis, they have forms of 

2384 

y = v. 

P= J 

o 
(2.28a) 

(2.28b) 
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where E, is the unit matrix in the jth subspace. 

Let us denote eigenvalues of the second order 
Casimir invariants in an irreducible representation 
{A'} by 12 (A'). Then, of course, 

g-v.vX(J)X(j) =1 (, )E . 1 2 N v. v 2 "-J " J = , ,"', , 

gv.vXv.Xv =12 (Ao)Eo' 

When we rewrite Q as 

Q =g-v.vX 0 X =.!.{g-v.vy Y 
j1. 11 2 j1. 1.1 

- (gv.vXv. X) 0 Eo - E0 (g''"xv. x )} 

(2.29a) 

(2.29b) 

(2.29c) 

and note Eqs. (2.27), (2.28), and (2.29), this leads to 
N 

Q" = 6 (~ )" P P = ° 1 2 00 0 

J=1 J J' , " , 
(2,30) 

where we have set for simplicity 

~J = HI2 (AJ ) - ~(A) - ~(Ao)}. (2.31) 

Let d(A), d(Ao), and d(A,) be dimensions of the rep
resentation spaces {A}, {Ao}, and {AJ} (j=1,2, ... ,N) 
and take the full trace of both sides of (2.30) with re
spect to { A} 011 {AO}' Then, we find 

1 N 
Ip (A) = d(A) Jl1 (t)"d(AJ), p>-O, (2.32) 

where 1,,(A) is the eigenvalue of the pth Casimir invariant 
K(P) defined by (2,13) in the generic representation {A}, 
Le. , 

(2.33) 

Since the eigenvalue 12 (A
J

) of the second-order 
Casimir invariant K(2) is easy to compute, the formula 
(2.32) tells us that we could compute eigenvalues of 
all higher order Casimir invariants, once the Clebsch
Gordon series (2.25) is known. If two irreducible rep
resentations {A

J
} and {A

k
} for j * k are equivalent, then 

contributions from two such terms in (2.32) give the 
same result. Therefore, returning to the original nota
tion, we can rewrite (2.32) as 

'" (X [ P d(\) 1,,(A)=yC ;A,Ao) </>(\;A,Ao)J d(A) , (2.34) 

</>(\;A, Ao) = ~a2~) - ~(A) - 12 (Ao) ], (2.35) 

where the summation in (2.34) runs over all inequiva
lent irreducible representations {X}. 

Hereafter, let us restrict ourselves to the case that 
L is a simple Lie algebra, and we choose the reference 
representation {Ao} to be an arbitrary but fixed non
trivial irreducible representation of L. Then the multi
plicity factor C(\;A,Ao) can be computed in principle by 
means of the Kcstant-Steinberg formula. 23 However, for 
the present purpose, another formula, essentially due 
to Weyl24 is more convenient. We follow Racah25 in 
describing the formula. Also, because of the remark 
made just befo:r:..e (2.11), we can set hereafter gv.v=gv.v' 
gv.v =gv.v, and 12(A) =1

2
(A). 
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Let Ao, A, and A be the highest weights of the ir
reducible representations {AO} , {A}, and {\}, respective
ly, and set 

Ko=Ao+o, K=A+o, K=A+o 

where ° is given by 

o=i:0O! 
,,>0 

(2.36) 

(2.37) 

in terms of positive roots QI. Let yo(M) be the multiplic
ity of the weight M of the reference representation 
{Ao}. Then, Weyl's formula25 is expressed as 

C(\;A, Ao) = :0 (detS)yo(SK - K), (2.38) 
s 

where the summation is over all Weyl-reflection op
erations S, and detS is the parity of S. Moreover, the 
dimensional formula of Weyl reads as 

d(\)= n (K,QI)/(o,QI). (2.39) 
,,>0 

Finally, the eigenvalue of the second order Casimir in
variant is readily computed to be 

12(~) = 8[ (k, K) - (0, 0)], (2.40) 

b 
8= d(A

O
) [(Ko,Ko) - (0,0)]-1. (2041) 

Inserting all these expressions into (2.34), we find 

(2.42) 

<p(K;K,Ko) =i 8[(k,Kl + (0,0) - (K,K) - (Ko,Ko)]' 
(2.43) 

We remark that conditions for p = 0 and p = 1, i. e. , 

(2.44) 

as well as the consistency requirement for p = 2, i. e. , 

12 (A) = 8[(K,K) - (0,0)] 

impose some constraints for the weight yo(M) , if we 
set p = 0,1, and 2 in (2.42). Some of such constraints 
for yo(M) are already found and discussed by Racah.25 

Since the multiplicity factor yo(M) can be computed 
from Freudental's formula,26 we can compute all 1 (x) p 
for any p and any {A}. Unfortunately, we cannot de-
termine from our formula which choice of the reference 
space {Ao} and which values of p could give the desired 
n algebraically independent Casimir invariants. For 
this, we have to utilize the previously known results of 
Refs. 2-10. However, for algebras An,En, Cn,Dn, and 
G2, we can rather easily compute eigenvalues Ip(x) in 
closed terms from (2042), if we choose {AO} to be one of 
the fundamental representations of these algebras. In 
this ad hoc way, we find all n algebraically independent 
Casimir invariants for these cases in Secs. 4-8. In 
this connection, we need not consider Ip(x) with large 
values of p, as we shall see below. 

Let us classify N irreducible representations {A } 
appearing in (2.25) by introducing the following eq~i
valence relation. We define that two irreducible rep
resentations {AJ} and {A~} are related to each other if 
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and only if, we have 12(xJ)=12(A~) (or ~J:::::~~ equivalently), 
i.e., if and only if they have the same values for the 
second-order Casimir invariants. Let us suppose that 
we have N - ~ inequivalent classes by this equivalence 
relation. We shall call ~ (~:;" 0) be the deficient index, 
and set 

P,,=:0PJ' ~J=t" 
J 

(2.45) 

for QI = 1 , 2, .•. ,N - ~, where the summation is over all 
j such that {A

J
} belongs to the same Qlth equivalent class 

and where t" is the class function defined by its rep
resentative ~J of the class. Then, 15" is evidently the 
projection operator for a space spanned by members of 
the (lith equivalent class and we have 

P" 15 s = ° "s 15 " , (2.46) 

N-A 
:0 P,,=:E=E@Eo , 
".1 

(2.47) 

(2.48) 

As a result, Q satisfies a polynomial equation of order 
N-~, 

N-A _ 
n {Q - ~"E}=O, (2.49) 
,,01 

which may be rewritten as 
N-A-l 

QN-t:. = :0 a~Q~. 
k'O 

(2.50) 

Note that a~ (k = 0,1, ... ,N - ~ - 1) are polynomials of 
~l>'" '~N' Repeated uses of (2.50) lead to 

(2.51) 

for all p;;, N - ~, where a~p) are polynomials again of 
~l>"" ~N' Taking the trace of both sides of (2.51) with 
respect to the full space {A}® {AO} , this gives the de
sired formula 

N-A-l 
Ip(A) =:0 a~P)I~(A)' p:;" N -~, 

k=O 

(2.52) 

which expresses Ip (A) for large values of P in terms of 
I~ (A) with smaller k and of ~l> ••• , ~N' 

Next, we shall show that Eq. (2.50) leads to poly
nomial identities among infinitesimal generators X", in 
the given representation {A}. To this end, we shall take 
(O!, f3) matrix element of both sides of (2.50) with respect 
to the reference space {AO} (but not on {A}), then it gives 

N-A-l 
(QN-A)"e=:0 a~(Q~)"s 

~.o 

for O!, (:3 = 1,2, .•. , do = d(Ao)' Since we have 

Q"s=(X).® X~)"8 = (X~)"sX)., 
do 

(Qk+1 )"S=:0 Q"y(Qk)yS' 
y.l 

(2.53) 

(2.54) 

Eq. (2.53) implies the desired polynomial identity among 
X~ of order N - ~. As we shall observe in Sec. 4, this 
reproduces the minimum polynomial identities16 dis
covered for the algebra An' 

In ending this section, we can expres s P" in terms of 
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Q by 

P =~~, Q-taE 
C/ Il=I ~()I- ~Il 

(2.55) 

for 0' = 1 , 2, ... ,N - c., where the product on {3 omits the 
singular point {3 = 0'. Especially, if we have c.. = 0, then 
PJ itself for all j = 1,2, ... ,N can be expressed as a 
polynominal of Q of the order N - 1. This fact will be 
utilized in the next section. 

3. VECTOR OPERATORS AND VECTOR IDENTITIES 

Here in this section, we assume L to be a simple Lie 
algebra of rank n over the complex number field. Let 
A1>A 2 , ••• ,An be the n fundamental weight system of L, 
so that the highest weight A of any {A} is given by 

n 

A =:0 mJA j 
j=1 

(3.1) 

where m j are nonnegative integers specifying the ir
reducible representation {A}. We shall prove in the 
Appendix A that the number ny(A) of all linearly in
dependent vector operators in {A} is given by 

ll y (A) = 11 - !laC,) (3.2) 

where notA) is the number of m/s which are equal to 
zero. In other words, (3.2) states that l1 y (A) is equal to 
the number of m j 's which are not zero. Especially, we 
find ll y(A) eS n, which reproduces the result found by 
Michel. 27 

We have found in the previous section that S;t) de
fined by (2.14) are vector operators for all p ~ 1 and 
for all {Ao}. Therefore, they must satisfy some linear 
identity equations among themselves because of the 
theorem mentioned above. It is easy to find some ex
amples of such relations. Multiply E~ xjL to both sides 
of (2.51) and take the partial trace with respect to the 
reference space {Ao}. This immediately leads to the 
desired linear relations for all p ~ N - c., 

N-A-I 

S~p) = :0 a~P)S~k) • 
k=O 

Moreover, noting 

S~o)=O, S~I) =XjL' 

(3.3) 

(3.4) 

this shows that all vector operators S~p) for a given {AD} 
are expressible in terms of at most N - c.. - 1 vector 
operators S~k) with N - c.. - 1 ~ k ~ 1. 

Next, we would like to find explicit functional forms 
of all linearly independent vector operators in a given 
irreducible representation {A}. To this end, we assume 
that for a given {A}, we can find a reference representa
tion {Ao} such that all irreducible representations {A

J
} 

appearing in the right side of (2.25) for the decomposi
tion of {A} 0 {Ao} are inequivalent to each other. In other 
words, we choose {Ao} in such a way that the multiplicity 
factor C(X;A, AO) appearing in (2.24) is at most one 
whenever this is possibleo We call this condition the 
nondegeneracy condition. As we will see in the next 
sections, this condition is satisfied for generic irreduci
ble representation {A} of the algebras An' En' Cn' Dn, 
and G2 if we choose the reference representation {Ao} 
to be one of the fundamental representations of these 
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algebras. Suppose that {Ao} satisfy the nondegeneracy 
condition, and let TjL be an arbitrary vector operator 
in the representation {A}. Setting 

it is easy to verify 

[Y",T] = o. 

(3.5) 

(3.6) 

In block-matrix form analogous to (2.28), we can ex
press T a 

(3.7) 

where TJk is d(A) x d(Ak ) matrix. 

Equation (3.6) is now rewritten in terms of irreduci
ble components as 

X~JlTjk=TjkX~k) (j,k=1,2," ·,N). (3.8) 

But the nondegeneracy ansatz implies that xY) is in
equivalent to X~k) whenever .i*k, Therefore, the 
Schur's lemma applied to (308) enables us to conclude 

(3.9) 

where C
J 

(j = 1,2, ... ,N) are some constants. Inserting 
this into (3.7), we find 

N 

T=TjL0xjL=:0 C'PJ' (3.10) 
J-I 

By multiplying E@ x~ by both sides of (3.10) and taking 
the partial trace with respect to the space {Ao}, this 
gives 

N 

(3.11) 

(3.12) 

Note that R~j) (j = 1,2, . , . ,N) do not depend upon T" at 
all. Also, it is easy to prove that they are vector op
erators. Therefore, (3.11) implies that any vector op
erator in the given representation {A} is a linear com
bination of at most N vector operators R~Jl (j 
= 1 , 2, .. 0 ,N) defined by (3. 12) . 

The next task is to determine more explicit forms of 
R~J}. First, let us assume that the deficiency index c.. 
is zero, i.e., that we have 12 {A j )*12 (A

k
) for j*k, j,k 

=1,2, .. ,N. In that case, (2.55) is rewritten as 

N Q_ ~ E 
P=II' k j=12"oN 

j k_1 ~j - ~k ' ",. 
(3.13) 

Expanding the product in powers of Q, inserting this 
into (3.12), we see that any T" must be expressed as 

N-I 

T =:0 C'S(P) (3014) 
~ p_1 P jL • 

This implies that any vector operator in {A} is a linear 
combination of N - 1 special vector operators S~P) (1 eS P 
eSN -1) defined in (2.14) when the reference represen
tation {Ao} is now chosen to satisfy both nondegeneracy 
condition and c.. = O. Further among these N - 1 vector 
operators, only ny(A) of them are in reality linearly in
dependent by the theorem quoted in the beginning. 

Susumu Okubo 2386 



                                                                                                                                    

When we have A "* 0, then (3.13) is not correct, How
ever, Eq. (2.55) still determines Pk (1 <;; k <;; N - A) as 
polynomials of Q, so that we can still evaluate R~J) 
for 1 <;; j <;; N - A in terms of S~P) with 1 <;; P <;; N - A-I 
as before, But the remaining R~) (tI- A + 1 <;;j <;;N) 
cannot be computed in this way, In such cases, we pro
ceed as follows. Instead of Q, let us consider higher
order Casimir invariants Qp in {A}<8>{AO}; 

Q =g"1"2" '''PY Y ••• Y . 
P "1 "2 "I' 

(3.15 ) 

In view of (2,27) and (2,13), we can decompose Qp in 
terms of irreducible components 

N 

Qp ="'E I/).)PJ , 
J =1 

(3.16) 

where II' (~.) is the eigenvalue of the pth Casimir in
variant K(p) in the jth irreducible representation {A

J
}. 

If, for some p??- 3, Ip(A
J

) are all distinct, i.e., if we 
have 

II' (A) "*Ip(Ak ) , if j*k, 

then we can express P
J 

in a form 
N ~ ~ 

P - II' Qp - Ip(Ak)E (3.17) 
J - k.1 Ip(A

J
) -Ip(A

k
)' 

Therefore, we can express R~j) as a linear combination 
of vector operators 

S~J)=tr{~ol[(Qp)J(E<8>x,,)l. (3.18) 

As an illustration, we note that S~l), for example, is 
furthermore expressible as a linear combination of the 
following vector operators: 

(3,19) 

In the next section, we choose the reference rep
resentation {Ao} to be one of the fundamental representa
tions. Then the nondegeneracy condition is satisfied for 
any generic irreducible representation {A} of the al
gebra An' B n, Cn' Dn and G2 • Moreover, we have A=O 
for all {A} in An' B n, Cn' and G2 • Also, for the algebra 
D n , we have A=O in general for the majority of 
irreducible representations {A}. However, for some 
special representations, we could have A = 1, and this 
causes some slight complication in finding explicit 
forms of all vector operators for this case, as we may 
see in Sec. 70 

In ending this section, we note the following. Although 
the algebra L has been assumed in this section to be 
simple, the same reasoning is equally applicable to the 
case when L is classical, provided that the product 
{A} <8> {Ao} is fully reducible as in Eq. (2.24) with the 
nondegeneracy condition. However, in this instance, 
S~o) = Etrx" is not necessarily zero and we have to take 
into account this extra term corresponding to p = ° in 
all equations such as (3.14). A similar remark applies 
to the Casimir invariant 11 (A), i. e., 11 (A) "* ° in general 
for such cases. 

4. ALGEBRAS An AND LIE ALGEBRA OF THE Urn) 

The Lie algebra of the (n + 1 )-dimens ional unitary 
group U(n + 1) is characterized by generators A,," 
satisfying 
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(4.1) 

for all {l,v,a,(3=1,2, ... ,n+1. The Lie algebra An 
corresponding to the SU(n + 1) group can be obtained 

from A,," by 
1 n+1 

B v=A"v- -+1 o"v"'EA'A' " n A=l A 

(4.2) 

Note that B"v satisfies the same commutation relation 
(4.0 together with traceless condition 

(4.3) 

Any irreducible representation {A} of the U (n + 1) 
group is characterized by n + 1 integers satisfying28 

(4.4) 

Corresponding to (4.2) and (4.3), any irreducible rep
resen,!ation of the An is specified by n + 1 rational num
bers f j given by 

n+1 
- 1" ft=fJ - n + 1 f:t k (4.5) 

Therefore, we notice 
--...... '" """ 
fl ??- f2 ??- ' •• ??- fn ??- fn+l , (4.6a) 

n+l 

"'E ~=O. (4.6b) 
j=1 

Also, m/s defined in (3.1) are given by 

mj = ~ - 'i+l = f j - ~+1 (4.6c) 

for j = 1 ,2, ... , n. Since all relations to be given in this 
section for the generators A"v are equally valid for 
B"v by substituting f j by 1;, we will consider only the 
former case here. 

It is convenient to define lJ by 

lj = fJ + n + 1 - j, n + 1 ??- j??- 1. (4.7) 

Then the dimension of the representation {A} specified 
by the signature ([1,f2' .•• ,fn+J is given by 

n+1 ( ) 
deAl = IIN lJ - lk • (4.8) 

1l2!'''n! 

Although the Lie algebra of the U(n + 1) group is not 
semisimple, it is nevertheless classical. Indeed, we 
can choose the reference representation {AO} to be 
either 

(4.9a) 

or 

{AO} = (0,0, 00',0, -0. (4.9b) 

Both choices not only assure the existence of g"V but 
also satisfy the nondegeneracy condition. Here in this 
note, we choose the case (4. 9b), where (a, (3) matrix 
element of x"v is given by 

(x"V)"'B= - o"aova 

for J1, v, QI , (3 = 1 , 2, ... ,n + 1. Note that we have 

d(Ao) =n + 1, 
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Then, the product is reduced to 

= ((1 - 1 J 2, ••. I n+l) ffi ((1'f2 - 1 J3' ••• In+rl EEl' , • ED 

EEl((1'f2,co'JnJ n+l-l) (4.12) 

from the Weyl's formula. 24 In the right side of (4.12), 
we simply drop any term, 29 if it corresponds to un
natural ordering, i. e., if its signature factors do not 
satisfy the natural ordering (4.4). Then we may easily 
find N =11 + 1 - no(,\) , where 110 (;1.) is the number of m/s 
which are zero. We notice that N is also identical to 
the number of nonredundant I/s. 29 

The eigenvalue of the second-order Casimir invariant 
can be easily computed to be 

n+l 
12 (;d = 6 lJ (iJ - 11) + i l1(n - 1)(11 + 1). 

J.l 
(4.13) 

From this, we easily find that the deficiency index tl. is 
always zero for any generic representation {A}. The 
higher-order Casimir invariants 1p (A) can be found now 
easily from (2.32) to be 

1
p

(A) = (-l)P ~ uy nill, l. + 1 - lJ , (4.14) 
J=1 .=1 ,. - lJ 

where the product omits the singular point k = j. The 
formula (4.14) reproduces the result of Ref. 10 and 13. 
In spite of its apparent fractional form, (4.14) can be 
proved10 to be a symmetric polynomial of l1' l2' ... ,In+l 
of degree p. Therefore, we can specify any generic 
representation {A} by 11 + 1 Casimir invariants K( p) 

(1 ~ P ~ 11 + 1). 

When we take (a, (3) matrix element of Q with respect 
to the space {AO} as in Eq. (2.54), it leads to 

(4.15) 

for a,fj=1,2, .. . ,11+1 with B=(Il,v). Then, we can 
eas ily verify that the corresponding identity (2.53) or 
equivalently (2.49) with tl. = 0, exactly reproduces the 
minimum polynomial vector identity found previously. 16 

Since we have tl. = 0, all vector operators are linear 
combinations of N special vector operators S~p) (0 ~ 
p ~ N) with B = (11, v). This conclusion again agrees 
with that reached in Ref. 16. For the algebra An' we 
only need N -1 =n - 110 (A) of Sit) in agreement with the 
theorem of Sec. 3. 

In order to give an example of more general tensor 
identity equations, let us consider the case of the com
pletely symmetric representation {A} = ((, 0, 0, ... ,0), 
i. e. , II =1 but IJ = ° U'* 1). In this case, it is con
venient to choose {AO} to be 

{AO} = (1 , 1 , 0, 0, 0 0 " 0) , 

i. e. , II =12 = 1, but IJ = ° U'?- 3). Then the Clebsch
Gordon series is now30 

{A}® {AO} = ((,0,0, 000,0)® (1,1,0,0,0'0,0) 

=((+1,1,0, oO',O)EEl((,l,l,O, "',0) (4.16) 

so that we have N = 2 with ~1 = + I and ~2 = - 2. Then 
(2.53) is rewritten as 
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(A"y + 0"yE)A"'8 = (A"8 + 0"8 E)A,,,y, 

which has been discovered already by many 
authors. 18,19.16 

5. ALGEBRA Bn 

(4.17) 

This corresponds to the orthogonal group 0(2n + 1), 
where the generators XA with A = (11, v), 
11, v = 1 ,2, ... , 211 + 1, satisfy 

X"y=-Xv,,' (5.1a) 

[X"y,X"'8)=Oy",X"8+0"~y,,, -O"(JIXya-Oy~"", (5.1b) 

in a non-Cartan form. Instead of rn/s given in (3.1), 
it is more convenient to consider fl J2' ... ,In by 

I, =rnJ + m,+1 + ••• + m n_1 +}mn U'*n), 

In = ~ nln U = 11). 

Noting J11, '?- 0, this gives the natural ordering 

11~f2,?-c··""ln>0. 

(5.2) 

(5.3) 

These ~ must be simultaneously either all integers or 
all half-integers. The latter corresponds to the spinor 
representations, while the former case are tensor 
representations. It is often more convenient to define 

" = I, + 11 - j + ~ (11 -;" j -;" 1), (5.4) 

then the dimension of the representation {A} is 

2n n n 
d(A)=1!3!"'(2n_1)! Hll, H.[(l,)2_(l.J2). (5.5) 

We choose the reference representation {AO} to be {AI}, 
i. e. , 

{AO} = (1,0,0," ',0) (5.6) 

with II = 1, and ~ = ° U;, 2). The (a, (3) matrix element 
of the generator X"y = - Xy" in {AO} is given by 

(X"),,, a = a" (JIOya - a "aoY(JI· 

We now have 

(5.7) 

g("Y),{"'S)=4g("Y)'("'8l=2[0"soy",- O"",Oya). (5.9) 

We compute the eigenvalue of the second-order Casimir 
invariant to be 

n 

12 (A) = H6 (l,F - f2 n(211 + 1)(2n -l)}. 
J:1 

The product decomposition rule iS31 

{A}®{AO} = ((IJ2' 0.0,ln)@(1,0, ''',0) 

= ((1 + 1 ,/2' ,. o,ln) EEl ((1'/2 + 1 J3' 00 ',In)ffi' 0' 

EEl ((1' •.. ,In-l ,In + 1) EEl ((1 - 1 ,/2' 000 ,In) 

(5.10) 

EEl ((1 J2 - 1 ,/3' 00' ,In) ED· •• EEl(jl, ••• ,In_1'ln-1) 

tV (jl J 2, ... ,In) . (5.11) 

Again if some signatures on the right side of (5.11) do 
not satisfy the natural ordering (5.3), then we simply 
omit all such terms. 31 Moreover, when we have In = 0, 
then we must delete the last two terms although the last 
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of them satisfies the natural ordering. In this way we 
find N=E o +2[n-no(;\)], where no(A) is the number of 
m/s which are zero and where we defined Eo to be Eo = 1 
for fn"* ~ and Eo = ° for fn = ~. 

The Casimir invariants Ip(A) are easily computed now 
as 

IT' (l, + 1)2 - (lk)2 + ( _ l)p(l _1- + )p 
x (l )2 _ (Z )2 , 2 n 

k=I ! k 

X £cl. ii, (l, - !)2 - ([:)2 } + (_ n)p, (5.12) 
lJ k=I (lJ) - (lk) 

where the product on k in the right side omits the 
singular point k = j. In spite of its apparent fractional 
form, we can prove that Ip(A) is a symmetric polynomial 
of ([1)2, (l2)2, ... , (In)2 of degree [p/2]' where 

[P/2l={P/2, if P is an even integer, 

(p-1)/2, if P is an odd integer. (5.13) 

We may also verify the validity of (2.44), i. e. , 
10 (A) = d(AO) = 2n + 1 and II (A) = 0. We may use n Casimir 
invariants 12 (A), 14 (A), ... ,12n(A) to specify7.8 any ir
reducible representation of Bn' 

From (5.10) and (5.11), we can check that the de
ficiency index A is zero for all irreducible representa
tions {At. When we note 

(5.14) 

for (/"1, f3) matrix element in Eq. (2.54), then Eq. (2.53) 
or (2.49) with 40=0 give vector identity equations of a 
kind discovered in Refs. 17 and 19. Also, the result of 
the Sec. 3 implies that all vector operators are linear 
combinations of special vector operators 51) 
(1 ~ P~ N-1); 

S(P)=g XBIXB2000XBp (5.15) B BB 1B 2 o()oB p , 

where we have set for Simplicity B = (JJ., v), and B
J 

= (JJ." v,) with 

gBB ••• BA=tr(XBXB oooxB ). (5.16) 
1 yIp 

However, not all of S ~P) for 1 ~ P ~ N - 1 are linearly 
independent by the follOwing reason. From (5.7), we 
readily see that x B satisfies 

(XB)T=-XB, B=(JJ.,v) (5. 17) 

for its transpose matrix so that we find 

gBBI···BP=(-1)P+lg . (5.18) BpBp_l" .BIB 

Because of (5.18), we can always reduce sif) with even 
integer p in terms of S~·) with q ~ P -1, and q being odd 
integer. Therefore, all vector operators are linear 
combinations of 17 - no(A) vector operators 

(5.19a) 

Espec ially, for any generic representation, any vector 
operators are linear combinations of 17 special vector 
operators: 

(5.19b) 
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in conformity with the theorem stated in Sec. 3. 

6. ALGEBRA en 
This corresponds to the symplectic group Sp(217) where 

generators X B with B = (JJ., v), JJ., v = 1,2, ... ,2n, 
satisfy 

XlLy=XylL , 

[X"y,X"al =Ey"X",a +E",aXy" + EyaX'" " +E",,,Xya ' 

Here E",y is antisymmetric with values ° and ± 1, 

(6.1) 

(6.2) 

E,:,LV== -EIJiJ.' (6.3a) 

E2J-l.2J = - E2J.2j_l = 1, 

E",y=O, if jJJ.-vj>1. 
(6.3b) 

Again instead of m/s given in (3.1), we use fJ de
fined by 

ft=mJ+rn J+1 + ..• +mn 

so that they satisfy 

fl 3 f2 3 00
' 3 f;3 0. 

Setting moreover 

lj = fJ + n - j + 1 , 

the dimension of the representation is 

Note that (6.7) has exactly the same form as (5.5) 
apart from the factor 2n , although the meaning of lJ 
differs for two cases. 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

We choose the reference representation {AO} to be 
{AI}, i. e., 

{Ao}=(l,O,O, "',0), (6.8) 

i. e. , fl = 1, but ~ = ° (j 32). Then its explicit matrix 
representation of the infinitesimal generator X",y =Xy", 

(JJ.,v=1,2, ... ,2n) is given by 

(X",)"a=EyaO",,, +E",130y" 

and we have 

(6.9) 

(6.10a) 

(6.10b) 

The second order Casimir invariant is easily computed 
to be 

n 

12 (A)=H6 (lj)2-{n(n+1)(2n+1)}. (6.11) 
jd 

With the choice (6.8) for {AO}, the nondegeneracy con
dition is always satisfied with 40=0 for any irreducible 
representation {A}. The Clebsch- Gordan decomposition 
is 

{A}®{AO} 

= (jl,f2' ·",fn)® (1,0,' 0',0) 

=(jl +1,f2' ooo,fn)tfJ(jl1f2+ 1,f3' .oo,fn)tfJ oo • 

tfJ (j11 '00 ,fn-1I in + 1) tfJ (jl -1,f2, 0" ,fn) 

tfJ (JI>f2 -1 ,f3' ••• ,In) tfJ ••• tfJ (JI> ••• ,jn-ufn -1) 

(6.12) 
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by the Weyl' formula. 24 Again, we omit all terms in the 
right side of (6.12) if the signature factors of the term 
violate the natural ordering (6.5). We have in the pre
sent case N =Eo + 2~1 - no (A)) , where Eo = 0 for fn * 0 and 
Eo = 1 for fn = O. The pth order Casimir invariant is 
readily computed to be 

2P1p(A) = t ~ (lJ -n)p lJ + 1 IT' (lJ + ~)2 - (l:)2 
J=l l lJ k=l CZ) - (lk) 

lJ - 1 " (lJ - 0 2 
- (lk)2 } + (-OP (lj +n)P -- II' 

lJ k=l (l)2 - (Zk)2 , 

(6.13) 

where we omit the singular term k = j in the product 
Over k. Again, we can prove that [p(lt} is a symmetric 
polynomial of lL l~, ... ,l~ of order [p/2], so that n 
terms [2(A), [4(A), ... ,12"(A) can specify2 any irreducible 
representations. We can also check the condition 10(A) 
=d(Ao)=211 and [l(A)=O. Also, Eq. (6.13) reproduces 
the formula (6.11) for p = 2. 

Since the deficiency index t. is zero, all vector op
erators are linear combinations of S if) as in (5. 15) and 
(5.16). Also, xB satisfies now 

(6.14) 
where E is the 211 x 211 matrix whose (/1, v) component 
is given by E".v' This replaces (5.17) but the same 
argument is applicable to prove (5.18). Therefore, 
again all vector operators are linear combinations of at 
most 11 vector operators of the form (5.19) again. More 
precisely, only first 11 - 110 (A) of them are required, in 
conformity with the theorem of Sec. 3. 

7. ALGEBRA Dn 

This is the Lie algebra corresponding to the group 
SO(211). The generators xB ' E=(/1,v), satisfy the same 
relations (5.0 although /1, v, 0/, and f3 assume now 
values only 1,2, ... ,211 but not 211 + 1 . 

We define .Ii's by 

fJ =mJ +mJ+1 + ... +mn_2 +~ (m n_1 +mn), 1 ""j",,11 - 2, 

fn_1=Hm"'1+m.l, fn=~(-mn_1+mn) 

so that they satisfy now 

f1 "> f2 "> . 0 • "> f n-1"> Ifn I . 

(7.0 

(7.2) 

Note that the last entry in (7.2) is not fn but its absolute 
value 1 fn I. Again, f/s assume values simultaneously 
all integers or all half-integers, corresponding to 
tensor or spinor representations. 

When we set moreover 

lJ = ~ + 11 - j, 1"" j"" 11, (7.3) 

the dimension formula is now given by 

2n-1 n 
deAl = 2 14 100 '(2 _ 2)1 II [(l)2 - (lk)2). (7.4) 

.. 11 'J<k 

We choose again the reference representation {Ao} to be 
{A. 1L i.e., {Ao} =(1,0, ... ,0) withf=1 andfJ=O (j">2). 
Its explicit matrix representation is still given by Eq. 
(5.7) with (5.9), However, (5.8) is now replaced by 
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t7 . 5) 

The Clebsch-Gordan decomposition rule32 is formally 
equivalent to Eq. (6.12), although we must delete all 
terms which are unnatural now under the ordering (7.2). 
Then we find N=2[11-110 (A)). 

The second-order Casimir invariant is computed to 
be 

(7.6) 

We observe that the nondegeneracy condition is satisfied 
by our choice of {Ao} for all generic representations 
{A}. We have t.=0 for any representation {A} such that 
fn * 0 or fn = f n-1 = O. However, the defic iency index as
sumes t. = 1 for any representation {A} with fn = 0 but 
fn- 1 "> 1. This latter case adds a new complication in 
determining all vector operators. 

The pth order Casimir invariant is readily computed 
to be 

Again, we can prove that 1p (A) is a symmetric poly
nomial of (ll)2, (l2)2, ••. , ([n)2 of the degree [p/2). We 
may also verify [O(A) =d(Ao) =211, and [l(A)=O. We can 
determine li, l~, ... , ([n)2 from 11 quantities [2(A) , 
14 (A), ... ,12n(A). But this does not specify the sign of 
fn' since In = fn' In this sense, the choice of the above 
set is insufficient. However, we have another Casimir 
invariant 

(7.8) 

where EIL1V1"2V2' •• " Vn is the completely antisymmetric 
Levi-Civita tensor

n
, with values 0 and ± 1. We may note 

that (7.8) can be obtained from K(n) when we choose 

{Ao} to be a spinor representation {Ao} = (~, L .. " ~), 
i.e., fJ=~ for all j. At any rate, its eigenvalue In(A) 
has been computed by Louck9 to be 

(7.9) 

We shall present a simpler proof of (7.9) in the Appendix 
B. Note that (i,l is a polynomial of [2,14 ", • ,12"' but In 
itself is linearly independent of them. Therefore,2 if we 
choose [2'[4"" ,12n-2,In to be the l1-algebraically in
dependent Casimir invariant, then we can completely 
specify any irreducible representation of the Dn' 

Next, let us consider the problem of finding all vector 
operators. As we noted earlier, we have t. = 0 if fn * 0 
or if f n-1 = fn = O. Hence as long as we have fn * 0, the 
same argument presented for the case of the algebra 
En is applicable and we conclude that any vector op
erators are linear combinations of at most n special 
vectors X B , S ~3), ••• ,S~2rr-1) as in (5.19). However, the 
same argument does not apply to the case fn = 0 but 
fn_l * 0 since we have t. = 1, and we have to resort to the 
method discussed in Sec. 3. All Casimir invariants of 
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the form Q (p ~ 2) discussed there do not still uplift the 
degeneracy of two subspaces specified by P 2n- 1 and YZn' 

Because of this, we consider a Casimir invariant Q in 
{A}® {Ao} given by 

Q- - ( 1)n(n+2 )/2 _1_ E Y Y 00 OY 
- - 2"n! ~lVltL2V2· 0) otLnVn J.LtV1 J.l.2"2 IJ.nvn' 

(7.10) 

Y"v=X"v'2i Eo + Erz; x"V (7.11) 

then an analog of (3.16) is now given by 
2n 

Q = L) In(Ai)P,. (7.12) 
i·1 

But for fn = 0, and fn-I * ° only the proj ection operators 
P2n-1 and PZn corresponding to representations 
(fl'fz, ... ,fn-1 I n -1) and (1l'f2" .. ,f "..Ilfn + 1) in the 
right side of the decomposition to {A}® {Ao} can con
tribute, since for all other cases 1, (A) =0. The result 
is 

(7.13) 

Since the sum P Zn- 1 + P Zn = ]5Z"..l can be computed as in 
Sec. 3, we can completely specify all Pi now as func
tions of Q and Q. Then, as in (3.18), all vector op
erators must be linear combinations of n special vector 
operators, 

X 5(3) 5(5) 0" 5(Zn- 3 ) 5 
jJ.V' /J.v' IJ.V' 'J.LtJ 't.J.V' 

(7.14) 

where 5"v is defined by 

S =_1_E X X oooX • 
/-LV 2"n! tLVtLl"11-L2V2 <> <> <> /.Ln-l"n-! tJ.IV l /.1.2"2 /.Ln-!"n-l 

(7.15) 

Actually, we can show that, for the casefn*O, 5~Z'-1) 
can be expressed as a linear combination of (7.14). 
Therefore, for all cases, we can say that n-linearly in

dependent vector operators of the algebra Dn is given 
by (7.14). To prove this fact, we note that we can easily 
express 

(7.16) 

since a product of two Levi-Civita tensors can be re
duced to a sum of products ofl'roneckers deltas, o"v' 
For the case fn = 0, we know Kn = ° so that (7.16) simply 
reproduces the vector identity for A = 1. But if we have 
fn*O, then Rn*o so that we can express S"V in terms of 
5~ZJ-1) (1~j~n), and conversely5~z""1) in terms of 
(7.14). 

8. ALGEBRA G2 

The discussions for five exceptional algebras Gz , F 4 , 

E 6 , E7) and E8 are quite involved. Here, we shall con
sider the simplest case Gz as an illustration. We use 
now the standard Cartan-Weyl basis for Gz . If 0'1 and 
O'z are two fundamental roots of Gz , then two funda
mental weights Al and A z are given by 

Then, the highest weight A of a generic irreducible 
representation {A} is expressed as 
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(8.1) 

(8.2) 

where m1 and m z are nonnegative integers. 33 The dimen
sion of the representation is 

We choose the reference representation {Ao} to be the 
seven-dimensional representation 

(8.4) 

The Clebsch-Gordan series can be computed by means 
of the formula (2.38), since the twelve elements of the 
Weyl group as well as the weight diagram of {Ao} are 
well known. 34 The result is 

{A}0{AO} = (mil 111 2 )0 (0,1) 

= (1111' m 2 + 1) ED (m l' 111 2) ED (m l' m 2 - 1) 

8(m 1 +1,nl 2 -2)E.D(m l +1,1112 -1) 

EEl (m 1 - 1, m 2 + 2) ~m1 - 1, m z + 1) (8.5) 

as long as m1 ~ 1 and m2 ~ 2 with N = 7. When we have 
m1 = ° and/or m z = 1, we simply omit any terms such 
as (m~ , -1) and (-1, mp from the right side of (8,5). 
However, for mz=O, the situation is more involved. 
The correct formula for this case is 35 

(m1,0)®(0,1)=(mj)1)ED(mt-1,1)Ef·(m1-1,2) (8.6) 

for m 1 ~ 1 with N = 3. Then, we see that the choice of 
this reference representation {Aor satisfies the non
degeneracy condition with A = ° for all irreducible 
representations {A}. The second-order Casimir in
variant is computed to be 

31z(A)=3(m1)z+(m2)2+3mlmZ+9m1 + 5m2, (8,7) 

Therefore, we can compute all higher-order Casimir 
invariants from (2.32) or (2034). However, the final 
expression is very complicated and we will not reproduce 
them here. As before, all Casimir invariants 1/1(\) with 
odd P's are expressed in terms of 1/1(A) with even p's. 
One peculiar aspect of G2 is the fact that the fourth-order 
Casimir invariant is a function of 12 , i. e., we have 
identically 

(8.8) 

However, the six-order Casimir invariants 16 (A) is 
algebraically independentZ of l z(\) as has also been ob
served by Scheibling and Umezawa. 8 Therefore, any 
irreducible representation of the G2 is characterized2 by 
l z(A) and 16 (;\), 

Regarding the determination of all vector operators, 
we also encounter a similar trait. Since we have A = ° 
and N ~ 7, the discussion of Sec, 3 shows that all vector 
operators must be a linear combination of vectors 
5~/I) with 1 ~ P ~ 6. But the theorem stated in Sec. 3 
demands that only two of them are in general linearly 
independent. Since {AO} = (0, 1) is the only seven-dimen
sional irreducible representation of Gz , its transpose 
representation must be equivalent to {AO} itself. In other 
words, we must have a nonsingular 7 x 7 matrix g such 
that 

-X~=gXfJ,g-l, jJ.=1,2,000,14, (8,9) 
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As its consequence, we have the validity of (5.18) so 
that only X.,. ==S~l), S~3), and S~5) could be linearly in
dependenL Moreover, we can prove that S~3) must be 
proportional to X.,., i. e., we have 

(8.10) 

Therefore, we conclude that only X" and S~5) are two 
linearly independent vector operators in generic ir
reducible representations of Gz• For the cases with 
m 1 == ° or m z == 0, only X" is the sole33 linearly indepen
dent vecto rope rator of Gz, since we have N = 5 or 3 
for these cases. The validity of (8.8) and (8.10) is a 
consequence of the following identity in Gz • Let ~" 
(11=1,2,0" ,14) be real arbitrary constants. Then, we 
can prove an identity 

(8.11) 

where we have set 

14 

(~x) = 6 ~"x". (8.12) 
,,=1 

The proof of (8.11) is rather involved and will not be 
given here. 
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APPENDIX A 

Here we shall prove the theorem Eq. (3.2). To that 
end, let 

11={0I 1 ,0I 2 ,"o,OI n} (AI) 

be the fundamental (or simple) root system of L, and 
let 

(A2) 

be the special Weyl operation with respect to plane 
perpendicular to the root Ci J E 11. If A11 A2 , •.• ,An are 
the fundamental weight system of L, then we find 36 

2(A J,Cik) = °Jk(Cik,Ci k ), 

2(O,Ci k)==(Cik ,Cik), 

SJ Ak =Ak - 0JkCik' 

(A3) 

(A4) 

(A5) 

S/J=o-O'J' (A6) 

where o=~ i:,,>oCi is defined by (2.37) and 0Jk is the 
Kronecker symbol, i.e., 0Jk=l, if j=k and 0Jk==O, 
if j * k. Therefore, if 

(A7) 

is the highest weight of the irreducible representation 
{A}, then we compute 

2 (K, Ci J) == (m J + 1) (Ci J ' Ci J)' 

SJK=K - (m J + l)Ci, 

for K=A +0. 

(A8) 

(A9) 

According to the well-known Wigner-Eckart 
theorem,37 the number of linearly independent vector 
operators in {A} is precisely equal to the multiplicity 
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of the representation {A} occurring in the product {A} 
® {Ao}, where {AO} is now the adjoint representation of 
L. Hence by the formula (2.38) of Weyl, we have 

nv(A) == e(A ;A, Ao) == 6 (dets)yo(SK - K). 
s 

(AlO) 

The multiplicity yo(M) of the weight M in the adjoint 
representation {Ao} is evidently given by 

~ 
n, if I'll = 0 , 

Yo(M)= 1, if M=O' is any nonzero root, 

0, if M is not a root. 

Note that K is dominant36 with 

SK <K, if S *1 == identity. 

(Al1) 

(A12) 

so that we separate the case S =1 == identity in (AlO) to 
find 

nv(A)=n+ ~ det5(a). 
,,)0 

(A13) 

Here the summation is over all positive root Ci such that 

K -SK=Ci (A14) 

has a solution 5 ==S(IY) for some Weyl symmetry S{ct}. 
Note that the solution, if it exists, is unique because of 
(A12). We shall prove belOW that (A14) has a solution 
if and only if a coincides with Ci J E 7f such that m, = O. 
Then, the solution is given by S =5, with dets = -1. 
Therefore, (A13) gives the desired formula, Eq. (3.2), 
i. e. , 

nv(A) ==n - noC),.) , 

where nolA) is the number of m/s which is zeroo 

To prove this, we note first that (Al4) leads to 

(K ,K) = (SK ,5K) = (K - Ci ,K - CI) 

so that the root CI. must satisfy a condition 

(Ci ,Ci) =2(K,Ci). 

(A15) 

(A16) 

Second, since Ci is a positive root, we can express it as 

n 

a = 6 Pjaj 
J=1 

(Al7) 

where P
J 

are nonnegative integers. In view of (A8), we 
can rewrite (A16) as 

n 

(Ci,(l)=~(mJ +l)p,(aJ,O'j)' (Al8) 
J=l 

On the other hand, any non-zero root a can be written36 

in a form of 

(A19) 

in terms of a Weyl operation T and Ci IE 11. This leads to 

(A20) 

for some O'z E 11. 

We now consider three different cases, separately. 

Case (I) (Algebras An, Dn, £6, £7> and £5) 

In this case a glance on Dynkin diagrams of these 
algebras gives 
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(a J ' a J) = 1, a: J E 1T 

for all j in a suitable unit. Therefore, we have (a,a)=1 
also from (A20) and (AlB) becomes to 

n 

:0 (m
J 

+ l)PJ =1. 
J=1 

(A2l) 

But since m
J 

and P
J 

are nonnegative integers, this is 
possible only if one of P

J 
alone is nonzero and we have 

a=a" m,=O. 

Then, 5 =5, is a solution of (A14) in view of (A9). Con
versely, if we have m, = 0 for some m I' then we find 
that a =a, and 5=5, satisfy (A14). Therefore, (A15) 
follows. 

In this case we know 

(a"a)=l or 2 

in a suitable unit so that from (A20) we find 

(a J' a J) "'" i(a, a) (A22) 

and (AlB) is satisfied only if 
n 

2"",:0 (m
J
+l)p

J
• 

J.l 
(A23) 

A solution 2:'j=1 (mJ + l)P
J 

= 1 leads to the same conclusion 
as in the Case I, and we only need to prove the im
possibility of another alternative 

n 

:0 (m
J 
+ 1) p. = 2. ,=1 J 

(A24) 

This may be possible only if we have either 

(A25) 

or 

(A26) 

or 

O'=O'J+Ci k (j*k), m,=mk=O, PJ =Pk=1. (A27) 

But the first possibility (A25) contradicts (A22) and/or 
(AlB) 0 The second possibility 11' = 20' k is also ruled out, 
since 2a

k 
cannot be a root. For the last case, (A27), 

the equality in (A22) and (A23) can happen only if 

(a , a) = 2 (a, ' a J) = 2 (ry k , 0;.). 

Comparing this with (A27), we must have 

a =a, +ak U*k), (aj,ak)=O. 

(A28) 

(A29) 

But an inspection of Dynkin diagrams shows that (A2B) 
and (A29) are impossible for Bn and F4 • For the algebra 
en (as well as Bn and F4 ), we proceed as follows. Since 
a is assumed to be a root, so must be 

f3 = 5 Ja = a - [2 (a, a )/(a J' a J)]Ci J' 

But (A29) implies 

{3=O'k-O'J (k*j). 

Since f3 is neither absolutely positive nor negative, {3 
cannot be a root, and this is a contradiction. This im
plies that 0' of the form (A29) is not a root. 
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Case (III) (Algebra G2 ) 

In this case, we know 

(Ci 1'0'1)=3, (0'2,0'2)=1, (a 1'0'2)=- %. (A30) 

A similar study of (AlB) and (A20) enables us to con
clude that (AlB) is possible only for 0' =0'1' with m 1 =0 
or for 0' =0'2 with m 2 =0. Therefore, just as in the 
Case (I), we obtain (A15). 

We remark that the validity of the present theorem for 
the special case of the algebra An has been noted by 
Pais. 30 

APPENDIX B 

We shall prove here (7.9). For this purpose, it is 
convenient to introduce K~, R"v' and R"v, for 
)1, v = 1 , 2, ... ,n by3s 

K~ ==~{ -Xj.l.J)-Xl.'+mv+n- i[XJJ.~v+n-Xt.L+mv]}' 

R"v- RV" -l.{X X -i[X +X ]} 
- - - 2 {.l.V - j.L.+ntv+n Ii- tv+n ~+n'v' 

(Bl) 

R"v = - R v" = i{ -X"v + X,,+n,v+n - i[X" 'V+n + X,,+n,J}· 

Then, the Cartan subalgebra may be generated by n 
elements, 

and all other K~ ()1*v), R"v' and RILV correspond to 
some E",'s with nonzero root a. 

(B2) 

We can rewrite the Casimir invariant (7. B) in a formS 

Kn =H1H 2 " 'Hn + lesser polynomials of H
J 

and E",. 

(B3) 

Let v be the highest weight state of the generic 
representation {A} with signature (7.2). Then, as usual,8 
we compute 

Knv= [z112'" In + P".1(Z)]V, (B4) 

where P rr-1 (Z) is a polynomial of I1> I2' •• 0, 1n of at most 
degree n -1. In deriving (B4), we used the fact 

(B5) 

Equation (B4) implies that the eigenvalue I (A) of the 
~ n 

Casimir invariant Kn has a form 

In(A) = I112' , 'In + P".l (Z). (B6) 

However, P".1 (Z) m~st be a symmetric polynomial of 
l1> l2' ••• ,In since (Kn)2 can be easily shown to be poly
nomial of K<'> (1 -'S P -'S 2n). 

Next, consider a linear mapping of Dn into itself, 
given by 

I {X"v' if)1* 2n and v* 2n, 
X - X = e(x )=' 

"V "V "V -X"v' if )1=2n or v=2n. 

(B7) 

We may easily verify that e is an automorphism of Dn' 
Moreover, we can prove that it is outer 0 39 Indeed, the 
effect of e is to change 
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lJ -lJ (join), 

In - - In (j = n), (B8) 

as we see from (B5). A more careful analysis shows 
that e interchanges 39 the two roots QI".,1 and QI n in the 
Dynkin diagram of the D . Also, the operation of e by n _ 

(B7) changes the sign of the Casimir invariant Kn' This 
implies that the polynomials P "..1 (l) must change its 
sign under (B8). But since P "..1 (0 is a symmetric poly
nomial of l1' l2' 0 •• ,In of degree at most n -1, this is 
not possible unless P n- 1 (0 is identically zero 0 There
fore, we must have 

I (>t) = l l 00 0 l 
n 1 2 n' (B9) 

which is (709). 
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It is shown that there is a new class of superalgebras associated with a given Lie algebra or a 
superalgebra, The structure constants of the new algebras either vanish or else are directly related to 
those of the original algebra, The new algebraic structures provide a possible link between the local gauge 
groups constructed over superspace and those over ordinary space-time, 

I. INTRODUCTION 

The purpose of this paper is to construct a new class 
of superalgebras associated with a given Lie algebra 
or with another known superalgebra of simple or semi
simple type. The latter algebras have been extensively 
studied in the literature. 1-3 The proof of the existence 
of the new algebras is given by constructing explicit 
representations for them. This is carried out in Sec. 
II. Although the new algebraic structures are indepen
dent of any specific application, the interest in them is 
not purely from the mathematical point of view. There 
have been a number of suggestions4- 10 about the con
struction of locally super symmetric gauge theories both 
in ordinary space-time and in superspace. One would 
therefore want to have an understanding of the meaning 
of local gauge group elements in superspace. It is shown 
in Sec. III that a local gauge group element in super
space can be written in terms of a set of elements of a 
different local gauge group in space-time, which is 
based on one of the new algebras. We use the notation 
and conventions of Refs. 5, 7, and 10. 

II. THE NEW SUPERALGEBRAS 

Let G be a Lie algebra with basis elements {XA } satis
fying the commutation relations 

(2.1) 

where Fk are the structure constants of the associated 
Lie group. Let ea1 , ea2 , •.. , eam, be elements of a 
Grassmann algebra, 

{eai eaj}-O "-1 N , -, l,]- , ... , . (2.2) 

Construct the elements 

XA, .xlA=eaiXA, .xli=ealeajXA, i*j, 

By construction all elements .xli'" involving products 
of more than N eak's vanish identically. Reca1l5 the 
definition of a superbracket 

(XA,XB}=XAXB _(_)aAaB XBXA' (2.4) 

where 0' A = 0 if X A is an even element of the algebra, 

a) Supported in part by the Energy Research and Development 
Administration. 

b)Yale Junior Fellow, on leave of absence from the Department 
of PhYSics, Yale UniverSity, New Haven, CT 06520. 
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and 0' A = 1 if X A is an odd ele ment. Then, by straight
forward computation one can show that 

= { 0 if there are more ijkZ indices than N, 
(2.5) FkxC·ij"'kt ••• otherwise. 

The order of the indices" 'ij'" kZ" 0 are the same on 
both sides of the equality sign. 

Similarly, if the Lie algebra (2.1) is replaced by a 
superalgebra 

(XA,XB}=rABxC , (2.6) 

a representation of the elements of the new superalgebra 
will be of the form given by (2.3). But this time 

[X;·ijoo',xooktoo.} 

= { 0 if there are more ijkl indices than N, (2.7) 

( )aA(· .. +ak+(Jt+·oo)fc xoo.ijoo'kIOO' th ' - AB C 0 erWlse. 

Notice that in this case even for nonvanishing brackets 
the sign of some structure coefficients will change 
when X A is an odd element of the algebra. 

As an example, suppose N = 4. Then the basis ele-, 
ments of the new algebra are the set 

{ vi " I'k 'jkl} XA,AA"X'l,Xl,X'A • 

The nonvanishing superbrackets are listed below: 

[XA,xB}=Fkxc, [XA'X~}= (_)aAajriBXb, 

(XA,X~k}=FkXck, (XA,X~kl}= (_tAaj FkX{;'I, 

(XA,x~ktm}=r.txbklm, [X~,X~}= (_(AaiFkx~, 

(~, X~k} =Fk.xldk, (.xlA, X~kl} = (_ tAa ir.t X!} t , 

[.xli ,X~I} =,fkXiikt 0 

A typical vanishing bracket is 

(x~,X~lm}=O. 

(2,8) 

(2.9) 

Consider some of the subalgebras of the superalgebra 
(2.8). Clearly, the elements {XA } of the original super
algebra form a subalgebra. The remaining elements, 
i. e" when excluding {XA }, also form a subalgebra, in 
fact an invariant subalgebra, The latter subalgebra con
tains a hierarchy of invariant subalgebras obtained by 
first excluding {X1} then {X~, .xl}}, etc. These properties 
are, of course, not limited to this illustrative example 
but are shared by the general algebras (2,5) and (2.7), 
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III. LOCAL GROUP ELEMENTS IN SUPERSPACE 

In the neighborhood of the identity any element g of a 
symmetry group G can be written in the form 

g= exp(EAXA), 

where EA are the group parameters, A local group ele
ment over ordinary space-time can be constructed by 
requiring that 

EA -EA(X). 

Thus, one obtains a group with a continuous infinity of 
parameters, one for each {x1L}, At every value of {x lL }, 
the algebra of the group remains the same, 

[XA,XB}=f~Xc, for every {x1L}. (3.1) 

Now suppose one wants to construct a local group 
element over superspace, Then one must require 

EA -EA(X, 8), 

where 8 is an element of Grassmann algebra (2.2). For 
definiteness suppose the set {8"i} consists of four ele
ments. Then, suppressing the x dependence, the ex
ponent EA(fI)XA can be expanded in powers of fI, 

~(e)XA =EAXA + E~ X1+ E!~X1~ + E~~rX1~r + E~~roX1~r6 , 

(3.2) 

where, as in (2.3) 

x1=e"xA, X1~=e"'8~XA' etc, 

Thus one can regard a local group element with gen
erators {XA} and parameters {EA(X, en as a set of ele
ments with generators {X .. t"} and parameters {E::,,,(x)}. 
The new generators form an algebra of the type dis
cussed in Sec. II. 11 
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The above correspondence applies to any local 
group or supergroup in superspace. Since local gauge 
transformations in real space-time have definite mean
ing and physical implications, one is faced with the 
problem of providing a justification, from the physical 
point of view, for using local symmetry groups based 
on the new algebras; the full implications of this obser
vation remains to be explored. 
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The diffraction of sound pulses by a circular cylindera
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The diffraction of pulses in acoustic medium (scalar waves) by a circular cylinder is analyzed by applying 
the Cagniard method. Solutions for the incident. reflected. diffracted. and creeping pulses in the 
illuminated and shadow zones are all obtained by a unified approach. Numerical results are shown for the 
forward. backward. and side scattering of an incident pulse with a step or square time function. 

INTRODUCTION 

The scattering of acoustic pulses by smooth obstacle 
has been investigated by many authors. 1_5 A simple 
model which reveals important features of scattering 
is a circular cylinder whose axis is parallel to a line 
source, 

The commonly used method of analysis is as follows: 
The steady state scattered waves are first expanded in 
a series of eigenfunctions; the sum of the eigenfunctions 
is converted to a series of complex integrals by apply
ing Poisson's summation formula; each integral is then 
evaluated either by the calculus of residues or by the 
method of saddle point, An integration of the steady
state waves over all frequencies yields the solution for 
the pulses scattered by the circular cylinder. This last 
step is often replaced by applying the technique of 
Laplace transform. 

This paper presents an alternative approach. The 
complex integral and the integration over all frequencies 
are evaluated jointly with the aid of Cagniard's method,6 
A suitable asymptotic approximation for Bessel func
tions7 is adopted such that the Cagniard's method can 
be applied to obtain a closed form solution for the scat
tered pulses. This method avoids the tedious calcula
tion of the residues for Bessel functions with complex 
order, It unifies the analyses of diffracted waves in the 
shadow zone and in the lit zone; and delineates the ar
rival times of all pulses exactly as predicted by 
Fermat's principle. 

Gilbert and Helmberger8 used a similar method in the 
problem of an spherical inclusion. However, they used 
a modified Cagniard method, 9 and considered only the 
pulses reflected by the illuminated side of the sphere. 

The final form of the solution is expressed in terms 
of inCident, reflected, and diffracted rays in lit and 
shadow zones. The last named ray includes the pulses 
diffracted into the shadow zone by the curved edge, and 
the pulses that creep around the circumference of the 
cylinder, The incident ray contributes to the total waves 
in both lit and shadow zones. Its arrival is marked by 
a weak discontinuity which resembles the" contact dis
continuity" of the shock waves in nonlinear acoustics. 10 

2. WAVE EQUATION AND SOLUTION BY 
LAPLACE TRANSFORM 

The problem under consideration is the scattering of 

alThis research is supported by a grant of National Science 
Foundation (ENG 75-13703). 
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cylindrical waves by an acoustically weak or hard cir
cular cylinder of radius r = a as shown in Fig. 1. A line 
source which generates the cylindrical wave is located 
at r = r', e = O. The time function for the source is f(t). 
The initial condition is that, at t = 0, the system is at 
rest, and the boundary condition at r = a is either the 
Neumann (weak cylinder) or Dirichlet condition (hard 
cylinder), As r- co , the solution should satisfy 
Sommerfeld's radiation condition. 

Within the framwork of linear theory, the velocity 
potential ¢ for the acoustic wave satisfies the wave 
equation: 

2 1 o2¢ ( ') () "V¢-?7=-or-r ft, (1) 

where c = (B/p)l /2 is the sound speed which depends on 
the modulus of compressibility B and denSity p of the 
medium; o(r) = o(r)6(e)/r is the delta function. The ¢ 
is related to pressure p and particle velocities v by 

o¢ 
v="V¢, P=PTt· 

In the sequel, we set 

¢(r, e, t) = I/ f(t - T)<}!(r, e, T) dT, 

(2) 

(3) 

where <}!(r, e, t) is the solution of Eq. (1) when f(t) = 6(t), 
Define the Laplace transform of <}!(t) by >It(s), 

>It(s) = (0 ~ <}!(t) exp(- st) dL 

The >It(s) then satisfies the reduced wave equation 

"V2>It(s) _ (S2/C2)>It(s) = _ 6(r _ r'). (4) 

FIG. 1, Lit zone (1, II, III) and shadow zone (IV) outside a cylin
drical scatterer. 
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The initial conditions of I/J(r, t) = 0 and ai/J/at = 0 at t = 0 
have been assumed in deriving Eq. (4). The boundary 
condition for I/J(r, e, t) or >It(r, e, s) are 

Dirichlet condition: >It(r, e, s) = 0 at r = a, (5a) 

Neumann condition: a>It(r, e, s)/ar=O at r=a. (5b) 

The solution for Eq. (4) is composed of two parts, a 
particular solution >It!, which corresponds to the inci
dent wave generated by the source, and a homogeneous 
solution >Its which represents the scattered wave. They 
are 

(6) 

where Em is the Neumann factor with Em = 1 when m = 0 
and Em=2 when m > O. In the above equation, 1m and Km 
are the mth order modified Bessel functions of the first 
and second kinds respectively, and 

k = sic, R =..fC? + rl2 - 2rr' cose), (8) 

The operator n is defined according to boundary condi
tions (5), 

Dirichlet: n", 1, 

Neumann: n",a/a(ka). 

(9a) 

(9b) 

In deriving the solutions, the addition theoreml1 of 
Bessel functions has been applied to express Eq, (6) as 

where r> = max(r, r~ and r( = min(r, r'), The total wave 
outside the cylinder is 

>It(r, e, s) = >Iti(r, e, s) + >ItS(r, e, s). (11) 

The inverse Laplace transform of >It! in Eq. (6) iS12 

. 1 c 
I/J'(R, t) = 21T /(c2f2 _ R2) H(ct - R), (12) 

where H(t) is the Heaviside step function, 

In the lit zone (I, II, and III in Fig. 1), R is the least
time path between the source (r', 0) and receiver (r, e), 
and I/J! represents the influence due to the source alone. 
However, the cylindrical wavefront as defined by Eq, 
(12) does not reach the shadow zone (IV in Fig. 1), be
cause the ray emitted from the source is diffracted by 
the cylinder 0 The effect of this diffracted source ray 
in the shadow zone may be determined by an inverse 
transform of the series representation of >It!(s) as given 
by Eq. (10). 

3. SUMMATION OF THE SERIES BY POISSON'S 
FORMULA 

In practice, for an accurate evaluation of the series 
in Eqs. (7) and (10) the number of terms that must be 
retained should be larger than ka. Therefore, for har
monic waves with high frequencies or for pulse with 
short duration, it is convenient to convert them to an-
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other series by applying the Poisson formula13 

00 

..fa. .0 Emf(ma) =.f73 .0 E"Ji'c(ni3), 
m=O n=O 

where ai3 = 21T, a> 0, and 

Applying the Poisson formula to (7), (10), (11) and 
setting a = 1, i3 = 21T, we obtain for - 1T ~ e ~ 1T 

1 00 '{fOO >It(r, e, s) =-.0 En' [Eg(v) + Eh(v)] 
1T n,O . 0 

where 

X COSVe COS2n1TV dV}, 

E ( .) mv(sa/c) ( ") ( I) 
h r, s, v =- nKv(sa/c)Kv sr Ic Kv sr/c , 

(13) 

(14) 

(15) 

(16) 

The product of cosine function in Eq. (15) may further 
be reduced to 

En CoSV e COS2n1TV = Re[ exp(iv en) + exp(iv e~)] n > 0, 

= Re exp(ive), n = 0, 

(17) 

where Re means "the real part of" and 

en=2111T+e, e~=-2n1T+e. (18) 

It will be shown later that each term in the n series 
of Eqs, (15) and (17) represent the propagation of a 
pulse. Because of symmetry, we consider only the re
gion 0 ~ e ~ 1T, It then follows that en> 0 and e: < O. The 
terms associated with en in Eq. (18) represent counter
clockwise propagation of a wave around the circular 
cylinder, n being the number of complete turns, where
as the terms associated with e: represent clockwise 
wave motion, n - 1 being the number of complete turns. 
Since the arrival time of each pulse is longer when n 
is larger, the series in Eq. (15) may be truncated at 
will if pulses with later arrival times are excluded 
from the solution. 

4. EARLY TIME APPROXIMATIONS 

The inverse Laplace transform of >It(r, e, s) in Eq, 
(15) is very difficult to evaluate if an exact solution is 
soughL In the literature, the integrals in Eq. (15) are 
evaluated by calculus of residues in the v plane for dif
fracted waves, and by the method of saddle points for 
reflected waves in the illuminated zone. At this stage, 
tl:le analytic properties of functions Kv and Iv in complex 
v plane must be carefully examined and the poles of the 
denominator nKv(sa/c) must be calculated with great 
accuracy. 1-5 The integral in s for the inverse transform 
is then evaluated either numerically, or analytically 
when all modified Bessel functions in Eg and Eh are re
placed by their asymptotic representation for large So 

For a certain cases, the exact inverse Laplace trans
forms of the asymptotic functions can be found. 3,4,12 
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The main purpose of this paper is to show that if the 
same asymptotic representations of Bessel function are 
substituted into Eq. (16) at an early stage, the inverse 
Laplace transform of the -v(r, 8, s) in asymptotic form 
can be completed by applying the Cagniard method. The 
final answer, for a simple time function like 6(t), is in 
closed form. This analysis, we believe, is numerically 
more accurate than the eXisting ones, and avoids the 
tedious calculation of residues. Furthermore, it delin
eates the arrival times of all pulses exactly as predicted 
by the theory of geometric acoustics (ray theory). Final
ly, it unifies the treatments of diffracted waves in the 
shadow zone and in the lit zone, 

The asymptotic representations of the modified 
Bessel functions to be used are? 

where 

(19) 

(20) 

(21) 

Substituting (19)-(21) into Eq. (15) and setting ~=cv/s, 
we obtain 

1 1~ -vi(r, 8,s)--Re E,,(~,r)exp[-sg(~, 8)]d~ 
7T 0 

+ exp[ - sg(~, 8~)]} d~, (22a) 

+exp[-sh(~, 8~)]}d~. (22b) 

Each integral in the series is called a ray, which, as 
shown later, represents a pulse propogating along a 
ray path. 

In Eq. (22), the two phase functions are 

+ ~(2sinh-1Ua- sinh-1Ur- sinh-1Ur')]. 

The amplitude for the source ray is 

Eg(~, r) ",~(e + r 12 )_l 14(e + 0)-1 14. 

(23) 

(24) 

(25) 

The Eh (~) which is the amplitude of the scattered waves 

2399 J. Math. Phys., Vol. 18, No. 12, December 1977 

is different for the two types of boundary condition, 
However, when terms up to O(v-1 ) are considered, they 
differ only by a sign, 

Dirichlet: Eh (~) '" Eg(~), 

Neumann: Eh(~) '" - Eg(~). 

(26a) 

(26b) 

In deriving Eq. (22), we noticed that the amplitude 
functions Eg and Eh , after the substituting of the asymp
totic formula for Iv and Kv, are homogeneous functions 
of cv /s. A change of variable ~ = cv Is thus removes the 
s from E(r, s; v), and the Laplace transform parameter 
appears only in the exponential functions as - sK(~), and 
- sh(~L 

Furthermore, if one is able to transform the complex 
variable ~ to another variable t, such that g(~, e) = t or 
h(~, 8) =t, the integrals in Eq. (22) can all be expressed 
as 

r. ~ E[W), r] exp(- st)(dVdt) dt . 
. tA 

The inverse Laplace transformation of this integral is, 
by inspection, 

E[W), r](dUdt)H(t- tAl, 

where H(t) is the step function in time. This is, in es
sence, the Cagniard method. In the next two sections, 
we present separately the transformations for the scat
tered rays and the incident rays, 

5. EVALUATION OF SCATTERED RAYS 

In Eq, (22b), the scattered waves are represented by 
terms with Eh • A typical ray integral is 

>¥~(r, 8, s) = (l/7T)Re[fo ~ Eh(~' r) exp(- 8h(~, en))d~] 

11 = 0, 1, 2, . , .. (27) 

In the phase function h(~, en), the 8n may be replaced by 
8 or 8;. We shall find the inverse Laplace transform of 
>¥n(s) by setting in Eq. (27) 

(28) 

Assume, for the moment, that an inverse transformation 

Imt 

Branchcut~ 

" F 

-tf'-------+B"-+ Ret 

Branch cut ~ _ 
c 

FIG. 2. Complex ~ plane and branch cuts for the phase function 
hI.!;, On)' 
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TABLE I. Mapping of the imaginary ~ axis (~= ±il) onto the complex t plane for function t=h(~,enJ. 

~ plane 

C-B-C 

C-D 

D 

D-E 

E 

E-F 

F 

F-A 

A 

A-F 
"F 
"F-E 
E 

E-n 
n 
n-c 

~ !In(rr' / a2) - ien] 

len + i{'; (l2 - rZ) +v (72 - r '2) - 2.J a2 - a2) -Z[cosh-1 (Z/r) + cosh-1 a/r') - 2 cosh-1 a/a)]} 

r >en + i[ v (~-~) - 2v (~ - a2) - r) cosh-1 (r)/ r <) + 2r) cosh-1 (r)/ a) I 

v (r~ _(2) + Zsin-1 a/r~ + I (On -1T/2) +iU (Z2 -~) - 2v (Z2 _a2) -lcosh-1 (Z/r<) + 2lcosh-1 (Z/a)1 

,; (~-~) + r ~in-l (r</r~ + r«On - 1T/2) + i[2r<cosh-1 (r Ja) - 2'; (r~ _a2)1 

.J (rZ _(2) +,; (r,2 - (2) + Z[sin-l (l/ r') I + Hen - 1T) + i(2lcosh-1 a/a) _ 2'; (Z2 - a 2) I 

v (rZ _a2) +.J (r,2 _a2) +a«sin-l ~/r) + sin-1 0/r')1 +a(en -1T) 

,; (rZ _(2) +.J (r,2 _(2) _ 2v (a2 _(2) + Z[sin-1 <l/r) + sin-1 (Z/r') - 2 sin-l (l/a) + enl 

r+r' -2a 

v (rZ _Z2) +-1 (r,2 _Z2) - 2v ~2 - (2) + Z(s in-I <l/ r) + sin-1 (Z/r') - 2 sin-l a/a) - 0nl 
,; (rZ - a2) +v (r,2 - a 2) +a (sin-1 ~/r) + sin-1 ~/r') I + a (- On - 1T) 

V (rZ _Z2) +v (r,2 _(2) + Z(sin-l (Z/r) + sin-l (Z/r') I -Z (On + 1T) - i(2Zcosh-1 11/ a) - 2v IJ} _a2)1 

,; (r~ - r~) + r<sin-l (r</r) + r«en -1T/2) - i(2r<cosh-1 (r</a) - 2-J (~- a2)1 

V (r5 _(2) + Zs in-l l/r) -Hen + 1T/2) - i(v (Z2 - r~) - 2'; (Z2 - a2) -Zcosh-l a/r<) + 2Zcosh-1 (Z/a) I 

- r)en+ i(-v (r$ -~) + 2'; (r$ _a2) + r)cosh-1 (r)/r<) - 2r)cosh-1 (r)/a)1 

-U)n - i{.J (l2 - rZ) +,)(Z2 _ r '2) - 2'; (Z2 - a2) -I(cosh-1 <l/r) + cosh-l (Z/r ') - 2cosh-1 a/a)]} 

of the variable from ~ to t can be found, 

~=h-l(t, en). (29) 

The infinite semicircle GBC in ~ plane (Fig. 2) is then 
mapped as G' B'C in the complex t plane as shown in Fig. 
3(A), 

For a complex variable ~, h(~, en) is multivalued with 
branch points at ± ir', ± ir, and ± ia, as shown in Fig. 2. 
We render it a single-value function by introducing 
branch cuts along the imaginary axis, starting from 
± i oo . The branches are chosen such that if ~ is real and 
positive, the radicals are positive and inverse hyper
bolic sines assume the principal values. The right half 
plane of ~(- 7T/2 < arg~ < 7T/2) is enclosed by a large hemi
circle with contour GBCAG. 

As I ~I_oo, we find in h(~, en) 

f(e +r2) - H O(~_l), sinh-l (Ur) -In(2Ur) + O(~-2). 

(30) 

Thus the t in (28) approaches, as I ~ I - "", 

t - ~[ln(rr' / aZ) - ien ] 

Imt 

C' 

Imt 
C' _---r-_ 

\ 

Inn'/aG 
<tn \ 

\ 
\ / 

(31) 

B' 

----'\\:<'/"-/------f--.Re t 

(A) (B) 

FIG. 3. (A) Complex t plane and mapping of hemicircle CBC, 
when e= en. (13) Complex t plane and mapping of hemicircle 
CBC, when (}=I)'n. 
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For the phase function h(~, e~), a transformation 

(32) 

is introduced. It then maps the semicircle GBC onto 
G'B'C' in Fig. 3(B). Since these two cases are mathe
matically analogous, we shall consider in the sequel the 
case of h(~, en) only. 

To determine the mapping of the imaginary axis of ~, 

we set ~ = it along CA and ~ = - il along AG in Eq. (24). 
The results are shown in Table 1. The corresponding 
curves on t-plane are shown for two different cases in 
Figso 4 and 5. 

I 

/ 
/ 

I 

c' 

Imt c' 

FIG. 4. Mapping of imaginary ~ axis with a stationary point 
M' and the integration contour AB in t plane. 
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Im t 

c' 

~------~~~--~--~------~N~' Ret 

D' 

FIG. 5. Mapping of imaginary ~ axis without a stationary pooint 
and the integration contour AB in t plane. 

From Table I, it is seen that the mapping of C to F 
and F to C do not cross the real axis of t plane, since 
their imaginary parts never vanish because rcosh-1(l/r) 
>..f(lz_Y.) and l>r>O. 

The mapping of FAF(F'A'F') is real in the t plane and 
may be double valued along the real t aixs, if there ex
ists a stationary point M' in between F' and P' (Fig. 4). 
A branch cut is thus introduced along the real taxis. At 
this stationary point, the value of the function h(~, en) is 
at its extremum, and it gives rise to the reflected ray 0 

When there exists no stationary point, the mapping of 
FAF is continuous and single valued (Fig. 5). This map
ping gives rise to the diffracted rays. Thus for either 
case, every point on the right half ~ plane is uniquely 
mapped onto a point on the t plane bounded by the closed 
contour C'F'F'C'B'C', and an inverse transformation of 
Eq. (29) is assured. 

A. The reflected ray 

To determine the extreme values, we set along FA 

dh{it, en) e ( _1 1 _1 l 2 _1 l ) 0 
dl = n - cos r' + cos r - cos a = 

(33a) 

and along AP 

dh(- it, en) = _ e _ (cos-1 J, + cos-1i_ 2 cos-1i) = O. 
dl n r r a 

(33b) 

There exists a root for either Eqs. (33a) or (33b), if and 
only if I en I < cos-la/r' + cos-la/r. We denote the root, 
if it exists, as l = d, at which the function h is extreme. 
Furthermore, since the principal values of arccosines 
are taken, Eq. (33) can only be satisfied when n = 0 
(en - e). The geometric interpretation of the root l = d 
is shown in Fig. 6. The d is called the ray parameter. 

When l = d is a solution of Eq. (33), the h(~, en) between 
F and A is simplified to 

(34) 
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As can be easily seen from Fig. 6, tM is the arrival 
time for a pulse along the reflected ray path. 

Note that only the first integral of WS in Eq. (22b) 
[n = 0 in Eq. (27)] contributes to the pulse directly re
flected by the cylinder in the lit zone. This integral is 
then transformed into one with respect to t, 

1 J aWl wZ(r, e, s) =7TRe A'B' Eh[W), r]--at exp(- st) dt, 

(35) 

where the path of integration is along the A' B' curve 
shown in Fig. 4. Since there is no singularity for the 
integrand in the region bounded by the curve A'B'N'M'A', 
and the integrand vanishes along the arc B'N' when it 
is removed to infinity, the path of integral of Eq. (35) 
may be changed to AM'N' along the real t aixs: 

1 I"' a~ wg(r,e,S)=1T Re t Eh [W),r]2F exp(-st)dt. 
A 

(36) 

By inspection, the inverse Laplace transform is 

(37) 

Furthermore, between t=tA and tM, the product Eh(aV 
at) is imaginary. Hence we obtain in the lit zone (Re
gions I, II, III), 

1/ig(r, e, t) = ! Re (Eh[ ~(t, e), r] a ~;t; e») H(t - tM). (38) 

It is seen that the Cagniard method has been applied 
successfully to invert the Laplace transforms. The 
W, e) function is given by Eq. (29), which in this case 
can be evaluated numerically; aHt, e)/at is obtained by 
differentiating Eq. (28). The time tM is given by Eq. 
(34). 

B. Diffracted rays 

If Eq. (33) cannot be satisfied for a given angle em the 
phase function h(~, en) has no stationary point. We define 
an angle on, 

1
01 _la _la 

On = "n - cos -, - cos -. r r 
(39) 

FIG. 6. Geometry of reflected ray. 
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p(',e) 

FIG. 7. Geometry of diffracted rays for observer P in the 
shadow zone and lit zone. 

For n = 0, the °0 is the angle subtended by the ray dif
fracted around the cylinder into the shadow zone IV as 
shown in Fig. 7. This ray is diffracted continuously 
into the lit zone in lower half plane as 8 increases. For 
n"" 1, Crt is the angle of a ray path creeping around the 
cylinder n times before it reaches the receiver (Fig. 7), 
which may be either in the shadow or in the lit zone. 

From Table r, the t at the point F or F' is 

tF =C1[/(r 12 - rl-) +f(y. - a2) + Dna). 

It is the time taken by a pulse to travel from S to P 
along the path shown in Fig. 7, 

(40) 

The inverse transform of >II: in Eq. (27) is then eval
uated as that of >II~ in Eq. (35). The answer is 

1/!~(r, 8n, t) = ~ Re (En[ ~(t, 8n), r 1 a ~~~ en») H(t - tp ), 

n = 0,1, . . . . (41) 

The ~(t, en) function is given by Eq. (29), and a S(t, Bn)/ 
at is obtained by differentiating Eq. (28). The time tF 
is given by Eq. (40). 

6. EVALUATION OF THE INCIDENT RAY 

Since the inverse transform of the source ray >lIi(S) 

Branch cut-- c 

Branch cut---- c 

FIG. 8. Complex ~-plane and 
branch cuts for the function 
g(~, On)' 

in Eq. (6) can be obtained exactly, the transient waves 
in the lit zone (r, II, III) is known in closed form as given 
by Eq. (12). However, we shall investigate the inverse 
transform of the eigenfunction expansion for >lIi(S) in 
Eq. (10). The asymptotic value for >lI1(S) at large s is 
given in Eq. (22a), a typical integral of which is 

(42) 

We render the function g(~, en) single valued by intro
ducing the branch cuts as shown in Fig. 8. A 
transformation 

(43) 

maps the semicircle CBe in the ~ plane to a semicircle 
C'B'e' in the t plane. The mapping of the imaginary ~ 
axis is given in Table II for various intervals. A long 
EE, the function g( s, 8n) is real and it mayor may not 
have a stationary value, depending on the angle en. The 
mapping of rm~ on the t plane is similar to that shown 
in Fig. 4 or Fig. 5. A branch cut along the real taxis 
(Fig. 4) is introduced if there exists a stationary point 
for the function K(S, en). Thus the mapping from i; to t 
is unique, and an inverse solution S =f(1(t, 8n) is assured. 

TABLE II. Mapping of the imaginary ~ axis (~ = ± il! onto the complex t plane for function t = g(~, 8'). 

~ plane 

C-B-C 

C-D 
D 

D-E 

E 

E-A 

A 

A-E 
£ 

£-1) 
n 
n-c 

Hln(r>/r<) -iOn] 

18n + ih' (l2 -~) -..J (l2 -r~) -lcosh-1 air) + lcosh-1 1J/r<) 

r>8n + i[-,f(~ -~) + r>cosh-1 (r>/r()J 

[l(en - 11"/2 + sin-1 a/r.) +,f (r2> _12)] + i[ -,f (l2 -~) + lcosh-1 (1/r()] 

,f (~- r~) + r(sin-1 (r</r) + r«e - 11"/2) 

,f (~_12) -,f (r~ _12) + lsin-1 (lIr) -lsin-1 (l/r<) + 18" 

r>-r( 

,f (~_12) -,f (~_12) + lsin-1 (Z/ r.) -Zsin-1 (Z/r() - len 

,f (~- r~) + r<sin-1 (r(/r) - rAJ n - 11"/2) 

Y (r~ _12) + Z[sin-1 air) - On - 1I/21} + i[,f (12 -r~) -lcosh-1 (l/r()] 

- r>On + i(-,f (r~-~) -r>cosh-1 (r>/r()l 

-19n + i[,f ([2 - ~)_,f(12-~) +lcosh-1 (Ur.) -lcosh-1 (Z/r()l 
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FIG. 9. Geometry of incident ray in Region II. 

To determine the stationary point, we set, along EA, 

and, along AE, 

dg(- it, en) 
dl 

e (
_il _il) 0 

- n- cos --cos - = . 
r) r< 

(44) 

(45) 

These equations may possess a root, l = d, if and only 
if I en I < cos-i(rJr». Since only the principal value of 
the arccosine is allowed, this condition implies that 
en = e(n = 0), and defines the regions I and II (Figs. 1 
and 9), both in the lit zone. The stationary point M' in 
these regions is 

(46) 

It is the arrival time along the incident ray as shown in 
Fig. 9. 

Based on this analysis of stationary point and the 
Cagniard method discussed in the previous section, we 
find an approximate value for the first integral of Eq. 
(22a) in regions I and II, 

, 1 ([ ] a Hi, e») ( ) </Jo(r, e, t) "'jTRe Eg W, e), r -a-t- H t- tM • (47) 

The function ~(t, e) is the inverse transformation of Eq. 
(43), which can be solved numerically. The a Vat is 
given by differentiating Eqs. (43) and (23), 

~; = c [~ie + (sinh-i :< _ sinh-i :» ]_1 (48) 

For an observation point in region III of the lit zone 
and in the shadow zone IV, there exists no stationary 
point for the function g(~, en), The inverse transform 
of >Ir!(s) is then evaluated by the same procedure that 
leads to Eq. (41). The answer is 

</J~l)(r, en, t) = ; Re (EAW, en), r] a~~~ en») H(t- tEl, 

n=O, 1,"'. (49) 

where, from Table II, 

tE = c-i [,r(~ -~) -r< cos-i ~: + r<en] • (50) 
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S 

FIG. 10. A ray-path of the incident wave in the shadow zone. 

The function a Vat is the same as that in Eq. (48) with 
e = en. The ray path for r < r' and n = 0 in the shadow 
zone is shown in Fig. 10. 

The results for </J~i let) in regions III and IV are very 
interesting. In the shadow zone where the exact solution 
Eq. (12) is not applicable, the </J!(t) in Eq. (49) should be 
combined with the diffracted ray, </J!(t) , in Eq. (41) to 
yield the total wave </In(t) , the arrival time of </J!(t) is 
ahead of that of </J~(t). Thus behind the diffracted wave
front, there follows another signal, </J!(t), after a time 
interval IE - tF • The arrival of the second signal is 
marked only by a change of the slope of the total pres
sure, as shown later. 

In region III of the lit zone, the locus marked by the 
arrival of the signal </J~i let) falls far behind the incident 
wavefront as given by the exact representation </Ji(t). 
Thus L: </J~I )(t) should be considered only as an approxi
mation to the incident wave behind the wavefront. This 
locus in both zone III and zone IV is traced out in Fig. 
11, along with the incident [Eq. (46)], reflected [Eq. 
(34)], and diffracted [Eq. (40)] wavefronts. It is inter
esting to note that this locus resembles the" contact 
discontinuity" or" slip-stream front" of the diffracted 
shock waves in nonlinear acoustics (see pp. 299-305 

FIG. 11. Wave fronts of incident, reflected, diffracted waves 
and "slip stream" front. 
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TABLE III. Arrival times for various rays. 

Receiver at (5a, 7r/2)-Fig. 12 

Rays Arrival time (etla) Type of rays 

1 7.07 incident 
2 8.70 reflected 
3 11.77 creep (1st counterclockwise) 
4 14.91 creep (1st clockwise) 
5 18.05 creep (2nd counterclockwise) 
6 21.19 creep (2nd clockwise) 

Receiver at (20a, 7r)-Fig. 14 .. 

Rays Arrival time (etla) Type of rays 

1, 2 25.12 creep (1st counterclockwise 
and clockwise) 

Is, 2s 28.48 1st slip stream 
3, 4 31.40 creep (2nd counterclockwise 

and clockwise) 
5, 6 37.69 creep (3rd counterclockwise 

and clockwise) 
7, 8 43.97 creep (4th counterclockwise 

and clockwise) 
9, 10 50.25 creep (5th counterclockwise 

and clockwise) 
3s, 4s 59.89 2nd slip stream 

of Ref. 10). At the slip-stream front the pressure of 
the shock is continuous but the mass density is not. 

Strictly speaking, the path of the slip-stream front 
(Figs. 10 and 11) is not a "ray path" as it does not con
form to Fermat's principle. However, we should not 
construe from this that the results in Eqs. (47) and (49) 
are in violation of Fermat's principle because lJI~(t) 
forms only a part of the total wave which is the only phy
sical quantity measurable at an observation point. 

7. SUMMARY 

To summarize the results in Secs. 5 and 6, we write, 
according to Eq. (11), the total wave outside the cylin
der as 

1jJ(r, 8, t) = 1jJ1(r, 8, t) + 1jJS(r, 8, t), -1T ~ 8 ~ 1T. (51) 

Lit zone (Regions I, II, III) 

1jJ1(r, 8, t) = 2~ [(c2? _ R2) H (t -~), (52) 

.. 
1jJS(r, 8, t) = 1jJg(r, 8, t) + ~ [1jJ:(r, 8n, t) + 1jJ~(r, 8~, t)]. 

n=1 
(53) 

Equation (52) is the same as Eq. (12). In Eq. (53), 1jJ~ 
is given in Eq. (38) which represents the reflected ray 
(Fig. 6); 1jJ~(r, 8n, t) is given by Eq. (41), which repre
sents the diffracted ray that creeps around the cylinder 
(Fig. 7); the 1jJ~(r, 8:, t) is obtained from Eq. (41) by 
changing 8n to 8:. 

Approximate values for 1jJ1 in various regions are: 

Regions I and II: .. 
1jJ1(r, 8, t):= 1jJ~(r, 8, t) + ~ [1jJ~(r, 8", t) + 1jJ~(r, 8~, t)]. (54) 

n=1 
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Receiver at (5a, 7r)-Fig. 13 

Rays Arrival time (etl a) Type of rays 

1, 2 10.20 creep (1st counterclockwise 
and clockwise) 

3, 4 16.48 creep (2nd counterclockwise 
and clockwise) 

5, 6 22.76 creep (3rd counterclockwise 
and clockwise 

7, 8 29.05 creep (4th counterclockwise 
and clockwise) 

9, 10 35.33 creep (5th counterclockwise 
and clockwise) 

Receiver at (5a, OJ-Fig. 15 

Rays Arrival time (etla) Type of rays 

1 
2 
3 
4 
5 
6 

0 source 
8 reflected 

13.34 creep (1st round) 
19.62 creep (2nd round) 
25.90 creep (3rd round) 
32.19 creep (4th round) 

Region ill: 
00 

1jJ1(r, 8, t):= ~ [1jJ~(r, 8n , t) + 1jJ~(r, 8:, t)]. (55) 
n=1 

The 1jJt is given in Eq. (47), and 1jJ~ in Eq. (49). The 1jJ~ 
in Eq. (54) defines the incident wavefront which coin
cides with that given by Eq. (52). The locus of 1jJ~(r, 8n , t) 
for various (r, 8) falls behind the incident wavefront 
(Fig. 11) and resembles the slip stream in shock waves. 

Shadow zone (Region IV) .. 
1jJ1(r, 8, t) = ~ [1jJ~(r, 8n, t) + 1jJ~(r, 8:, t)], 

n=O 

1jJS(r, 8, t) =.0 [1jJ:(r, 8n, t) + 1jJ:(r, 8~, t)]. 
n=O 

0.36 

pIpe' 

028 

0.20 

0.12 

\ 
\ , 
" 

' ................ 

soft 

------ _______ ~~I~e~ ray 

FIG. 12. Side scattering (5a, 7r/2) due to a soft or hard 
cylinder. 
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FIG. 13. Forward scattering at (5a, 71") due to a hard cylinder. 

The ~~ is given in Eqo (49), and ~~ in Eq. (41)0 The ~~ 
defines a slip-stream locus in the shadow zone (Fig. 10), 
and ~~ gives rise to the diffracted wavefront which 
wraps around the cylinder (Figo 7). 

8. NUMERICAL EXAMPLES 

In this section, we show some numerical results for 
the pressure field p generated by a source with a step
time function or a square-time functiono 

Jii(t)=H(t), we find, from Eqso (2) and (3), 

p(r, e, 1) =p~(r, e, t), (58) 

where ~(r, e, t) are given in Eqso (52)-(57). 

The calculations are done in two parts. First we cal
culate the arrival times tE and tM of ~~ and tF and tM of 
~~ in order to decide the number of rays that must be 
included within a prescribed time interval of observa
tion. Next we calculate the contribution from each ray 
from its onset to the end of time of observation. This 
is done at each location (r, e), by first calculating ~ 
=h-1(r, e, t) and ~=g-l(r, e, t) for each instant t, which 

pipe' 
7,8 9,10 

~ 
3,4 5,6' 

012 

hard 

0.04 

so t 

-004 

-0.12 etlo 
25 29 33 37 41 45 49 53 

FIG. 14. Forward scattering at (20a, 71") due to a soft or hard 
cylinder. 
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FIG. 15. Backscattering at (00, 0) by a hard cylinder for an 
incident square pulse. 

is obtained from an numerical procedure for inverting 
Eqso (28) and (43), and then calculating Eh , Eg , a Uat 
numerically 0 

In all examples shown, the source is placed at r' = 5a 
and e = O. Several observation points at (r, e) are select
ed to illustrate the back scattering (5a, 0), side scatter
ing (5a, 1T/2), near field forward scattering (5a,1T) and 
far field forward scattering (20a, 1T). The number of 
rays and their arrival times for each example are sum
marized in Table IlL 

Figure 12 shows the normalized pressure of the total 
wave at (5a, 1T /2) due to the scattering by a hard or soft 
cylinder. The pressure due to the incident wave, 
~i(r, e, t) of Eq. (52), is shown in dashed lines. 

Two cases of forward scattering are shown in Figs. 
13 and 14. At (5a, 1T) which is the image point of the 
source, the ~i in Eq. (56) vanishes identically, and ~s 
is shown in Fig. 13 for a hard cylinder (Neumann con
dition). The pressure of the scattered wave due to a 
soft cylinder (Dirichlet condition) is the negative of that 
due to a hard cylinder. 

At a far field point (20a, 1T) in the shadow zone (Fig. 
14), the incident wave contributes to the total pressure 
through the creeping rays in Eq. (56). Because the con
tributions from the incident ray and the scattered rays 
are additive for a hard cylinder, the total pressure at 
(20a, 1T) is larger than that at (5a, 1T). This examplifies 
the difference between the forward scattering at a" deep 
shadow" point (5a, 1T) and a "light shadow" point (20a, 1T). 
The" arrival" time of the Slip-stream front are also 
marked on the figure. 

Finally, we show in Fig. 15 the results for backscat
tering at (5a, 0). To approximate the actual experimen
tal observation reported by Barnard and McKinney14 

(see also the review articel by Neubauer15
), we assume 

a square wave function for i(t), 

itt) =H(t) - H(t - M). (59) 

In Fig. 15, Mc/a=0.2. Since the receiver is at the 
same point as the transmitter, only the scattered waves 
~s of Eq. (55) are shown for a hard cylinder. ~s for a 

P. Chen and Y.-H. Pao 2405 



                                                                                                                                    

soft cylinder is the negative of that shown in Fig. 15. 
The pressure generated by the source function alone 
is also shown in dashed lines. The presence of creep
ing waves (Ray No.3, 4; 5, 6; etc.) is clearly evident in 
this figure. 
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Regularization of the Roy equations with a smooth cutoff 
D. Atkinson, T. P. pool,a) and H. A. Slim 
Instituut voor Theoretische Natuurkunde. Hoogbouw WSN. Postbus 800. Universiteitscomplex Paddepoel. 
Groningen. the Netherlands 
(Received 26 April 1977) 

The Roy equations for 'Tr'Tr scattering are combined with unitarity to give a nonlinear system of equations 
for the determination of the low-energy amplitudes. A Holder continuous interpolation between the input 
high-energy absorptive parts and the output low-energy absorptive parts is implemented; and the resultant 
singular equations are regularized by means of an effective inelastic N / D method. If the scattering 
lengths, the CDD parameters, and the high-energy absorptive parts satisfy certain constraints, then there 
exists a locally unique solution of the system. 

1. INTRODUCTION 

In this paper we continue the study of the system of 
nonlinear, singular integral equations that results from 
a combination of the Roy equations1 with elastic uni
tarity. It is assumed that the partial wave absorptive 
parts above a certain point, say s = so, are given, and 
that the S-wave scattering lengths are held fixed. The 
problem is to prove the existence of solutions for the 
partial waves in the domain 4"'; s .,,; So and to investigate 
the question of the nonuniqueness of such solutions. 

It has already been shown2 that if the input quantities 
are small enough, there exists a locally unique solution 
in a suitable space of Holder-continuous functions. How
ever, it is known that the physically interesting solution 
lies outside the scope of the above proof unless one 
chooses So to be such that all the phase shifts remain 
small in [4, so]. A first step has been made3 towards 
the removal of this limitation, in which a finite-interval 
version of the N/D method was used to regularize the 
singular equations. The new equations contained the 
customary eDD poles, and a further free parameter 
entered the solution in some cases, due to the margi
nally singular nature of the N integral equation. 4 The 
fact that this equation is not subject to Fredholm theory 
is an embarrassment for numerical work. Although an 
explicit integral representation for a resolvent kernel 
of the dominant part of the singular equation has been 
constructed and the homogeneous equation has been ex
haustively studied, nevertheless, it is rather awkward 
to have to program this resolvent and to use it every 
time that the N equation is solved in the course of 
iterating the nonlinear system. 

These problems are sidestepped in the present paper 
by the expedient of introducing a smooth instead of a 
sharp cutoff. By means of a Holder-continuous cutoff 
function h(s) we effect a homotopy from the elastically 
unitary "output" absorptive part below So to the pre
scribed"input" absorptive part above s1' where sl is 
greater than so, but still within the domain of validity of 
the Roy equations. The equations are again regularized 
by means of the N/D method; but the fact that the ampli
tude is not strictly unitary in [so, S1] leads to a Frye
Warnocki system with an effective elasticity that is a 
function of the input absorptive part and of h(s). The 

a) Pre sent address: Universite' Pierre et Marie Curie, Lab
oratoire de Physique The'orique et Hautes Energies, Tour 
16-1er etage, 4, Place Jussieu, 75230 Paris-Cedex 05, 
France. 
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new N integral equation is Fredholm and is eminently 
suited to numerical treatment. 

In this paper we shall work with the reduced partial
wave amplitude, 

(
S1/2+2) I 

If (s) = s172 _ 2 Fi(s), (1. 1) 

where Fi is the projection of the usual invariant scat
tering amplitude, for isospin I, onto the Legendre poly
nomial. This partial-wave amplitude satisfies elastic 
unitarity for SE [4,16]: 

Imff(s)=ql(s)II{(s) 12
, (1.2) 

where 

(~) 1/2 [sl/2_2]1 
ql(s)= s SI/2+2 (1. 3) 

In practice there is little inelasticity below the KK 
threshold, and we shall assume (1. 2) to be correct in 
the domain of validity of the Roy equations, which in
cludes the interval [4,32). The advantage of using the 
reduction factor of (1. 1) is that this ensures that Fi(s) 
has the correct behavior as s _00, if/l(s) is bounded 
uniformly with respect to sand 1. 

The Roy equations for the partial waves can be 
written 

S2 f~ ds' 
II (s) = - 2( ) Imtfl(s') + b/(s), 

IT s's'-s 
4 

(1. 4) 

where isospin has been made an impliCit variable and 
where 

where 
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where 

VII'(S,S')=~ f..! dzPI(z)P,,(z'), 

with 

z =1 +2t/(s - 4), 

z' = 1 + 2t/(s' - 4), 

[
s1/2+ 2J' If~ ds' ~ 

U,(s)= s1l2_2 1i $l1 ~ (2l'+I) 
4 If::O 

where 

1 f1 u2 

WII ,(s,s')=1{:su dzP,(z) -,-- P,,(z'), s -u 
-1 

[
s1/2+2] I 1 f~ ds' ~ 

T,(s) == 172 2 - -, 6 (2l' + 1) s - 'IT S 1'.0 
4 

[ 1 [s'1/2 - 2] I' 
x X,(s, s') + Y II , (s, s')J s,t! 2 + 2 

x Im/" (s'), 

where 

X,(S,S')=~Cst f1 dzP,(z) [1+ t~4 (I-C tu )] 
-1 

(1, 9) 

(1. 10) 

(1. 11) 

(1, 12) 

(1, 13) 

(1, 14) 

X[_t2 __ 4(t-4) (I-C )- ~J 
s' - t s' - 4 su s' - 4 ' 

(1, 15) 

YII'(S'S')=~fl dzP,(z) {Cst [1+ t~4 (I-C tu )] Csu 
-1 

- [C su + t~4 (C su -l)] P1.(z')} S;~~t~2t ' 

(1. 16) 

In the above, Cst, C tu , and Csu are the usual isospin 
crossing matrices and C\' is a constant vector, in which 
the 1=0 and 1=2 components are the corresponding 
S-wave scattering lengths, while the 1=1 component 
is zero. 

2. N/D EQUATIONS WITH A SMOOTH CUTOFF 

In this section, we shall replace the abrupt cutoff of 
Ref. 3 by a gradual one that begins at s =so and ends 
at s = s1 > so. To be precise, we write 

S2 f ~ ds' 
/(s) = - ,2(,) lm/(s') + b(s), 

'IT s s-s 
4 

(2.1) 

where we have suppressed the suffix 1 and where 

Im/(s) =h(s)q(s) I/(s) 12 + [1- h(s)]a(sL (2.2) 

Here a(s) is a function that is specified for s"" so, which 
is fixed in advance, and h(s) is a monotonic cutoff func
tion with the properties 

h(s)=1, 4"'s"'so 

h(s) =0, s "" s1 
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(2.3a) 

(2.3b) 

Ih(sa) - h(Sb) I '" ISa - ~ I", so'" sa< Sb ~ S1, 0< Il < 1, 

(2.3c) 

Thus (2.2) effects a Holder continuous interpolation 
from the elastic unitarity output expression for s'" so, 
to the high-energy input model for s "" s1' For the pur
poses of the proof we need only the properties (2.3); 
but numerically it is convenient to make h(s) a thrice
differentiable function for which, in addition to (2.3a) 
and (2. 3b), 

h'(so) = h'(st) =h"(so) = h"(st) = O. 

An example of such a function is 

h(s) =x3(4 - 3x), x = cos (-2'IT S - so) , 
s1 - So 

(2. 3d) 

(2.4) 

for so'" s '" St, and this is eminently suited to numerical 
computations in which cubic splines are employed. 

The expression (2.2) has a formal resemblance to the 
inelastic condition, in which the elasticity function is 
given. In fact we may rewrite (2.1) in the form 

ds' 
s' - s [ pes') Ig(s') 12 + 1-1]2(s,)]+ c(s) 

4p(s') , 

(2.5) 

where we have written 

(2.6) 

and 

(2.7) 

in order to absorb the subtraction factor s2, and where 

(2.8) 

and 

1](s) ={l- 4h(s)[1- h(s»)q(s) a(s)}l!2. (2.9) 

Equation (2.5) mimics exactly the standard form of a 
dispersion relation for a partial wave amplitude, g(s), 
with born term c(s), for which inelastic unitarity holds, 
with phase space pes) and elasticity 1](s). 

In order to find all the solutions of (2.5), for a given 
c(s), we apply the standard Frye-Warnock method, 5 

in which one writes 

g(s) =N(s)/D(s). (2. 10) 

Here 

D(s)=1+6 ~ If~ ~p(s')n(s') (2.11) 
n s - tn 'IT S' - S 

4 

and 

1+1](s) .1-1](s) ) 
N(s) = 2 n(s) + t 2p(s) ReD(s, (2.12) 

for s "" 4, in which the real function n(s) is the solution 
of the nonsingular integral equation 

( ) ( ) _ -( ) + " c(s) - c(tn) 
1) s n S - C S L..J rn t 

n s- n 

1 f~ d ' c(s')-c(s) (,) ( ,) +- s ps ns 
'IT s' - S 

4 

(2.13) 
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and 

c(s) =c(s) + ~ f ~ 
4 

ds' 
s'-s 

I-f/(s') 
2p(s') • 

(2.14) 

The tn are the positions of the CDD poles, rn being the 
residues. For the sake of formal elegance, and to allow 
us to take over the standard formulas without change, 
we have written all integrals from s = 4 to s = 00, but be
cause of the support properties of h(s), actually p(s) 
vanishes for s ~ sl' so the integration domain in (2. 11) 
and (2.13) is 4"" s "" sl' According to (2.9), 1- f/(s) 
vanishes both for s"" So and for s ~ sl, and we have to 
define the integrand in (2.14) by continuity at the point 
s =sl' In fact 

1- f/(s) 2[1- h(s)] a(s) S-2 

2p(s) = 1 + {I - 4h(s)[1 - h(s)] q(s) a(s)p7 2 , 
(2.15) 

and one can see that this expression changes continuous
ly from 0 for s"" So to s-2a(S) for s ~ sl' Thus c(s) is also 
continuous at s = sl' and so by means of the smooth cut
off we have removed the logarithmic singularity that 
complicated the earlier method. 

Since c(s) is assumed to be known for 4 ""s "" sl and 
a(s) is known for s ~ so, we know f/(s) and hence c(s) 
for 4"" s "" sl' and c(s) is in fact Holder continuous on 
this intervaL It may be shown6 that any Holder contin
uous solution of the nonlinear equation (2.5) has a rep
resentation of the form (2.10)- (2.14), on condition 
that the phase shift of the solution tends to a limit as 
s _00, and on condition that f/(s) has no zeros in [4,00), 
since such zeros would introduce singularities of the 
third kind7 into the integral equation (2.13). In our case, 
f/(s)=1 for s"" So and for s~sl' so any possible zero 
can only lie in the interval (so, SI)' However, since h 
falls monotonically from 1 to 0, it is easy to see that 
4h(1 - h) "" 1, the equality being reached only once, at 
the point at which h = i. On the other hand, qa"" 1, the 
equality being reached at the position of an elastic 
resonance. Hence we need only choose So and sl in 
such a way that the given function, a(s), is not equal 
to 1/ q (s) at precisely the point for which h (s) = i, in 
order to ensure that 

f/(s) > 0 (2.16) 

for so"" s "" s~. The simplest way to do this is to choose 
the interval Lso, SI] in such a way that a(s) does not have 
a resonance in it. Thus we can avoid third kind singu
larities and make (2.13) Fredholm. Conversely, one 
can show that any solution of (2.10)- (2.14) satisfies the 
original nonlinear equation (2.5), on condition that D(s) 
has no zeros in the cut plane. 

To conclude this section, let us study more closely 
the connection between the method of this paper and 
that of Ref. 3. Suppose that an amplitude /(s) is given 
that satisfies (2.1), and which is elastically unitary 
up to sl' Such an amplitude is a solution of the sharp 
cutoff equations of Ref. 3, if the cutoff is placed at sl 
and if the CDD parameters are chosen appropriately. 
It has been shown that the amplitude, considered as a 
solution of the sharp cutoff equations, is embedded in 
a continuum of solutions of dimension 

(2.17) 
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The reason for this is that the sharp cutoff equations 
contain n CDD poles, where 

(2.18) 

and each CDD pole carries two real parameters, the 
position and residue. Further, if 0' ~ i, where 

(2.19) 

then an additional degree of freedom arises, because an 
arbitrary multiple of the homogeneous solution of the 
marginally singular N integral equation is allowed. 

The above amplitude is also a solution of the equations 
of this section, again if the CDD pole parameters are 
chosen appropriately (because of the generality of the 
N/D representation). In this special case, there will be 
no difference between Im/(s) and a(s) for s in (so, sl)' 
since they are both equal to q(s) I/(s) 12, and one can al
ways find a 6(s) such that 

q(sl!(s) = exp(io(s») sino(s) = f/(s) exp(~i6(s» - 1 (2.20) 
2zh(s) , 

where o(s) is the actual phase shift. For 4"" s "" so, 6(s) 
is the same as o(s), but since h(sl) = 0 and f/(sl) = 1, it 
follows that o(sl) =ne7T, where ne is an integer. In fact 
(2.20) can be solved for f/ and 6, yielding 

f/2(s) = 1 - 4h(s)[l- h(s)] sin20(s), (2.21) 

which is consistent with (2.9), and 

[ -] h(s) sin[20(s)] 
tan 20(s) = 1- h(s){I- cos[20(s)]}' (2.22) 

Now we have agreed to choose So and sl such that o(s) 
does not attain a multiple of 7T /2 in the interval [so, SI]' 
Then we define the integer 

and a fraction 

0' = O(SI)/7T - n. 

Then if 0' < i, O(SI) =n7T, whereas if 0' > i, 6(SI) 
= (n + 1) 7T. Now we define in the standard manner 

.D(s) = exp[ - ~fsi s~~'s 6(s')J 
4 

- (s - sl)-ne 
S -si ' 

where 

ne=n+e(O'-t). 

Then the D function that satisfies (2.11) is 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

where the tn, the C~D pole positions, are ne distinct 
points for which sino(s) vanishes. In the case 0' < i, 
there are at least ne points below So where this happens' 

• 1 ' however, If 0' > 2, there may be only ne - 1 such points, 
but in this case we can always take the neth point to be 
sl' For definiteness we stipulate that no CDD poles are 
to be placed in the interval [so, SI] if a < t, and that just 
one is to be placed in this interval, at sl' if 0' ~ i. It is 
interesting to note that, for a given c(s) and a given a(s) 
for s ~ so, the dimension of the manifold of solutions of 
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the N/D system is 2nc if 0' <~, since each CDD pole car
ries two real parameters (the position and residue), 
but the dimension is 2nc - 1 if 0' > t, since in this case 
the position of the last CDD pole is frozen at s = s1' In 
general the dimension is then 

2nc - 8(~ -~) = 2[ o(S1)/JT] + 8(0' - t) = [2o(S1)/1T J. 
(2.28) 

This is a satisfying result, since it agrees precisely 
with the dimension found in the case of the sharp 
cutofL 3,8 

It must be stressed that the above discussion is some
what artificial, in the sense that most solutions of the 
equations of this section will not be elastically unitary 
for So < S < s1' Our purpose was simply to make contact 
with the earlier results. In an autonomous application 
of the present method, the final amplitude would be in 
general unitary only below so. In the interval (so, s1), 
the amplitude would neither be unitary, nor would its 
imaginary part be equal to the input function a(s). 

3. SOLUTION OF THE NONLINEAR SYSTEM 

In this section we shall treat the nonlinear system, 
incorporating the N /D equations, as a nonlinear map
ping, on the assumption that the following input quanti
ties have been specified: the scattering lengths, the 
CDD parameters, and a/(s) for s '" so. We shall show 
that the mapping is contractive if the inputs satisfy 
certain conditions. 

It is of some importance to choose a well-behaved 
function as the basic quantity to be determined. Let us 
write 

where b/(s) corresponds to the expressions (1. 5)- (1.16), 
in which however Iml/(s) is replaced by [1- h(s)] a/(s), 
the known input quantity, and where g /(s) is the remain
der, namely the corresponding formula (1. 5) [omitting 
C/(s)1 in which Iml/(s) is replaced by h(s) q/(s) 1/1(s) 12. 
Now b/(s) is wholly known, and we shall seek to make 
bl(s) uniformly small. 

Consider the following mapping for 6/(s), at fixed 
'6/(s): 

b~(s) = cp[g ;1, s] :.H/(s) + 51 (s) + U/ (s) + TI (s), (3.2) 

where Rz, 5" Oz, and 1'/ are written as in (1. 7)-(1.16), 
but with 

(3.3) 

in place of Iml/(s). Here p/(s) and 77/(s) are defined as 
in (2.8)-(2.9), and n/(s) is the solution of (2.13), where 

-() _2rL() A()] Pf~ ds' 1-77/(s'). 
CIS =s lb/s +b/s +- -,-- 2 (,) , 

1T 4 S - S p/ S 

(3.4) 

moreover, D/(s) is defined by (2.11), and N/(s) by 
(2.12). We have reinstated the angular momentum suf
fix, but isospin remains implicit. 

Suppose that 6/(s) belongs to the Banach space of se
quences of functions that have continuous second deriva-
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tives, with norm 

Ilbll= sup Igi(s)1 + sup Idd b~(s)1 
I,l,s le l ,s S 

(3.5) 

where the suprema are taken over 1= 0,1,2 and 
1 == 0,1,2" . " and s E [4, sd. We suppose that the input 
quantities a/(s), S'" so, are such that Ilbll is finite. This 
is not unreasonable, since b/(s) is actually analytic in 
a neighborhood of 4"" s "" So - E, E> 0, and although b/(s) 
certainly has branch points at s = So and s = sl' it will 
have a bounded second derivative at these points if the 
given function a/ (s) is sufficiently smooth. We shall 
show in this section that if b/(s) belongs to our space 
and is small enough in norm, then 6;(s) also belongs to 
the space. In view of the quadratic nature of the map
ping CP, one can then show easily that the contraction 
mapping theorem applies if the inhomogeneities are 
small enough. 

The first step in the proof consists in showing that 
(2.13) has a unique solution n/(s), given b/(s) and so 
e/(s). Let us consider this linear equation as a mapping 
on the subsidiary Banach space of sequences of con
tinuous functions with norm 

Iln111= supln~(s)l· (3.6) 
I,l,s 

Since 

I
.!. c(s') - e(s) (s') I 
1T S' - S P 

",,1. If s

, dx ~ c(x)\.ls' - s 1-1s ,2h(s') "" 1.si Ilell 
7T dx 7T ' 

(3.7) 

it follows that if 

Ilell < 1Tsi2 inf 77(S), (3.8) 
'0'" ''''S1 

then (2.13) defines a contraction mapping on the space 
(3.6), and so the solution n/(s) is unique in this space. 
This solution is not merely continuous, but is actually 
differentiable, as we can see by differentiating both 
sides of (2.13) and by using the fact that 

I ~ e(s')-e(s) I""tllell. 
ds s' - s 

(3.9) 

Hence the singular integral in (2.11) is well defined, and 
in fact D/(s) is not merely bounded on [4, S1)' but is 
Holder continuous as well. 

It is not sufficient that D/(s) is bounded; we must show 
that it has no zeros on the first Riemann sheet. In the 
case that there are no CDD poles, this is easy enough. 
When there are CDD poles however, we expect that the 
real part of D/(s) will have zeros on the real axis. If 
the CDD pole residues are small, there will be one 
zero close to each pole, at the mass squared of a reso
nance. D/(s) will itself have a complex zero nearby, 
and we must ensure that such a zero is on the second 
Riemann sheet. 

If we choose b/(s) and b/(s) to be small enough in 
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norm, then the solution n,(s) of (2,13) will be dominated 
by the inhomogeneous term, 

For II bll sufficiently small, we can be sure that the 
norm of the fixed point, b,(s), which is quadratic in 
II bll, is still smaller, It then follows from (3,4) that 
the dominant part of (3,10) will be obtained by replacing 
c,(s) by 

_ _2- Pjro ds' l-1),(S') 
c,(s) =s b,(s) + - -,-- 2 (,) , 

1'( 4 S - S P, s 
(3,11) 

and this is a known input function. We are free to 
choose this known function to be such that the dominant 
part of (2,11), 

ro 

"r 1/ ds' _ 1 + L1 ~ - - -- P (s') c (s') 
" s - t 1T s' - s' , , 

'," 4 

(3,12) 

has no zeros on the first Riemann sheet, For our pur
poses it is even necessary to suppose that c,(s) has 
been chosen such that the modulus of (3.12) has a posi
tive lower bound which is uniform with respect to l, 
Then it is clear that we can arrange that ID,(s) I has 
also such a uniform positive lower bound, Hence it is 
possible to rule out ghosts by restricting the input 
suitably. 

The fact that D,(s) is dominated by the known func
tion, (3.12), means that we can exclude first-sheet 
zeros of D,(s), but not zeros of ReD,(s) on the real axis. 
Generally, for small values of the r ,,", there will be a 
zero of ReD,(s) near each CDD pole, However, since we 
have agreed that it is possible to choose the function 
(3.12) in such a way that !D,(s) I has a uniform lower 
bound, it follows that, at a zero of ReD, (s), I n , (s) I is 
uniformly bounded below, since it is simply IImD,(s) I. 
Hence we have no difficulty in obtaining an estimate 
of the Lipschitz coefficient in our contraction mapping 
proof. Detailed conditions which ensure that n,(s) does 
not have zeros near the zeros of ReD,(s) have been given 
in the literature"; but for our purposes such fulsome
ness is unnecessary, since we are not trying to calculate 
the maximal radius of a ball on which the mapping <I> is 
contractive. We are content to show that the radius is 
nonzero if the inhomogeneities are small enough, and if 
they are chosen such that the modulus of the function 
(3.12) has a uniform lower bound, 

Consider now the expression (3.3), which has to be 
injected into R" 5" V" and 1', in order finally to yield 
bf, the image of b, under the mapping <1>. We have now 
to show that 

(3. 13) 

where K is a constant. Since we know that N,(s) has a 
uniform upper bound, that is proportional to IIg + bll, 
and we have ensured that ID,(s) I has a uniform positive 
lower bound, it will be enough if we can show that PI> 
S" U

" 
and T, are bounded in norm if we replace 

1m!" (s') by 

(3.14) 
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in Eqs, (1. 7), (1. 8), (1.12), and (1.14). The rest of 
this section and the Appendix are devoted to this 
demonstration, 

All the integrals are over the finite domain, 4 <S S <S sl' 
and none of them are singular, The only nontrivial point 
concerns the infinite l' series, and we can prove con
vergence only if sl < 32, this being the limit of validity 
of the Roy equations. The term R,(s) is trivial in this 
respect, since it only contains one partial wave, At 
first sight it looks as though R/(s) might not be uniform
ly bounded as l- co, However, in view of the bound 
(3.14), what one has to maximize is 

[(s1/2 + 2)2(S'1/2 _ 2)/(s'1/2 + 2)3]' (3,15) 

for sand s' in [4, Sl]' This quantity remains smaller 
than unity for s S 70, and any s'?o 4. For s < 32, it is 
less than (16/27)1, which is certainly bounded as 1 - co. 

In fact we have to estimate 

[~:;;t}2) 2/ -1 J Is' -s), (3.16) 

which involves differentiating the numerator with re
spect to s, Since we must also consider the second 
derivative of R/(s), in order to be able to bound IIRII, 
we have finally to majorize the first three derivatives 
of the numerator in (3.16), Aside from trivial factors, 
these derivatives involve (3.15) again, with, however, 
factors of l, up to the third power, Clearly these powers 
are tamed by the bound (16/27)', and we conclude that 
IR,(s) I, IR;(s) I, and 1Rf1(s) I are uniformly bounded, 

Let us consider next S,(s). For l'?o 1 + 2, it is clear 
from the definition (1. 9) that VII' (s', s') = 0, and so if 
we define 

- 1 [sl/2 +2J I 
V",(S,S')=-,- 172 2 VII,(s,s'), 

s -s s -
(3,17) 

then it is easy to see that 

( 0) " f 1 ( 0 ) "+1 os VII,(s,s')=- y"dy ox 
o 

[ (
Xl I 2 + 2) , J 

X x1J2 _ 2 VII,(x, s') x=s'+y(s-s') ' 

(3.18) 
for n = 0, 1, 2. In the Appendix, we prove that 

[
S'1/2 + 2J 21' 

<S K exp(- El') s'l72 _ 2 (3.19) 

for any SE [4, sd, with sl < 32, where K is a constant 
and E is a small positive constant, both independent of 
s, s', l, and l'. Hence 

\( d)" \ f Sl [s, 4J 1/2 ro 
ds S,(s) <S K 4 -;,- 17;t+2 (2l' + 1) 

/( 0)" 2- l[s'1/2-2J2I' x os [s VII' (s, s')] sM 2 + 2 

I
Sl (s, 4) 1/2 ro 

<S K ds' --- 6 (2l' + 1) e-·" 
s' 1'-0 ' 4 -

(3,20) 
for n = 0,1,2, and this is clearly bounded. 
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The terms U,(S) and T,(s), defined in (1.12) and 
(1.14), are somewhat easier to treat, since there is no 
vanishing denominatoro It can be shown that WI/'(s, s') 
and YII'(s, s') satisfy inequalities of the type (3.19), 
while 

I (d~) n [(;;;:~~) I X,(s,s')] I~K' (3.21) 

for n = 0,1,20 The methods are similar to those given 
in the appendix, and details may be found in Ref. 10. 
These inequalities suffice to bound U,(s) and T,(s), and 
their first two derivatives; and this concludes the proof 
that b;(s) belongs to the Banach space, Thus <I> is con
tractive if the inhomogeneities are small enough, 
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APPENDIX 

We shall sketch the derivation of certain bounds10 

for the functions V, W, X, and Y, defined in (1. 9), 
(1. 13), (1.15), and (1. 16)0 From (1. 10) and (1.11), we 
can write 

z'=l+(z-l)/o:, (A1) 

where 

0: = (s' - 4)/(s - 4), (A2) 

and so P,,(z') is in fact a polynomial in z. Let us write 
a Cauchy integral for this polynomial around the follow
ing elliptical contour in the z plane: 

dE(z1) = {z : I z + (Z2 - 1)1/21 = z1 + (zi - 1)1/2, z1 > 1]). 

(A3) 

The z integration in (1. 9) can be performed under the 
contour integral, the result being 

(l! f -V", (s, s') = 2rri d~ P,,(O Q,(O, (M) 

where Q , is the Legendre function of the second kind 
and where 

~=1+0:(~-1). (A5) 

If ~ E dE(z1), it may be shown from the Laplace represen
tations that IP,,(~) I is bounded above by P ,,(z1) and 
IQ,(~) I by Q,(Z1)' However, we have to majorize IQ,(t) I 
and not IQ,(OI, and ~ describes an ellipse that lies 
wholly outside dE(Z1) if 0::> 1, and whooly inside OE(z1) if 
0: < 1. In the former case, for a given ~ on dE(z1), 
I Q,m I is bounded by Q,(1), where 1) is the rightmost 
extremity of the ellipse with foci at ± 1 that passes 
through~. For any ~ E OE(Z1), it is easy to check that 
the corresponding 1) satisfies 

O'Z1 - (0' -1) ~1) ~ O'z1 + (0' -1), (A6) 

and since Q,(Z) is a monotonically decreasing function 
of z, for z> 1, it follows that IQ,(~) I is majorizedJ:ly 
Q,(aZ1 - 0' + 1) for all ~ E OE(z1)' In the case a < 1, ; de
scribes an ellipse that lies wholly within OE(z1), and we 
may now conclude that the corresponding 1) satisfies 
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aZ1 - (1- 0') ~1) ~ aZ1 + (1- a); (A7) 

and so IQ,(~) I is bounded by Q,(aZ1 + a -1), on condition 
that the argument of the latter function is greater than 
unity. We may combine both results as follows: 

sup IQ ml =Q,(az1-la-11), 
,Ea'(~1) 

for any a> 2/(1 + z1)' Hence we have 

I Vll,(s, s') I ~ az1P ,,(z1) Q,(Z), 

(AS) 

(A9) 

where we have majorized the circumference of the 
ellipse by that of its circumscribing circle and where 

Z =az1 - I a -11 =[(s' - 4)z1- Is' - s I]/(s - 4), 

(A10) 

We wish now to motivate a choice for z1, in order to 
make (A9) as useful as possible, and to maximize s1' 
the largest value of s for which the inequalities hold. 
In the first place we write 

Z1 =2z~-1, 

and require 

(
s, +4) 

zo~ --
s' - 4 

(All) 

exp(- e!2), (A12) 

where E is a small, positive constanL This ensures that 

P,,(Z1) ~ [ZO + (z~ _1)1/2]2" 

[
S'1/2 +2] 2,' 

~ exp(- EI') S,172 _ 2 

Suppose further that z1 is such that 

_ s+4 () 
z ~ s _ 4 exp Eo 

Then 

Q,(Z) ~ [z + (Z2 - 1)1/2]-'QO(Z) 

(
s1/2_2)' s-4 

~ exp(- EZ) s112 + 2 -S-

(A13) 

(A14) 

(A15) 

Now in the case s' ~ s, the inequality (A14) implies the 
following constraint upon s: 

s ~ [1 + exp(E)]-1[(s' - 4) z1 + S' - 4 exp(E)]. (A16) 

The minimum value of the right-hand side, as a func
tion of s', leads to 

s ~ s1 :; [exp(E) + 1]-1 0 [64 exp(- E) - 4(exp(E) - 1)], 

(A17) 

in view of (All) and (A12). The limit of this bound as 
E - 0 is 32, and this is the maximum value of s for 
which the Roy equations are valid. Since we wish to re
tain the exponential factor in (A15), we need E > 0, and 
this means that s1 will be less than 32, although we can 
make it as close to 32 as we like by making E small 
enough 

The inequality (A14) implies 

z1 ~ [s(exp(E) - 1) + s' + 4 exp(E)]/(S' - 4) (A1S) 

in the case s' ~ s; and this can be combined with (All) 
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and (A12) to yield 

(s' + 4)2 S + 4 
s' _ 4 exp(- E) ~ Hs' - 4)(z1 + 1) ~ s' + -2- (exp(E) - 1). 

(A19) 

The minimum of the left term is 32 exp(- E), so if we 
choose z1 such that the middle term is equal to this con
stant, then the first inequality is satisfied also, on con
dition that we restrict both s' and s to the interval 
[4, S1] where s1 was defined in (A17). Thus we choose 

64 
z1=-1 + -- exp(-E) 

s'-4 ' 
(A20) 

and on combining (A9), (A13), (A15), and (A20), we 
find 

I [::~~~~] 1 vlI.(s,s,)1 

(
s,1/2 +2) 21' 

.; 8 exp[ - E(Z + [I)] s'l72 _ 2 

for any S,S'E [4'S1]' 

By similar techniques one can show that 
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(A21) 

(A22) 

for n = 1,2,3, where K is a constant. To prove this, 
QI(f) must be differentiated repeatedly with respect to 
s under the integral in (A4). The recurrence relations 
for the Legendre functions are then used to make all 
cancellations explicit. Details of some of the necessary 
calculations are to be found in Ref. 10; the remainder 
are very similar, and we shall not reproduce them here. 
The factor zn arises because of the nth order derivative 
with respect to s; but it can be removed, thanks to the 
term exp(- El), at the expense of an adjustment of the 
constant K. The inequality (3.19) then follows 
immediately. 
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Perturbation theory for Green's functions as an effective 
mass formalism 

F. Krause 

Physikalisches Institut der Universitiit Bonn. Bonn, F. R. Germany 
(Received 7 February 1977) 

A formal solution for Green's functions of the type [a 2+m 2+gV(x)]G(x,y)=Il(x-y) is presented 
which has the structure of an effective mass formalism. One first solves the free case [gV(x) = 0] for 
given boundary conditions and then replaces the parameter m in the solution by a quantity depending on 
V(x). The rules for this replacement are given, a connecti~n with the Baker-Campbell-Hausdorff 
formula is established, and it is shown how the formalism unites different perturbation and approximation 
schemes. 

INTRODUCTION 

There exist quite a few methods in theoretical physics 
which employ Green's functions of the type 

[a2 + m2 + gV(x)lG(x,y) = 5(x - y), 

Here a2 is a second order differential operator with 
constant coefficients (a2 = ~~.1 a"o~, 0" = a/ox"). For a 
complete specification of G(x,y) one has to fix some 
additional boundary conditions, 

Generally there is no problem to evaluate G (X, y) for 
the "free case" [gV(x) = 0] for example by the use of 
Fourier-like representations, If gV(x) is not a constant, 
however, the solution becomes difficult due to the non
commutativity of a2 and V(x), Apart from general ex
istence proofs one has to take recourse to approxima
tions and perturbation expansions which mostly take the 
form of a formal solution of the problem. 

In this paper it is shown that one can mould all these 
different solution formulas (with corresponding differ
ent boundary conditions, dimenSions, differential 
operators, etc,) into one unified formalism which can 
be comprised as follows: 

Calculate the Green's function for the free case 
[gV(x) = 0] with the desired boundary conditions, Then 
replace (in the solution) the constant m 2 by some sort 
of effective mass (squared) which depends on gV(x), 
The resulting expression is a formal solution of G(x,y), 
Formal solutions like the Born series, the lightcone or 
Hadamard expansion, the eikonal approximation, etc. 
then simply arise via different expansions of the re
sulting expressions. 

In Sec. 1 of this paper the rules for the construction 
of the effective mass are described, and a proof is 
given that one indeed gets a formal solution. The re
sults are somewhat more general than sketched in this 
introduction. Questions of convergence are not touched 
in this paper. 

In Sec. 2 it is shown that the method may be inter
preted as a special generalization of the Baker
Campbell-Hausdorff formula. This interpretation 
leads to some further insight and results for the for
malism. For instance, one can easily derive the con
nection with Schwinger's proper time formalism. In 
Sec. 4 it is sketched how one can get the results from 
a path integral representation. 
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In Sec, 3 the method is applied to the harmonic oscil
lator which allows explicit evaluation for arbitrary 
dimension, 

In Secs, 5 and 6 the Hadamard or lightcone expansion 
is derived, and a second representation is given which 
is suited to study the coincidence limit x - y - 0 for 
G (x ,Y) necessary for field theoretic applications, For 
both representations the method easily fixes the bound
ary conditions which are otherwise difficult to include 
in these expansions. 

In Sec, 7 the connection with the eikonal approxima
tion for G(x,y) is given, 

1. RESULTS FOR GREEN'S FUNCTIONS 

In this section the main result is stated and proved 
as a formula for certain Green's functions. The as
sumptions regarding these Green's functions are the 
following: 

(1) Differential equation: G (x ,y) has to be a solution of 

[a2 + m 2 + gV(x)lG(x ,y) = 6(x ,y), 

X,YElR", 5(x,y)=5(x-y), (1,1) 

The differential operator a2 is given by 02 = ~=.1 a"a~ 
with a" = a/ax" and a" E <r, a" * O. To simplify the nota
tion, a metric g''''=ajJ.5jJ." is introduced and employed to 
define scalar products like a2 = ~jJ.. "gjJ."a jJ. a". Special 
cases are the Laplace operator - Do = - ~ a~ and the wave 
operator 0 = a5 - a2

, For the Laplace operator the one
dimensional case (n = 1) is allowed, leading to an 
ordinary differential equation, 

The real parameter m 2 is separated for convenience 
from gV(x), and m2 < 0 is admitted, 

The resulting formula for G(x, y) will have a formal 
character which means that all questions of conver
gence are left aside in this paper, Therefore, no re
strictions are imposed upon the "potential function" 
gV(x) except that it is assumed to be C~, The possibility 
that this property is simply enforced in more general 
cases by interpreting V(x) as a distribution is included. 

(2) Boundary conditions: (1. 1) is not sufficient to 
specify G(x,y), One has to supply certain boundary 
conditions. 

For a precise formulation let the "generalized free 
propagator G~O)(x,y) corresponding to G(x,y)" be de-
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fined as a solution of 

(a2+m2YG!0)(x,y)==0(x,y) (ZEa), (1.2a) 

Contrary to (1, 1) this equation can be transformed into 
a division problem by Fourier methods. Therefore, it 
is assumed that (1, 2a) can be solved by an integral 
representation 

f <R) cf'p . (m2 \ Z 

G;O) (x, y) == (m2r" (21T)n exp[ - zp(x - y)] _ p2 + m2} , 

(1. 2b) 

where (R) stands for a prescription of integration which 
is (a) independent of Z and (b) fixes the boundary condi
tions for G ;0) (x, y ). (R) generally describes a contour 
of integration in complexified p-space. 

Now the main assumption is that the boundary condi
tionjor G(x,y) shall be the same as thatjor G~O)(x,y), 

Many boundary conditions which are frequently used 
in physical applications admit a representation (1, 2b). 
In the Euclidean case with a2 == - Do and m 2 > ° ordinary 
Fourier transformation is a simple example leading to 
L2 boundary conditions for Rez > n/2, If m 2 < 0, the 
± iE presc riptions lead to boundary conditions of the 
radiation type, In the Minkowski case one can use for 
example Feynman or retarded boundary conditions, A 
compilation of corresponding prescriptions of integra
tion can be found in Ref. 1. 

Equation (1, 2b) implies that G;O) is an analytic family 
of distributions2 in z, For these distributions the follow
ing three identities hold which prove to be crucial for 
the following in the sense that they may be abstracted 
from (1, 2b) and then suffice to establish the solution 
formula for G(x,y): 

-~ G<O)( )- ( )G<O)( ) am2 Z ~,y - -z z+1 x,y , (1, 3a) 

(1. 3b) 

(1, 3c) 

It proves useful to make explicit the dependence of 
G!O) (x, y) on the parameter m2, The notation therefore 
is changed to G!0)(x,ylm2), Now the main result can be 
stated as follows: 

The Green's function G(x,y) obeying (1.1) and the 
same boundary conditions as (1, 2b) is given by the 
formal sUbstitution: 

G(x ,y) ==GI°) (x ,y I E2 + a~ + g f/ daV oJ (1. 4) 

This equation has to be interpreted as follows: 

(1) V" is a shorthand notation for V(ax + (1- a)y), 
One should remark that f~ dO' V(ax + (1- a)y) depends on 
the variables x and y in a symmetric way contrary to 
V(x) contained in the differential operator. Further-
more, f 0

1daV", == V(x), 
x~y 

(2) The right-hand side of (1. 4) has to be expanded 
into a formal series of powers (a~)L(f~daV,,)N. For this 
expansion the quantity a~ acts as an ordinary number 
commuting with all other quantities, All products have 
to be ordered in the standard form given above. If a 

2415 J. Math. Phys., Vol. 18, No. 12, December 1977 

product does not contain any factor n dO' V,,, one has to 
choose N == 0, With regard to powers of n dO' V,,, how
ever, a~ acts as an operator whose precise action will 
be given below, 

(3) In general there are available different represen
tations for G;O)(x,y 1m2) (integrals, series, etc.). The 
expansion described in (2) may be done for the inte
grands, Single terms, etc. of these representations, 

Example: Starting from the Fourier representation 
(1. 2b) the substitution rule (1,4) leads to 

_fIR) dnp exp[ - iP(x - y)] 
G(x,y)- (21T)n (-p2+m2+a~+gndO'V,,) 

="is (_)n(a;+g r 1 dav,,)n 
",,0 J ° 
x f <R) ~ exp[ - iP(x - yp (1, 5) 

(21T)n (_ p2 + m2)n+ • 

This formula elucidates the way the boundary conditions 
for G(x,y) are implemented via (1, 2b). 

If one collects terms with equal power of the coupling 
constant g, it is possible to show the identity of the 
above expression and the Born series for G(x,y), 3 

One can give two equivalent definitions for the action 
of a~, In Sec, 2 there will be a short indication how one 
can verify this equivalence, 

First definition: 

(a~)L(j/ dO' V,,)o = (a~)L1 = 0, 

(a~)L(jol daV,,)N = f0
1 
dal'" f0

1 
daN 

Here a 1 designs the derivation of the argument of V"I' 
that is, al V"I = (a V) "I == (aV)[a1x + (1- al)Y 1. Further
more, a I ' a J contains a scalar product with respect to 
the metric; a I ' a J = L;",. a I" gIL·a J.' The kernel g is given 
by 

g(a, J3) =8 (a - /3)/3(1- a) + 8(j3 - 0')0'(1- 13) 

= Ha + 13 - 20'/3 - (0' - /3)E (a - f3)}, 

which implies g(a, 0') = 0'(1- 0'). 

(1,7) 

To understand the structure of (1,6), one should note 
the following: If one replaces g(a, j3) by 0'(1- /3), then 
a~ turns into aX,a y • One has a1alV"1 = a ,,v,,, I and 
(1- al)a/v"l=ayv"i' and Eq. (1.6) after this change 
simply states the result of the application of the prod
uct rule for [ax' a;),lL. One should also remark that 
g(O', j3) is the unique solution of the following boundary 
problem [g(a, /3) is also known as "der Hamelsche 
Musterkern"] : 

d! 
- da2 g(a, f3) = 0(0', !3), g(a,!3) =g(j3, 0') 

(1, 8) 
(0 < 0', /3 < 1) g(O, 0') =g(1, 0') = 0. 

The second announced representation for the action of 
a; originates from a generalization of the identity 
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where the abbreviation 8", = 8 (0'1 - 0'2)8 (0'2 - 0. 3) ••• 

X8(O'N_l - o.N) is introduced. 

Second definition: 

(o~)L(jol dO'V",)N =N! J
0

1 
dO'l'" J

0

1 dO'~", 

x[t O'j(1-O'j)ai+26 O';(l_O'j)Cl;O,]L 
hi PJ 

XV"I", V"N (1.9) 

Replacing in this formula 2 '[,;>} by '[,Ui one again finds a 
representation of (a,,' a)L. Because of the factor 8" the 
integrand is not invariant with respect to the replace
ment 0'; - 0'" and therefore this modification changes 
the value of (1. 9). 

In this sense o~ may be interpreted as a nontrivial 
modification of the second order differential operator 
ax' Cl Y' The meaning of this modification will become 
clearer by the proof of Proposition 1 while the reason 
for the appearance of the kernel g(O', (3) will be explained 
in Sec. 4, 

One should remark that (1. 6) or (1. 9) imply that 
(a;)L (It dO' V,,)N always has a finite limit for y - x [if V(x) 
and its derivatives are finite], 

There are quite a few possibilities of generalizing 
the method, One can take a more general (for example, 
x-dependent) matrix g IA" or one can replace (1,1) by a 
matrix equation, 3 Furthermore, one can regard equa
tions of the Dirac type or equations of the structure 
[0 + m 2 + A(x) , a + gV(x)]G(x,y) = o(x, y) instead of (1. 1), 
Such equations arise for example from a minimal 
coupling of the electromagnetic field or more generally 
in field theories of the Yang-Mills type. In both cases 
one has to introduce a quantity 0u besides o~ obeying 
similar rules. The technical details will be given in a 
forthcoming paper of the author. Two generalizations of 
a different kind are already included in the following 
proposition. The first is the possibility to choose an
other inhomogeneous term G~OI in (1. 1) instead of 
o(x,y). The proposition even comprises the homo
geneous case (G~OI = 0), The second is the generaliza
tion of the method to iterated differential operators 
(a2 + m 2 + gV(X»)k. 

Proposition: Let G{OI(x, y) I m 2) with Z E <r be an 
analytic family of distributions obeying relations 
(1. 3a)-(1. 3c) for ZE<r, Rez>-E, E>O, -'l1<Imz<+1), 
1) > O. Let G. be given by 

Gz(x,y) = G~OI(X,y 1m2 + a~ + g J
0

1 
dO'V ,,), 

where the right-hand side is defined as described above. 
Then for Rez > 1 - E one has 

[a2 + m 2 + gV(x) ]G.(x, y) = G .-1 (x, y). 

Proof: ExpanSion of G~OI around m 2 and application of 
(1. 3a) leads to 

G.(x ,y) = is (- )'+k (:~~+~ (a;)k(g f 1 dO' v"y 
I. h.O 0 

x G~~k+.(x, y), (1,10) 

with (zh=z (z + 1)(z + 2)·· , (z + N - 1). One has to 
evaluate [a 2+m2+gV(x)]G.(x,y), There is just one con
tribution which is problematic arising from the applica-

2416 J. Math. Phys., Vol. 18, No. 12, December 1977 

tion of a2, namely, 

M= ~ (_)'+k (Z),.k 2 [ax(a~)k(g Jot dO'V",)'] 
h.O I!kl \ 
1=1 

X o"Gm+.(x,y). 

Application of (1. 3c) and (1. 9) and taking into regard the 
identity (x - y)ox V" == O'(d/dCt)V" implies 

x[" .lk[ 12 o.md:J V"l'" V"I Gm.Z_l(X,y), 

where [ , . , ] stands for '[,j O'j (1- Ctj)oj + 2 '[,j>, 
XO'j(l- O'J)Ojo}, Now the integrand can be rewritten as 
follows: 

[oo.1 k (6 O'md!J=(6 O'md!J[oo,]k_k[,oo]k 

+k[···1k
-
1(6O'jo. j Ojo}). 

The last two terms lead to a contribution M2 to M which 
is given by 

M - ~ ()'+k (z)'+kk [_ (0~)k+02x(Cl2v)k-l] 
2 - hi - I ! k I (I + k + Z - 1) 

h.O 

x(g ~1 dav",Y Gm.Z_l(x,y). 

The remaining contribution Ml is evaluated by partial 
integration, The lower boundary (O'm = 0) does not con
tribute because of the factor Ct m • The upper boundary 
contributes Once: The factor 8" = 8 (0'1 - Ct2)8(02 - 0'3) , .. 
admits a nonzero term only if m = 1. In this way V"l is 
changed into a factor V(x) which may be commuted with 
[ , . , ]~1=1 because this expression does not contain any 
derivative 01 operating on V"l and therefore on V(x). 
This very fact is achieved by the condition i > j for the 
sum O'j(1- O',)ojCl, in (1. 9) which eliminates the critical 
terms 0'1(1- O'})010J (j *1) which do not vanish for 0'1 
=1. 

The partially integrated term contains the factor 
1~=1 {8 a + Ct m d8",/do m}. It is easy to see that the second 
contribution vanishes implying a value Z8" for this sum. 
Altogether one finds for Ml 

M - ~ (- l)l+k (z),.J [ V( )(02)k 
l-k~o l!k!(I+k+z-1) g x v 

1:1 

x(g ~ 1 dav"Y-l _ (o~)k(g £1 dO'V,,)']GmU_l(X,y), 

Using this expression for M = Ml + M2 most contributions 
of [Cl 2+m2+gV(x)1G(x,y) cancel after an application of 
(1. 3a), There remain two sums which can be combined, 
The resulting sum is again (1. 10) with z replaced by 
z -1. 

2. CONNECTION WITH THE BAKER-CAMPBELL
HAUSDORFF FORMULA 

In this section the results of the preceding section are 
interpreted within the context of semigroup theory. To 
avoid technical complications, the metric is restricted 
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to the Euclidean case: glJ.V = - olJ.V or a2 = - A. Further
more, m 2 > 0 is assumed. The results, however, again 
hold for more general cases, 

The leading idea is to introduce an integral represen
tation of G;Ol with an integrand containing an expression 
exp[€t(a2 + m 2) J (€ = ± 1, ± i), This means that one inte
grates over the elements of a semigroup t 
- exp[€t(a2 + m2) 1 with infinitesimal generator (0 2 + m2), 
The substitution rule leads to an integrand exp[d(o~ + g 
x n dO' Va)] exp[€t(a2 + m 2)] for G ,,(x, y). On the other hand 
this quantity is obviously related to the semigroup 
exp[d(a2 + m2 + gV(x)}] via the corresponding integral 
representativn for G,,(x, y), 

For a Euclidean metric, m 2 > 0 and Rez> 0 one can 
represent G~Ol as follows: 

Then the proposition of the preceding section implies 
(with an obvious change of notation o~ - - Av): 

G..,(x,y) = r~z) fo ~ dt t,,-1 exp [- t (- Av + g ;: 1 dO'Va) 

xexp[- t(- A+m2)]o(x,y) 

= (-.1) n /2 _1_ (~dt t,,-l-n /2 

417 r(z) J ° 

• exp [- t (- Au + g In 1 dO' Va) ] 

• exp (_ tm 2 _ (X 4~y)2) , 

On the other hand G" is given at least formally by 

G,,(x,y)=[- A+m 2 +gV(x)]-" o(x,y) 

(2.2) 

1 (~ 
= r(z) J ° dt t,,-l exp{- t[ - A + m2 + gV(x)]}o(x,y) 

1 n 1 f~ =(~) r(z) ° dtt,,-1-n/2 

x (exp{- t[ - A + m 2 + gV(x)]} exp[t(A + m2)]) 

( 
(X_y)2) 

exp - tm2 
- 4t • (2.3) 

Comparison shows 

exp{- i[ -A + m 2 + gV(x)]}o(x,y) 

=exp[- t(- Av+g fo
1 
dO'Va)]exp[- t(- A+m2)]o(x,y) 

(2.4) 

Within the framework of quantum mechanics 
exp[ - it(- Au + g f~ dO' V,,)] therefore can be interpreted as 
the configuration space representation (x 1 U(t) Iy) of the 
evolution operator U(t) = exp(- itH) exp(itHo) leading to 
the Moller operators. 

If one expands exp[ - t(Av + g f o
1 

dO' V,,)] into a power 
series, one findS a representation which is used in 
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Schwinger's proper time formalism1, 4 modified for the 
integral representation (2.1). 

In Schwinger's method one introduces (for z - 1) the 
quantity 

(xt jyO) = exp{- t[ - A + gV(x)]}o(x ,y), 

which obeys (xO lyO) = o(x,y) and - (%t)(xtl yO) 
=[- A+gV(x)l(xtlyO). For the ansatz 

( t j 0) 1 -n /2 (x - Y )2) .; ( t)n 
x y = (417)n/2 t exp - 4t ~ an -

the coefficients an = an (x ,y) are computed recursively. 
Comparing this with (2.4) and (2.1), one finds 

1 ., 
exp[-i(-Av+gfo dO'V,,)]=6 an(-t)n, 

n.O 

which means that our formalism solves the mentioned 
recursion relations. Equation (2.4) suggests a compari
son with the Baker-Campbell-Hausdorff (BCH) 
formula, 5 Qualitatively one could proceed as follows to 
derive the above result: First one applies the BCH 
formula to achieve a factorization of the form 
exp[tA - gtV(x)] = exp(tA) exp(Z). The quantity Z in
troduced in this way depends on the derivatives of V. 
Hereafter one rewrites all terms of Z by use of the 
product rule in such a way that one can apply the 
identity /(x)o(x, y) = f dO'/(ax + (1 - O')y)o(x, y) to all 
arguments. For example, [A, V(x)]=20(0V)(x)- (AV)(x). 
Finally exp(tA) is commuted to the right. 

The remarkable fact is that the resulting expression 
can be written in such a simple closed form as (2.4) 
using the quantity Av. In this way one may regard (2.4) 
as a special generalization of the Baker-Campbell
Hausdorff formula. From (2.4) one immediately 
derives a set of identities which hold for the general 
metric and can be checked explicitly for low N: 

Corollary: For N=1,2,3,'" one has 

(0 2 + m 2 + gV(x»NO(X,y) = (05 + m 2 + o~ + g fo 1 
dO' V,,)NO(X,y), 

with 
(2.5) 

[05, o~]= [aLg f o
1 

dO'Va] = [a~,g f01 dO' V"'] = 0 

and 

a6 0(x,y) = 02 0 (x,y), 

These identities comprise the algebraic part of the re
sults of Sec. 1. The last commutator [a~,g fJdO'V",]=O 
represents the demand that all products should be 
ordered in the standard form (O~)L(f~ dO' Va)N and that 
this ordering never introduces any commutation terms 
contrary to ordering differential operators. For exam
ple, (0; + g foidO' v"Y = (a~)2·1 + 20~g n dO' V", + (g n dO' V",)2, 
The corollary once more illustrates the following essen
tial pOint: Let / be some function of the operator 02 + rn 2 

+ gV(x). Then the kernel (x 1/(02 + m 2 + gV(x» Iy) of the 
configuration space representation of / can be reduced 
to the corresponding free kernel (x 1/(02 + M2) Iy) with an 
"effective mass term" M2 = m 2 + a~ + g n dO' V"" All this 
holds provided the algebraic identities are not spOiled 
by topological properties of the respective operators. 

Furthermore, one should remark that the separation 
of 02 + m 2 + gV(x) into a "free" and an "interaction" part 
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given by (2.2) makes possible a continuation of the coef
ficients of the metric gIL" which only refers to the free 
part while keeping fixed the interacting part. 

Next it is shown that a partial evaluation of 
exp[t(a~ + g n dO! Va)] is possible for general V, From 
(1. 6) one finds 

(a~)L(g 101 
daVcf 

= 101 
dUI ' •• 1/ da N 

x[t g(O!j, Cij)a~ + 26 g(Ci h 0 j)OjO Jl LV "1' •• V "N0 
i.l i>j J 

(2,6) 
Application of the multinomial theorem leads to a sum 
each term of which may be represented by a graph G 
with N ordered vertics (labeled 1,2" 0 , ,N) and L lines. 
Each vertex i represents a factor V cd and a line be
tween two vertices i andj describes a factor g(Ci h aj)oi 
, ° jo Self-contractions (tadpoles) are admitted, Con
versely each such graph corresponds to a unique con
tribution to the sum, 

Graphs which only differ by a permutation of their 
vertex ordering lead to equal contributions, as such a 
permutation can be achieved by a renaming of the varia
bles of integration (';j. Now let G be a given graph (with 
ordered vertices) and suppose that there are N!/K G 
permutations of the vertices which leave G invariant. 
(N!/K G therefore is the order of the invariance group 
of G), Then there exist KG equal terms in the above 
sum which may be added up, The resulting contribution 
can be described by a graph with unordered vertices in 
a unique way 0 

For each graph G with unordered vertices an arbi
trary enumeration 1,2", , ,N of the vertics is fixed, 
Then the incidence matrix MG of G is defined by 

M¥j = MY, = number of lines connecting vertices i and j. 

(2.7) 

A tadpole line is counted only once. 

Employing this matrix, one can immediately write 
down the contribution B(G) corresponding to a given 
graph, One finds: 

B(G) =K(G) 101 
dat'" 101 

dCiN 
G 

X 2} [g(O!j, OJ)OjOjl
MiJV''I''' V"'N (2.8) 

K(G} = L! 2 L,1)J :ft. KG 
nj"'J (Mu) 1 

and 

I 2 3 
Example: The two graphs G1 = ~ and 

G2 = I~ with ordered vertic:;' give rise to the 

same contribution, The ordering is represented as 
geometrical order from left to right. Both correspond 

~ to G = 0 '---"" with unordered (though labelled) 

vertices and 
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(
1 1 0) 

M G= 1 0 2 , KG=3!=6, 
020 

41 • 23 .31 f 1 f 1 f 1 
B(G) = 21 0 dCiI 0 dCi2 0 dCi3 

xg(Oj (2)oi • g(CiI 02}ol 02' (g( Ci2Ci 3)02 03)2 

x V "1 V "'2 V"'3' 

Inserting the representation 

g(o:., O:J) =9(Cij- Ci})aJ(1- al) + 8(u J - UI}Ci,(l - ci J ) 

into (8), one gets a sum of 2L
-

T terms where each line 
between different vertices produces a factor 8(Ci i - ()I j) 
= 8 ijo T is equal to the number of tadpoles in C, The 
resulting products of 8 functions are either zero or can 
be broken up into a sum of 9 functions representing 
respectively a complete ordering of the variable 0i' 

After a renaming of the OJ and some combinatorial 
considerations one can prove that (1. 6) and (1. 9) give 
identical expressions for a~o 

Example: The graph G = ~ divides into 23 = 8 
parts. One part for instance contains the factor 
8 128 238 32 =0. Another contains 812(832)2=812832 
=8138 32 + 8 318 12 , Suitable renamings of the OJ lead to 
contributions which contain 9",=9 129 23 =9(01- Q2} 
X9(O:2 - 0!3) characteristic for the representation (l. 9) 

ofO~ 

Next one observes that the graphs G may be discon
nected. Let (j c be the set of all connected graphs and write 
(jc={gO,gj,g2,"'}' For eachgj E.(jo an enumeration of 
the vertices is fixed, Furthermore, let Pj be the number 
of vertices and lj be the number of lines of gj. 

Now each graph G (possibly disconnected) can be 
characterized by giving the number of its respective 
connected components, This is denoted symbolically by 

G(tfo°,g~l,gi2, ... ). 

Remembering that N!/K G is equal to the order of the 
invariance group of G, one finds 

N! (Kgo)~O (Kgl}~t • , , 

The structure of this expression-especially the ap
pearence of the factors 1/Aj!-together with the possi
bility of factorizing the ()I integrations into integrals 
corresponding to the connected parts of G-indicate that 
(2. 8) might be a contribution to a multipole exponential 
sum. 

Adding up all terms of 

exp(to~) exp(tg fl dav",) 
o 

one indeed finds a complete multiple exponential sum, 
namely: 
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Proposition: 

exp(ta~) exp~g i 1 dO' V",) 
(2,9) 

Here g, E(jc runs over all connected graphs and the 
contribution E(g,) again is given by (2.8). Furthermore, 
l, is the number of lines and p, the number of vertices 
of g" 

3. THE HARMONIC OSCILLATOR 

In this section the formalism is applied to the case of 
the harmonic oscillator allowing complete evaluation. 
One finds a summation procedure leading from the 
formal Born series of the propagator to the energy 
values and illustrating the method. 

One may start from (2.1), In the case of dimension 
one (n = 1) the free propagator is simply given by 
C(O)(x,y) = (1/2m) exp(- m Ix - y I). The substitution rule 
leads to (2.2) where one has to replace gV(x) by gx2, 

Finally exp(tA" - tg It dO'(x2
) .. ) has to be evaluated by 

(2, 9). Each graph containing a vertex with more then 
two derivatives vanishes, Therefore only two types of 
graphs contribute: 

o 
• 
k, 

h, 

C K(h,)=t(i-l)l, i*i,2, 
h, 

It is easy to evaluate the combinational factors corre
sponding to these graphs. They are 

K(h,)/p,ll,!=2,-1/i, i=1,2, ••• , 

K(kl)=l, K(k,)/P,ll,I=2,-2, i=2,3,"', (3.1) 

Corresponding to these two types of graphs one finds 
from (2.9) of the preceding section exp[tAv I~ dQ (x 2)",] 

= exp(Sh + Sk) with 

~ (_)' f 1 f 1 
Sh = 6 -. - f'gI2'-1 dO'l' • , dO' j 

1.1 too 

xg(O'to O'2)g(O'2, 0'3)' ••• ,g(O'j_1 Q ,)g(O'I> Ill)' 2'· n. 

(3.2) 
The factor n (equal to the dimension) arises from a 
trace operation due to the scalar products aj • ai' 

Sh is independent of the configuration space variables 
x and y while Sk is quadratic in these quantities. Re
storing factors of n one finds that Sk is proportional to 
n-l while Sh is independent of n. More generally tree 
graphs of (j c always represent the leading contribution 
in n. 

The integrals may be evaluated by observing from 
(1,8) that one has the representation: 

2 ~ 1 
g(O',!3) ="""2' 6 k2 sin(krrO') sin(krri'l) (3.3) 

rr k-l 

From the orthogonality of sin(k1TO') on 0'" a'" 1 one con
cludes that 
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t is the Riemannian t function and En are the Bernoulli 
numbers. The sum is convergent if 4vgt < rr and can be 
evaluated explicitly: 

Sh = - tn[ln sinh(2vgt) - In(2vgt)] 

or 

(3.4) 

which is regular for t - 0 and decreases exponentially 
for t - 00. 

The second type of graphs leads to the sum 
~ 1 

Sk= 6 (_)Vf v-1• gV. 2v - 2 J/ dO'1'" Jo dO'v2"g(O'to 0'2)- -, 
v.2 

Xg(O'v_to O'v)[ O'lx + (1- Ill)y][ O'vX + (1 - O'v)y]. 

From this one finds analogously after including the con
tribution due to kl 

exp(Sk) = exp{- tvg(x2 + y2)[coth(2vgt) - 1/2vgt] 

+ vgx' y[csch(2vgt) - 1/2vgt]}, (3.5) 

which again is regular for t - O. 

Collecting all results for z = 1, one finds for the n
imensional harmonic oscillator with K2 = Vi 

( K
n
-
2 j~ [ 1 ] n/2 (m2 ) 

C n)(x,y)= (2rr)n/2 0 dt sinh(2t) exp -7- t 

xexp{- h 2
• (x

2 +y2) coth(2t) - si~J2t)}' 
(3.6) 

This formula can be verified for n = 1 by explicit cal
CUlation of the resolvent, Cf., for example, the corre
sponding formulae in the book of Feynman and Hibbs. 6 

One should remark that the factor exp[ - K2 (x - y )2/ 4t], 
which arises from the free part of the Hamiltonian is 
still present in form of the singular parts (t - 0) of 
coth(2t) and 1/ sinh(2t). This factor achieves conver
gence of the integral for t - 0 and x =y by compensating 
the singularity of t-n /2 whic h is still present too, If n > 1, 
this factor causes a singularity of c(n)(x,y) for x - y 
- 0, For n = 1 formula (3.6) even allows a continuation 
from g> 0 to - g (avoiding g = 0), which means K2 
- ± iK2. The resulting eigenfunctions naturally are not 
L 2-integrable and the corresponding eigenvalues become 
complex, 

The energy values for g> 0 may be evaluated as 
follows: Let R(x,y I E) be the resolvent which one gets 
from c{n)(x,y) by the replacement m 2 - m 2 - E, Assume 
n=l and define A(1)R(x,yIE)=R(x,yIE)-R(x,yIO), Now 
one calculates t: dx A (1) R (x, x I E) with the following 
result: 

f:~ dx A (1)R(x,x I E) 

E '" 1 
= K4E (2n+m2/KLE/K2+1)(2n+m2/K2+1) 
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It is easy to convince oneself that the same result 
follows from 

( I .; </in(x)</i~(y) 
Rx,y E) =;;0 K2(1+2n)+mLE' 

where the </in(x) are properly normalized oscillator 
functions, 

For n = 2 one analogously defines A (2) R (x, y I E) 
= R(x ,y IE) - R(x,y I 0) - E(a/aE)R(x ,y I 0). One finds 

f d2x A (2) R (x ,x I E) 

1(E)2°O (n+1) 
= K2 K2 Eo (2+2n+m2jK2-E/K2)(2+2n+m2/K2)2 

showing the correct multiplicities and zero point energy, 

Finally one should remark that there are two different 
mechanisms which lead to the divergence of f dx 
XR(x,x IE), First there is a possible singularity arising 
from the coincidence limit x - y - O. This singularity 
corresponds to an eventual divergence of the integral 
in (3,6) at its lower boundary and depends of the dimen
sion n, It is the singularity of the free propagator. 
The second divergence is due to the fact that the sum 
over the reciprocal energy values diverges for the 
harmonic oscillator, This divergence is already pres
ent for n=l, where G(x,x) is regular, 

4. THE CONNECTION WITH PATH INTEGRALS 

The formalism developed in Sec, 1 gives certain 
Green's functions as a series of derivatives of the 
"potential" gV(x) taken along the straight path connect
ing the two pOints x and y, Therefore, it is suggestive 
to try to derive this expansion from a path integral 
representation6 of the Green's functions at least in those 
cases where such a representation exists, A derivation 
of this kind is possible and described in this section. 
To avoid technical complications again, a restriction 
to the Euclidean case is performed, 

The Feynman kernel is given by the path integral6 

K(x ,y I T) = ! f Dr exp(iS[r]) (4,1) 

S[r] = M f T dt[;(t)]2 _ gf T dtV(r(t», 
2 0 0 

T> O. (4,la) 

Here the integration is over all paths t - ret) with reo) 
=y andr(l)=x, The metric isg",v=a",o"v with a",>O, 
This action leads to a Hamiltonian H=- A+gV(X) for 
M=t 

The Feynman kernel K is connected with the resolvent 
and therefore with G(x,y) by the formula 

R(x ,y IE) = fo 00 dt exp[i(E +iO)t]K(x ,y I f). (4.2) 

To proceed, the scaled variable T= (1/T)t is introduced 
into (4.1) and the straight line path qO(T) = TX + (1- T)y is 
separated from r(T)=r(t). That is reT) =qO(T) +q(T). 
The action becomes 

S[r] = ~~ f 1 dTq~(T) + ~\~ fl dT(j2(T) -gT r1 
dT 

o 0 } 0 

x V(qO(T) + q(T)}. 
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The important point is that the mixed term f5dT 
XqO(T)q(T) vanishes because firstly <10(T) is independent 
of T and secondly q(O)=q(l)=O due to the boundary con
ditions of r( T), The usual procedure achieving the 
vanishing of this term is an expansion around the 
"classical path." 7 

After expanding V around qo and replacing the cor
responding exponential by its series representation, 
one finds 

( I - (iM _ 2) ~ (- igT)C"Ak ..!.. 
K x, Y T) - exp 2 T (x y) u n A ! (k ! )'k N 

~O'~1tOH k k" • 

x f Dq exp(~ fi dTq ",(T)S"'Vqv(T») 
o 

x ~ {~1 dT[q(T) , a]kV(qO(T)}'k 

with S"'V = - (M/ T)g'" V (d2/ dill, 

All the functional integrals are of the Gaussian type 
and may be evaluated. The normalization is fixed by the 
free case (g= 0), Details of the combinatorics are given 
in Ref. 7. Each contraction of two factors q(Tl) and 
q(T2) gives rise to a propagator kernel 

ig",v(T1, T2)=i(T/Ma",)o",,,g(Tj, T2), 

where g(Tj, T2) is defined by (1, 7), This explains 
the appearance of the kernel g(a, f3) in the definition of 
a~. 

As usual each term of the resulting series can be 
described by a graph. Collecting all terms which 
correspond to the same graph, one finds after some 
combinatorial considerations indeed a result which is 
almost identical to the results of Sec, 2, formulas (2) 
and (8). (One has to replace the Laplace representation 
of Sec. 2 by a representation with an additional factor i 
in the exponential and take the special case z = 1. ) 

5. LlGHTCONE OR HADAMARD EXPANSION OF 
GREEN FUNCTIONS 

In this section the lightcone or Hadamard expansion of 
Green's functions is derived by application of the for
malism of Sec, 1, The achievement compared with the 
usual treatments of Hadamards' expansion8 is the ex
plicH incorporation of the boundary conditions into this 
expansion, that is, the determination of the corre
sponding solution of the homogeneous equation which 
otherwise can be rather difficulL 

To avoid notational and technical complications, the 
results are presented for the Minkowski case [a 2 = C, 
n ~2, g"'V = diag(l, -1, ... , -1), and ml> OJ. 

The corresponding generalized free propagator in
troduced in Sec. 1 is given by 

G;O)(x,y 1m2) = (m2)-zf(~~n exp[ - ip(x - y)] 

[ 
m2 JZ 

X _ p2 +m2 _ iO 

_ . (m2)n 12-z 21- z Kn 12_z(m[ _ (x _ y)2 + iO ])1/2 
-t (21T)nI2 r(z) (m[_(x_y)2+io]1I2)n/2-z 

(5,1) 
K" is the Bessel function of the MacDonald type. The 
structure of G;O) for (x - y}2 - 0 is exposed best by a 
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FIG. 1. 
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j 
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r 
• 

suited integral representation allowing application of 
the substitution rule, One finds 

G~O)(x,y 1m2) 

. (m2)n /2-. r ds 
=1 (417')"12 Jr 2rri 

r(n!2 - z - s)r(- s) [m2 [_ ( _ )2 + '0]]8-n/2+.o 
X r(z) 4 x y 1 • 

) 

(5,2) 

The integrand contains two series of poles running 
parallel to the positive real axis, The path of integra
tion r has to enclose these two series (see Fig. 1), 
r may be opened provided one has asymptotically 
2 Res> n!2 - Rez, This restriction arises only for time
like distances (x - y)2 > 0, After opening of the contour 
one can pick up the residuum contributions and estimate 
the remainder integral, 

These contributions have the following structure: 

r(- s) series: const, (m2)N[ _ (x _ y)2 + iOy-n!2+z 

r(n!2 - z - s) series: 
(5.3) 

const· (m2)N+n/2-z[ - (x - y)2 + iOY, 
N=0,1,2, ... , 

The contributions of the first series are proportional to 
an integer power of m 2, Therefore, their modification 
due to the interaction immediately can be written down 
applying the rules of Sec. 1, Especially the term N = 0 
is not modified at all. Generally one gets a factor 
(m 2 + Dv + g ndaV",)N, For Re(n!2 - z) > 0 the N= 0 
term gives the leading lightcone contribution, which 
therefore remains that of the free case, 

The second series contains contributions with powers 
of m 2 which are generally not integers and therefore 
require more qualified methods of evaluation. Never
theless, if the corresponding series converge at all in 
some sense these expressions are regular for x - y - 0 
as the definition of a~ shows, In certain cases the two 
series become degenerate, This happens for the physi
cal Feynman propagator (n = 4, z = 1), 

The resulting double poles give rise to terms 

const(m2)Nln{(m2! 4)[ - (x - y)2 + iO]}, [_ (x _ y)2 + iOY. 
The modification due to the interaction therefore again 
is of the nonpolynomial type containing a factor 
In(m2 + Dv +g ndaV,,). 
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The well-known differences8 between even and odd 
dimensions for Hadamard's expansion (logarithmic 
terms-no such terms) are reflected in this behavior of 
the two pole series, 

6. THE COINCIDENCE LIMIT FOR GREEN'S FUNCTIONS 

One can derive another integral representation for the 
Green's functions which always leads to simple poles 
and for which all contributions are proportional to 
integer powers of m2

, The logarithmic terms which 
arise in the degenerate case are already contained in 
the kernel function and do not arise via double poles, 

This representation is especially well suited if one 
wants to study the coincidence limit of the Green's 
functions which, for instance, is important for applica
tions of the formalism to field theoretic perturbation 
theory. 1,3 

The idea is to make use of the fact that the partition 

a2 +111 2 +gV(x) = 25 +1112 + 2~ + g fol daV"" 

of the differential operator into a free and an interacting 
part discussed in Sec, 2 does not prescribe to which 
part the m2 term belongs as it commutes with a2 and 
with Vex), Therefore, one has the freedom to introduce 
a parameter /1 2 

'" 0 by 
1 

22 + m2 +gV(x) = (06 + /1 2) + (m 2 - /1 2 + o~ +g fo daV,,), 

(6,1) 

which fixes the splitting completely. 

Again the discussion is restricted to the Minkowski 
case. The appertaining kernel function is defined as 
follows: 

K~n) (x - y I /1 2
) = f (2rrd;f)rr7'l exp[ - ip (x - y) J 

x[_ p2 /:2 _ iO] Z 

. 21-z Kn/ 2_.(/1[- (x- y)2 +iO]I/2) 
=zr(z) {/1[- (x_y)2+io]1/2}n/2-.o 

(6,2) 

K~n) is proportional to the corresponding generalized 
free propagator G;O) of Sec, 1, Furthermore, 
(/12)n/2-z, K!tI) has a limit for /1 2 - 0 leading to the rep
resentation of the preceding section. For z = 0, - 1, 
- 2" •• the factor 1!rcz) extracts the residuum from 
the remainder which becomes singular in this limit, 
This residuum is concentrated at the origin and can be 
found by direct evaluation as 

For Rez > n!2 the coincidence limit x - y- 0 of K~n) 
exists and one finds 

(6.3) 

K(n)(o I /1 2) =i2-n / 2 r(z - n!2) (6,4) 
z r(z) , 

Now the desired integral representation for the Green's 
functions is derived by formal application of the follow
ing inverse Mellin representation3: 
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__ 1_ _ r ~ r(z + s)r(- s) cSxoSoZ 
(x + c)Z - J r 27Ti r(Z) 

o 
(Rez > 0). 

(6.5) 

The path of integration is fro = f~::: with - Rez < c < O. 
This implies 

G. (x, y) = [( LJ + Jl2 - i 0) + (n 2 - Jl2 + Dv + g f 1 d a V ~z 6 (x , y) 
o 

f ds r(z +s)r(- s) [2 2 /1 JS 
= 27Ti r (z) m - Jl + Dv + g 0 da V" 

ro 
(JlZ)n/Zos o• 

x (27T)n/2 K~~~(x -.v I Jl2). (6 0 6) 

The validity of this representation can also be verified 
by methods analogous to those used for the proof of 
Proposition L 3 

By shifting the path of integration to the right, one 
gets a series representation of G.(x,y) with the an
nounced properties, The question of convergence of 
these integrals and series is somewhat delicate and will 
not be touched, 

The representation proves very useful for a config
uration space formulation of field theoretic perturba
tion theory, 1 where one needs coincidence limits for 
Green's functions, 

For example, if Rez '> /l/2 application of (6,4) leads to 

G (x x) _ _ i_ ( 2)n/20. r ~ r(z -/l/2 + s)r(- s) 
• , - (47T)n/2 Jl J ro 27Ti r(z) 

x ~ [m2 _ Jl2 + Uv +g fl daV,,]S 
Jl 0 Ix=y 

i r(z-n/2) [2 2 . fl. J.on/2 
=-( )n/2 () m-Jl+uv+g daV" • 47T r z 0 Ix,y 

(6,7) 

If Rez < n/2, one has to shift the contour of integration 
sufficiently far the right, The emerging residuum con
tributions are singular parts which have to be subtract
ed by counterterms in field theoretic applications, 

7. THE EIKONAL APPROXIMATION 

In this section the connection of the effective mass 
formalism and the eikonal approximation method is dis
cussed. As an example, a Schrodinger theory with 
Hamiltonian H = - t:. + m 2 + gV(x) is noted, The corre
sponding T matrix for outgoing radial waves obeys 

(kl Tip) =(kl Vip) - (kl VG(E)Vlp) 

with E = p2 = k2, 

Furthermore, 

(k I VG V I p) = (27T)"3 1 d3x 1 d 3y exp( - ipy + ikx) 

(7.1) 

xV(x)V(y)G(x,yIE), (7.2) 

where G (x, y I E) = (x I (H - EiO)oll y) is one of the Green's 
functions the effective mass formalism deals with, 

Application of the substitution rule implies 
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, (7.3) 

with Ho = - t:.x and the effective mass ,;;;12 = m 2 + Hov - E 
+ g f6 da V". Eikonal methods now typically introduce a 
modified propagatorS 

G1(x, y I E) = exp[ - il(x- y)]G(x, y I E) with 12 = E, 

For this propagator one finds 

, I _fd3q exp[ - iq(x - y)] 
G1 (x, y E) - (27T)3 _ q2 + 2ql + lvf2 _ iO (7.4) 

where 1'v12 = ,V12 - 12 = m 2 + Hov + g f6 de; V,,, This can be 
rewritten as follows: 

G1 (x, y I E) = i J~ 00 ds exp(- is1'v12) 

exp[ - is (t:.x - iO) ]6(x - y + 2s1), 

The interaction now is concentrated in the exponen
tial exp(- isM2) =exp[- is(m 2 + Hov + g f6da V,,)l, which 
is determined by (2, 9). The leading term corresponding 
to the graph. is simply given by exp(- isg f6daV,,), 
The eikonal approximation amounts to replacing first 
exp(- siM2) by this leading term and second exp(- ist:.J 
by one, corresponding to the usual linearization of 
denominators. One finds 

GjElk)(X, y I E) = i 1000 

ds 6(x- Y + 2s1) 

xexp[-igfoSdTV(X+2T1)], (7.5) 

Introducing this apprOXimation into (7.1) and (7.2) and 
choosing 1=k or 1=p, one immediately gets the usual 
eikonal approximations for (k I Tip) . 9 The significance 
of the above approximations are not pursued here any 
further. Obviously the method is not restricted to the 
Schrodinger case but can also be applied to propagators 
arising, for example, in field theories. 3 
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We prove new correlation inequalities for the massive and massless quantum sine-Gordon equations. 
These results are then used to construct infinite volume limit theory for the massless (S-G)2 model that 
satisfies the Osterwalder-Schrader axioms. As consequences, infinite volume limit theories for the 
classical, neutral, statistical mechanical systems with two-body Coulomb potentials and for the massive 
Thirring model exist. 

1_ INTRODUCTION AND MAIL RESULTS 

We study correlation inequalities and infinite volume 
limits of the Euclidean Green's functions for the mass
less (and massive) quantum sine-Gordon equations in two 
space-time dimensions. The (S-G)2 interacting actions 
are given by 

(1.1) 

Here cf> is a real, scalar Euclidean field on R2 with bare 
mass ma ~ 0, A denotes a space cutoff, the double colon 
: :1 denotes Wick ordering with respect to bare mass 
ma = 1, E IE (- 2/71, 217T), and 8 IE lo, 21T). 

The massive (S-G\ model has been constructed in 
Refs. 1-4. It has been proven that for sufficiently 
large m o, Feynman perturbation expansion of the Euclid
ean Green's functions converges. 3 For arbitrary ma 
> 0, infinite volume theory has been constructeq. in 
Ref. 4 by means of GKS inequalities, 5 weak boundary 
conditions, 6 and results in Refs. 2 and 3. In Ref. 4 
existence of infinite volume limit theories for the 
massless (S-G)2 model has been shown by a standard 
compactness argument (Cantor's diagonal process) 
together with uniform bounds of correlation functions 
with respect to moo Hence, the theories may depend 
on how one chooses a sequence of bare mass mo which 
tends to zero. Our main purpose is to show that the 
space-cutoff Euclidean Green's functions for mo = 0 
converges as the space cutoff is removed. To do this, 
we will derive correlation inequalities for the (S-G)2 
model and we will use a standard monotonicity argument 
with respect to A. Our results then imply existence of 
the infinite volume limit theories for the classical sta
tistical mechanical Coulomb system and the massive 
Thirring model. 

A. Definitions and notation 

Let Cmo(x-y) denote the kernel of the operator (- ~ 
+ mo)-l where ~ is the two-dimensional Laplacian. The 
Gaussian measure on 5' (R2) with mean zero and covari
ance Cmo(x-y) is denoted by d/.l..~mo)(cf», and (.)(mo) 
denotes expectations with respect to d/.l..~mo). Let: :1 
denote Wick ordering with respect to d/.l..al). We define: 

: cf>2: 1 (f) = j ~x: cf>(X)2 :J(x), 

e(J, 8) = j ~x: cosE(cf> (x) + 8) :J(x), 

s(J, 8) = j d2x: sifiE(cf> (x) + 8) :J(x), (1. 2) 
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- Vcf>(x) = j ~xcf>(x)Vf(x), 

X(J,E) = j ~x: expliEcf> (x)] :J(x), 

for fF 5 (R2). The interacting measure is defined by 

d/.l.. (A, mol = Z(A, mo)"l explx V(A)]d/.l..~mo)(cf», (1. 3) 

where V(A) is the interacting action defined in (1. 1) and 

Z(A, mol = (explx V(A)])(mo) (1. 4) 

is the partition function. For convenience we write 

(./A,ma)=j'd/.l..(A,mo). (1.5) 

Throughout this paper we do Wick ordering with respect 
to bare mass m o=1 (d/.l..a1 ». From now on we suppress 
mo in the notation, 

B. Main results 

We summarize our results. In Sec, 2 we will prove 

Theorem A, lcorrelation inequalities for the (S-G)2 
model]: We assume that x~O and 8=0 in (1.1). We also 
assume that fE 5 real(R2) for mo> 0 and f= - a· Vg, 
gE 5real(RZ), for mo=O where a is a constant vector. 
Then the following inequalities hold for the (S-G)z 
model: 

(a) ((~1: exp[iE j <f! (Xj)]: 1) explicf> (f)]) (A) ~ 0, 

(b) (C~l: expliEjcf> (x)L) explicf> (f)]c(h, 0») (A) 

- (C~l : expliEjcf> (x j )] :) explicf> (f)]; (A) (e(h, O»(A) 

~ 0, 

(c) for mo > 0, 

(C~l : exp[iEjcf> (x j )] :1) explicf>(f}]: cf>2 :l(h) YA) 

- (C~l: expliEj<f!(x)L) explicf> (J)]) (A\ :cf>2 :1 (h»(A) 

.:s 0, 

where E j is either E or else - E, and O.:s hIE 5 real (R2) or 
h =XA (the characteristic function of A). 
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Remark 1: (a) Each term in the above inequalities is 
well defined by the assumption on I and h. 2,4,7 (b) The 
inequalities can be easily extended to periodic, Dirichlet 
and Neumann boundary conditions, 2,5,8 and also to the 
lattice (S-G)2 model by following a method similar to 
that used in Sec. 2. (c) The inequalities for mo=O 
hold for A F Rand e Flo, 21T) by the invariance under 
field translation c/J - c/J + Cl' (See, e. g., Sec. 3 for the 
detailed discussions). 

In Sec. 3 we will use the above inequalities l Theorem 
A(b)] and a standard monotonicity argument to obtain 
the following theorem. 

Theorem B. [infinite volume limit theory for the 
massless (S-G)2 model]: For mo=O and for Ii' gj' h. 
E S(R2

), the limit 

exists, where the a:s are constant vectors. These 
limits are Euclidean Green's functions that satisfy 
all the Osterwalder-Schrader axioms with the possible 
exception of the clustering properties. 

Remark 2: (a) One may be able to construct an infinite 
volume limit theory for m a> 0 by using Theorem A, a 
method similar to that for mo = 0 and an introduction of 
a linear external field. Because of notational complica
tions, we do not produce a construction for mo > O. 
Notice that the construction for A > 0 and e = 0 is very 
simple by Theorem A(b). (b) For A;" 0 and e =0 the 
infinite volume limit for mo = 0 with weak boundary 
conditions4 is unique by Theorem A(c), 

Combining Theorem B and the isomorphism between 
the massless Sine-Gordon equation, the classical 
Coulomb system, and the massive Thirring model (see 
Refs. 1-3 for the details) we immediately obtain the 
following. 

Corollary C: (a) Let {3, ± e, and z be the inverse 
temperature, the charge, and the fugacity for the two
component classical Coulomb system. Then, for {3e2 

< 41T, the thermodynamic limts of the correlation func
tions for the two-component, neutral, classical statis
tical mechanical systems with two-body Coulomb poten
tials exist for arbitrary fugacity z. These are Euclidean 
invariant. (b) The infinite volume limit theory for the 
massive Thirring model exists and satisfies all the 
(O-S) axioms possible with the exception of the 
cl ustering. 

2. CORRELATION INEQUALITIES: PROOF OF 
THEOREM A 

In this section we prove Theorem A. In proving the 
theorem one may assume m a> 0, because each term for 
ma = 0 in the inequalities can be approximated by that 
of m o> O. The above fact follows from Lemma IV. 4 and 
its proof in Ref. 1, and Sec. 4 of Ref. 2. Here one may 
have used the "neutrality property1,2" (see also Sec. 3 
for the discussions). 
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We first prove Theorem A(a). We note that 

exp[ic/J(J)] = exp[- {f, Cj)/2]: exp[icp{f)]:c. (2.1) 

By re-Wick ordering and by a direct computation (see 
also Lemma 2.2 of Ref. 2), one obtains 

( n:exP[iE j c/J(X j )]:l)o=Kexp f_ ~. E;Ejc(x-y)l ;,,0, 
J=1 l l~'<J~n 'J 

where K is a constant produced by re-Wick ordering. 
On the other hand, we have 

((~1 :expliEic/J(xj)L) explic/J(J)]YA) 

=Z(At1 i: ~~((TI : expliEjc/J(x j)] :1) explic/J(f)V(A)") . 
",0 J,1 a 

(2.2) 

The above series is summable absolutely, 2 and so one 
only needs to show that 

(2.3) 

for IE 5 real(R2
). We substitute V(A) =~[X(A,E) +X(A, 

-El] in (203) and use (2.1) and (2.2) to obtain (2.3). 
Here we have used the fact that fC(x - y)/(y)tFy is real. 
This completes the proof of Theorem A(a). 

To prove Theorems A(b) and A(c) we use a method of 
duplicated variables introduced by Percuse. 9 (See also 
Refs. 5 and 10 and the references therein.) Let c/J1(X) 
and c/J2(X) be duplicated Euclidean free fields; this 
means that (c/J;(x)c/Jj(Y»o =oijC(x, y). We define 

c/J' (x) = [c/J1 (x) + c/J2(X)]/ Fl, 

c/J" (x) = [c/Jl (x) - c/J2(X)]/ ffo 
(2.4) 

Since joint covariance of c/J 1 and c/J 2 is the same as that of 
c/J' and c/J", we have that 

J F(c/Ju c/J2)dlJ. a(c/J1)dlJ. a(c/J2) 

= J F((c/J' + c/J")/ ff, W - c/J")! ff)dlJ.oW) dlJ.aW'). 

(2,5) 

We will use the following identities: 

cos(X - y) + cos(x + y) = 2 cos(x) cos(y), 

cos(X - y) - cos(x +y)=2 sin(x)sin(y). 

We now prove Theorem A(b). We note that 

(01: exp[iEjc/J(xj)h) exp[ic/J(J)]C(h,O)YA) 

-(C~l :exp[itJc/J(XJ)] :1) eXP[ic/J(f)]) (A)(c(h,O»(A) 

=Z(A)-2 fC~l :exp[iEJc/J2(X)] :1) 

Xexp[ic/J2(j)] (c(c/J2' h, 0) - c(c/J1' h, 0» 

Xexp[AV(c/Jl' A) + V(c/J2,A)]dlJ.o(c/J1) dIJ.O(c/J2) 

Yong Moon Park 2424 



                                                                                                                                    

x exp[ (i!f2l ¢' (j)] 

x exp[ (- i!f2)¢" U)]s(¢' , ¢" ,h) 

x exp[Xc(¢', ¢" ,A)]dJ..Lo(¢') dJ..LoW') (2.6) 

by (2.5), where 

sW, ¢", h) = 2f rPx: sin~¢'(x)/v'2): 1 sin(Eq," (x)/v'2) : 1h(x), 

c(¢', ¢" ,A)=2~rPx: COS~¢I(X)!f2l:1: cos~¢"(x)/m :1' 

We expand explxc(¢', ¢" ,A)] by Tayler's series (the 
series converges absolutelyl). The problem then reduces 
to showing that each term in the series is nonnegative. 
But 

fC~1 : exp[(i/12)Ej ¢' (xj )] :1) exp[(i!fZ)¢'(j)] 

x C~1 : exp[(- i!ffi j ¢" (xj)] :1) exp[(- i!f2l¢"(j)] 

=2,+1 !rPX1h(X') f n rPx_{ji(ri : 
AI k=l J=l 

exp[(i!fZ)EJ¢(XJ)] :1) 

xexp[(i//2)¢(j)] :sin~¢(x')!f2l:1 

X(~l : COS~¢(xk)!f2l :1) dJ..L(¢)} 2 <?- O. 

This proves Theorem A(b) completely. 

(2,7) 

We next prove Theorem A(c). We note that Theorem 
A(b) and Theorem A(c) are related by the following 
fact: 

A-2[I-C(X¢,h)]-t:¢2:1(h) asx-O. 

Therefore, Theorem A(b) implies Theorem A(c). This 
proves Theorem A completely. 

3. INFINITE VOLUME LIMIT: PROOF OF 
THEOREM B 

Rather than proving the theorem for general A E R 
and 8 E [0,217), we first consider the case for A <?- 0 and 
8=0, The theorem for general cases will follow from a 
translation of fields by ¢ - cp + 0' for a suitable constant 
0', 

We consider the expectation 

(3.1) 

where II' gE 5 real (R 2
), a is a constant vector and I; E C. 

For such Ii and g we prove the existence of the limit as 
At R2 by inclusion. The existence of these limits is 
proven by mono tonicity property in A for pure imaginary 
1;, uniform bounds of (3.1) in A, and a standard applica
tion of Vitali's theorem. 
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We give the proof more detaily. We are interested in 
the objects 

cUI' 8), SU2' 8), and a'VCP(3)' 

In [1. 2.4] it has been shown that there exists a Schwartz 
space norm II ·11 such that for Ii E 5 real (R2) 

-'S expK(/I1111 +/1/2/1 + a21/f3/1~) 

uniformly in A and moE [O,m]. 

(3,2) 

Remark: The uniform bounds in (3.2) has been proven 
for periodiC boundary conditions .102.4.7.8 A similar 
version of uniform bounds for free boundary conditions 
may follow from a method similar to that used in Refs. 
7, 11 and the results in Refs. 1,2. 

We first consider the case for A <?- 0 and. 8=0. From 
Theorem A(b) it follows that for Ii' gE 5 real (R2) the 
limit 

(3.3) 

exists for pure imaginary!;. We combine the uniform 
bounds in (3.2) [these imply uniform bounds of the ex
pressions in (3,1)] and a standard application of Vitali's 
theorem (see, e,g., Ref. 12) to conclude that (3,3) 
holds for any!; E C. Since 

CU,E, 0) =HxU,€) +x (j, -d], 

S{j,E, 0) = [xU,€) - xU, - €)]!2i, (3.4) 

we obtain Euclidean Green's functions by differentiating 
(3,3), Euclidean invariance and (O-S) positivity follow 
from the monotonicity property (the inclusion). 5,11 This 
completes the proof of Theorem B for A <?- 0 and 8 = O. 

We now consider the cases for XER and 8E[0,217). 
In Lemma IV. 4 of Ref. 1 and Sec. 4 of Ref. 2 it has 
been shown that 

(~1 : exp[iE J(cp(xJ) + a)] : 1) (mo'

O

) 

o if tEj*O (neutrality!), 
J=I 

( 

n [(x)] ) (mo=O) ~ n : exp iE j cP J :1 if LJE j = O. (3.5) 
Jd Jd 

We expand 

((~1 : exp[iE j (¢(xJ) + (lI)] :1) exp[ia . V ¢(g)] 

Xexp[x : cosE(¢ + a): (A)] a 

by Tayler's series in,\, We then use (3.5), a method 
similar to that in the proof of (3.5) in [1.2] and the 
fact that 

vcp(g) =V(¢ + a)(g), 

(¢(j)vcp(g)c =(¢(j)V¢(g)C+b' 
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where b is a constant and < . >c is the Gaussian expecta
tion with respect to convariance C, to conclude that 

= (C?l :exp[iEjtP(X
J
)] :1) exp[ia . \7 tP (g)]) (A.O) 

(invariance under a field translation tP- tP +G'), where 
< . > (A,,,) is the interacting expectation with 8 = G' • 

To prove the theorem for A E Rand 8 E [0, 21T), we 
translate fields by tP - tP + n1T/E + e, which gives a 
change of the interacting action from V(A, 0) to 
(- 1 )"V (A , e). The expectations in (3. 3) are invariant 
(with possible exception of signs) under the translation 
by the neutrality in (3.5) and the invariance in (3.6). 
Hence, to prove the theorem for A E Rand e E [0, 27T) it 
is sufficient to show the theorem for A ~ 0 and 8=0. This 
completes the proof of Theorem B. 
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Klein-Gordon kinks with fourth order derivative self
couplinga) 
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A Klein-Gordon field with a derivative fourth order self-coupling is studied. It is shown that the kinks of 
the model form singlets. doublets, or triplets of electric charge, according to the values of the coupling 
constants. 

I. INTRODUCTION 

A great deal of attention is presently being paidj to 
the study of the kinks or solitons in nonlinear field 
theories. In this work we will consider the case of a 
scalar field with a derivative self-coupling. 

Many authors have proposed the use of the localized 
solutions of some field theories, as a tool to study 
elementary particles. The history of this approach 
begins with Rosen2 and goes on through Finkelstein3 et 
al. ,4 who considered nonlinear spinor fields, and 
Wakano,5 who tried unsuccessfully to construct a model 
of stable particle with interacting Dirac and Maxwell 
fields. In 1970 Soler6 considered a nonlinear Dirac field 
and proposed a model of elementary fermions in which 
the physical frequency corresponds to a minimum of the 
energy E=E(w). The same approach was followed sub
sequently to construct a model of charged particle1 and 
of the nucleon. 8 Recently it was refined by the introduc
tion of a scalar field to represent the meson cloud. 9 

Other phYSicists considered nonlinear scalar fields 
with rp4 or cp6 self-coupling. 10-14 The stability properties 
of some of these models have also been investigated. 15_17 

In this connection the paper by Andersonl1 shows that 
the effect of the addition of a cp6 term increases the 
stability of the kink of the cp4 model. This means that 
the stability properties may change with the addition of 
new nonlinear terms. 

In this paper we call kink a solitary wave which is 
regular and has finite energy. We reserye the term 
soliton for a kink which preserves its individuality upon 
collision with other analogous waveso 

We consider in this work a nonlinear model in which 
the scalar field has, in addition to the cp4 nonlinearity, 
a derivative self-couplingo We will show that, contrary 
to the cp4 model, it can describe charge multiplets of 
particles, because the energy can have several minima 
as a function of the frequency. In other words, the 
scalar and electromagnetic fields do not tend to 
decoupleo 

a) Work supported in part by Junta de Energla Nuclear, 
Madrid. 
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II. DESCRIPTION OF THE MODEL AND SOLUTION 
OF THE FIELD EQUATIONS 

We will study the kinks of the model based on the 
Lagrangian: 

L = A .. cp*o" cp - m2cp*cp + ~gl (cp*cp)2 + g2 J .. J", (1) 

where 

(2) 

J .. is a vector which is closely related to the electro
magnetic current. It could be said thus that L includes 
a kind of electromagnetic structure. A term as J .. J" 
appears in some cases18 as a consequence of the in
variance under the Poincare gauge group. It corre
sponds to 

which appears in the case of the spinor field. 19,20 When 
g2 = 0, we have the cp4 model, which, as we know, has 
two drawbacks: The kinks are unstable and it can only 
represent neutral particles. 

The field equation is 

(0 .. 0" + m 2) cp =gl(CP*CP) cp + g2(4CP*0 .. cpo" cp - 4cpo .. cp*o" <f; 

+ 2CP*cpo .. 0" cp - 2cp2 0 .. 0" <f;*). 

(3) 

We look for stationary, spherically symetric solutions, 
which we write as 

cp(x)=(m/fjgt/)5(p)exp(-iwf), p=mr; (4) 

the field equation takes the following form (D=d!dp): 

(D2 + (2/p) D + A2 - 1] 5 =7)(- 1 + 8A2B) 53, (5) 

where 

B == m2g2/gj, 7) == sgn(gj), A = w/m, j A j < 10 (6) 

In order to simplify (5), we make the following change 
of variables and parameters 

S=aT, p=ka, a 2 =(1_A2)/jl_8A2Bj, 

k 2 = 1/(1- A2), 0 ='= sgn(l- 8A2B), 

which leads to (D = d/ da) 

(D2 + (2/a)D-1]T=-7)0T3• 

Copyright © 1977 American Institute of Physics 
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This is the well-known radial equation of the ¢4 model. 
It admits kinks if and only if 

(9) 

In that case there exists a discrete infinity of solutions 
in L2. We will restrict ourselves to the ground state 
which is obtained for T(O) = 4.3441. T(a) being well 
known, S( p) can be easily determined for all values of 
A and B. 

In order to obtain the energy, we use the energy
momentum tensor, which has the form 

T /.Lv = [aIL ¢ _ 2g2(¢*¢a lL ¢ _ ¢2a lL ¢*)] av¢* + c. c, _ glLV L. 

We obtain (10) 

E=(1Tm/l gil){, 

{= 4k3 [2A2O'2 [(T2) + 1)(t _ 12BA2) cx 4[(T4)], 

where a, f3, 1) are given in (6), (7) and 

[(T2) = (00 T 2a2 da = 1. 499 
Jo ' 

[(r) = Jooo 

ra2 da = 5. 998; 

(11) 

(12) 

these integrals do not depend on A, B. It can be shown16 

that the quotient of their values must be 4. In our case 
it is 4.001, which shows that our numerical precision 
is enough for our purposes. The formula (11) provides 
thus an analytic expression for the energy 

valid except when gl = 0, a case which we will treat 
separately. 

Another important quantity is the charge of the solu
tion. If we integrate the electromagnetic current 

jlL = _ ie(l- 4g2¢*¢)(¢a lL ¢* _ ¢*a lL ¢), 

we obtain the charge 

Q = e(81T AI Igil) k3[ch(T2) - 4B1)o.4[(T4)]. (14) 

As we see, the properties of the solutions are given 
by A, B,1) while m, Igi I are scale parameters. It is 
convenient to consider a plane with coordinates x =gl' 
y =m2g2' We have then B =tanO, 0 being the polar 
angle. Any direction of this plane represents a value of 
Band 1), and therefore, a family of solutions which de
pend continuously on A. We will consider the functions 
E (II.) , where 

E(II.)=E(m,B,11,A). (15) 

First of all, let us remark that the plane is divided into 
four regions according to the value of B and the fulfill
ment of condition (9): 

(i) Strictly forbidden region: (gi' e / gl < 0, tane < 1/8). 
As 11 I) = - 1 there are no kinks there 

(ii) First partially forbidden region: (gi' e / gl > 0, 
tane> 1/8). In it (9) only holds for I A 1< (8 tane)-l/ 2. 

(iii) Second partially forbidden region: (gil 0/ gl < 0, 
tanO> 1/8). In it (9) only holds for I A I > (8 tanO)-1/2. 

(iv) Allowed region (gl, e / gl > 0, tane < 1/8). In it the 
condition (9) is verified for I Ai< 1. 
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In regions ii and iii there are kinks for some values 
of A. However, the curves E(A) show no minima. In 
region iv there are kinks for any A such that I A I < 1. 
The examination of formula (11) shows that this region 
can be divided in three sectors: 

(I) Doublet sector, which corresponds to 7. 125 ° > 0 

>3.57°. E(A) has a maximum at 11.=0 and two minima 
at A =± Am. When e - arctan~' = 7.125°, Am -1. 

(II) Singlet sector, which corresponds to 3.57° > e 
> - 8°. E(A) has only one minimum at 11.=0. If e = 0, 
we have the ¢4 model. 

(III) Triplet sector, which corresponds to - 8° > e 
> - 90°. E(A) has three minima at 11.=0 and A =± Am. 

If e - - 90°, Am - 1 and E(Am) - O. 

The plane (gi' m2g2) appears in Fig. 1, In Figs. 2(a) 
and 2(b) we can see some curves C (A) for several val
ues of e. 

Let us now consider the case in which gi = O. We 
look for solutions of the form 

¢(x) = (IN Igzl) S(p) exp(- iwt) 

and make the change of variables 

(16) 

S=a'T, p=ka, 0"
2 ==(1-11.2)/811.2, li=1/(1-A2

) 

(17) 

the equation takes the same form as (8) with sgn(g2) 
instead of -111), which indicates that there are kinks if 
and only if g2 < 0, a condition that we admit from now 
on. The energy and the charge are given by 

E=(41T/mlg21){, 

{= 4k3[2A2O'I2[(T') + 1211.20' 14[(T4)], 

Q = e(81T AI m21g21) k3[0' 12](T2) + 40',2 ](r)]. 

As we see, In and Ig2 I are scale parameters. The 
curve {={(A) appears in Fig. 3. It has two minima 
at A =± O. 902 and a divergence at 11.=:::0. 

III. INTERPRETATION OF THE RESULTS 

(18) 

(19) 

One of the problems which poses a classical theory in 
which the kinks are interpreted as particles is the 
determination of the frequency. In quantum theory it 
is determined by the Planck relation which is not valid 
classically. We have found families of kinks which de
pend continuously on 11.== w/m. In order to overcome 

FIG. 1. lS?'j. m 2g2) plane showing the different regions and 
sectors. 
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FIG. 2. (a) Shape of the energy [ for different values of the e angle. (b) Same as in Fig. 2(a) for other values of the e angle. 

the indeterminacy, we adopt the point of view proposed 
in Soler's paper6 and define the physical frequencies 
as those which correspond to minima of E(A). As is 
known, the ¢4 model has only one minimum for A = O. 
This implies that it can only describe time independent 
states with zero charge. On the other hand the model 
presented in this paper has one, two, or three minima 
according to the value of E, We can thus say that it can 
describe singlets, doublets, or triplets of particles. 
It is convenient to stress that the existence of charge 
multiplets is not primarily related to the electromag
netic interaction, but appears as a consequence of the 
nonlinearity. As the electric charge is proportional 
to A the doublets contain always particles with charge 
± Q, because the curves E(A) are symmetrical with 
respect to A = O. In this they differ from the real 
doublets as (K", ~). 

The real elementary particles are too complex to be 
represented by such a simple model. However, as an il
lustration, we can compare the doublets or triplets that 
we have obtained with the pions or kaons. Let us begin 
with the pion. In order to obtain the values of m, g1' 
and g2 which give an appropriate kink, we have three 
data m (1T"), m(1TO), and Q(1T"). If 

m = 129, 6 MeV, g1 = 36.19, g2 = - 5. 28 X 10-4 MeV·2, 

(20) 

the corresponding triplet has the same energy and 
charge as the pions. The value of the angle is e ~ _14°. 
The mass difference m(1T") - m(1T O) appears as a non
electromagnetic effect. Other observable quantities are 
the mean square charge radius and the form factor. 
With the values (20) we have (r2)1/2 = 2. 2 fm, which is 
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too big as compared with the experimental value 
(~ 0.7 fm). We have calculated the form factor of the 
kink as 

E 

100 

FIG. 3. Shape of the energy { for gl ~ O. 
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F(q2 ) 

This model 

0.1 02 0.3 

FIG. 4. Pion form factor for this model compared with the 
parametrized function (1 + q2/ M2)-I, M= 0.56 MeV. 

it turns out to decrease faster than the experimental 
value, in agreement with the previous result on <r2)1/ 2. 
Figure 4 shows F(q2) and the pion form factor, approxi
mated21 as (1+q2/M2)-1, M=0.56 MeV. 

As another example, let us consider the pair K± 
(neglecting the KO, J?O) and take g1 = O. The kinks have 
the same mass and charge as the kaons if 

(21) 

IV. ELECTROMAGNETIC STRUCTURE 

If one wants to use this model to represent elemen
tary particles, it is convenient to know about its elec
tromagnetic properties, which appear as a consequence 
of the minimal coupling principle. Instead of L we will 
have a new Lagrangian L': 

L'=L+~M+Lr, 

where 

(22) 

(23) 

Lr = (1- 4g2tfJ* tfJ)[ie(tfJ 0", tfJ* - tfJ*'d", tfJ)A'" + e2tfJ*tfJA",A"']. 

(24) 

If the scalar field has the same form as before and if 
A = (m/e) {V(r), O}, the field equations are (D=d/dp). 

2430 

[D2 + (2/p) D + (A - V)2 - 1] 5 = - 53 + 8(A _ V)2 BS3, 

(25) 

J. Math. Phys., Vol. 18, No. 12, December 1977 

[D2 + (2/p)D.] V=ES2(1_ 4BS2)(V - A), 

where E = 2e2 
/ g1 = 8lTa/ g1' 

(26) 

We have solved Eqs. (25) and (26) by a perturbative 
method,22 and we have found that, as a result of the 
electromagnetic interaction, 

(I) In the doublet sector the minima become deeper 
and remain displaced to higher values of IA I. 

(II) In the singlet sector the minimum becomes deeper 
and remains at A = O. 

(III) In the triplet sector the charged minima become 
softer and are displaced to higher values of I A I, while 
the neutral one remain at A = O. 

If g1 = 0, the problem can be treated by a similar 
method. The energy C1 is given in Fig. 5. As we see, 
it has four minima which correspond to Ao = ± O. 714 and 
Ao = ± O. 983 and it is divergent at Ao = O. As a conse
quence for high values of E the first order correction 
transforms the doublet into a quadruplet. We have found 
that this happens when E> 0.3. For the values (21) 
we obtain E = O. 010. 

V. SUMMARY AND CONCLUSIONS 

We have shown that the model based on the Lagrangian 
(1) can represent charge multiplets of elementary par
ticles. According to the values of g1 and g2 one has a 
singlet, a doublet, or a triplet. The model can be ap
plied to the pion which appears thus as a kink triplet 
with the right charge and mass but with a radius bigger 
than the experimental value. 

The class of nonlinear theories is too large to make 
a systematic study of all the possibilities. Some kind 
of guiding principle is necessary, and perhaps the con
sideration of the geometry could shed some light on the 
problem. But in the absence of an unambiguous mecha
nism which generates the self-coupling the study of all 
the lowest order self-coupling could be very useful. 

It is worthwhile to make a last remark. For B near 
to - 0.2 the mass of the charged states of the triplet 
is very close to of the neutral one. This could be inter
preted as a breaking of a unitary symmetry in a three 

10 E:, 

FIG. 5. Shape of the order one energy C 1 for g 1 = O. 
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component theory of the scalar field. There is, how
ever no such breaking. 
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Time dependent canonical transformations and the symmetry
equals-invariant theorema) 

John R. Cary 

Lawrence Berkeley Laboratory. University of California, Berkeley, California 94720 
(Received 4 May 1977) 

Expressions for the remainder function of a time dependent infinitesimally generated canonical 
transformation have recently been found by Dewar, who considered the action of the transformation 
operators on Liouville's equation. Here an alternate proof of the remainder function expression is given, 
based on the transformations of particle trajectories. Then, using this expression, a proof of the symmetry
equals-invariant theorem is given. 

I. INTRODUCTION 

In the canonical transformation theory presented in 
most texts, 1,2 the generating function F(q, P, t) of mixed 
variables plays a major role. Knowledge of this function 
allows one to calculate the new Hamiltonian using the 
equation: 

of 
K=H+-. 

01 
(1) 

aF/al is known as the remainder function of the trans
formation. Another topic presented in most texts is that 
of infinitesimal canonical transformations. By succes
sively doing infinitesimal transformations, one can 
generate a family of canonical transformations. The 
formula corresponding to Eq. (1) was not known for a 
family of canonical transformations until recently, when 
Deprit3 found such an expression in terms of a power 
series expansion. Then Dewar4 cast Deprit's theory in 
operator form, and found an expression for the 
Hamiltonian by considering the action of these operators 
on Liouville's equation. 

The first part of this paper is devoted to deriving 
Dewar'S result by considering the individual particle 
trajectories rather than Liouville's equation. In this 
formulation it is seen that finding the remainder func
tion is a calculus problem. The final result of the trans
formation theory is then used to prove the symmetry
equals -invariant theorem. This theorem has been dis
cussed previously, 5,6 but its proof can be made more 
rigorous by using the new transformation theory. 

II. THEORY OF INFINITESIMAL CANONICAL 
TRANSFORMATIONS 

This section begins with the introduction of notation 
and the statement of elementary facts concerning ca
nonical transformations. Then the fundamental theorem 
will be stated and proven. 

Following Saletan and Cromer, 1 the set of canonical 
variables is denoted by the vector z, such that q 10 ••• ,q n 

= 2 10 "" Zn' and PI>"" Pn= 2n+1>' 0., z2n' The matrix 
Y is defined to contain the Poisson bracket relations: 

a)Work done under the auspices of the U. S. Energy Research 
and Development Administration. 
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~ 
1, forj=i+n, 

Yij={zo zJ= -1, for i=j+n, 
0, otherwise. 

The matrix y is seen to be anti symmetric and 
invertible. 

(2) 

(3a) 

- '[; Y i k Y kj = 15 ij' (3b) 
k 

It will be necessary to consider time -dependent 
canonical transformations which depend differentially 
on a parameter e. A transformation is canonical if it 
pres~rves the Poisson bracket relations: 

In addition to being canonical, the transformations 
Z (z, t, e) are required to be invertible, twice differen
tiable in all arguments simultaneously, and to reduce 
to the identity when e= 0: 

Z[Z-1(Z, t, e), I, e1= Z-1[Z(Z, I, e), t, e1=z (5a) 

Z(Z, t, O)=z. (5b) 

It will also be necessary to consider functions of the 
phase space variables z, the time t, and the parameter 
e. By transforming the variables, new functions can 
be formed from old. As an example, the function 
f(z, t, e) can be defined by transforming the function 
F(z, t) according to 

/(z, t, e) =F(Z(z, t, e), t). (6) 

To avoid ambiguities in taking derivatives, a very 
explicit notation must be introduced. The symbol 

of I 
a 2 I Z( z, t, 0) , t, 0 

(7) 

means: take the derivative of the function F(z, t) with 
respect to the variable z p then for the variables z, 
substitute Z(z, t, e). When the arguments are not ex
plicitly written, they are assumed to be z. This notation 
is illustrated by applying the chain rule to equation (6): 

of = of I + '[; ~ I x a Z I • 

at at Z(Z,t,O),t z az z Z(.,t,O),t at 
(8) 
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Finally, one more fact is needed which can be stated 
in the form of a lemma. 

Lemma: Given a differentiable family of invertible 
canonical mappings Z(z, t, e). there exists a function 
w(z, t, e) such that 

()Z· { } at-=+ w(z, t, e), Zi(Z, t, e). (9) 

This statement is shown to be true in Ref. 1, p. 222. 
For completeness, a proof is included in the Appendix. 
Using (9) and (5), it is possible to show that the inverse 
transformation satisfies the following relation with the 
same function w: 

a:t = - {W(Z-l(Z, t, e), t, e), Z l l(z, t, e)}. (10) 

The function w(z, t, e) is here known as the generating 
function of the transformation Z(z, t, e). This function 
is not to be confused with the generating functions of 
mixed variables used by Goldstein,2 which are known 
here as the "mixed generating functions." 

Now that the basic properties of canonical transfor
mations have been discussed, it is possible to discuss 
the problem at hand. First it is assumed that the evolu
tion in time of the variables z is given by a Hamiltonian 
h(z, t). Then it is known (Ref. 1, Chap. VI) that there 
exists a function K which gives the evolution of the 
transformed variables according to 

Zl(Z, t, e)={zp K(Z(z, t, e), t, en. (11) 

The objective here is to find the new Hamiltonian K. 

Consider the standard expression for computing the 
time derivative of the function Zl(Z, t, e): 

(12) 

Suppose a function r(z, t, 6) can be found such that the 
partial derivative of Z 1 with respect to time can be 
written in the form: 

aZ l { } ~= Zz,r. 

Then Eq. (12) becomes 

Zl={Zp k}, 
where 

(13) 

(14a) 

k=h+r. (14b) 

Thus the function K which is in (11) is given by 

K(z, t, &)=k(Z-l(Z, t, e), t, e). (15) 

Now it is seen that to complete the transformation 
theory, the function r(z, t, e) which satisfies (13) must 
be found. The function r is found by differentiating (9) 
with respect to time. 

a (aZ iJ {aw } { az t } Te at) = ---:at' Zi + w, at (16) 

Equation (16) is a differential equation in e for the 
function az ja t. This equation, together with a boundary 
condition, uniquely specifies az jat. The appropriate 
boundary condition follows from (5b): 
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aZ j I -0 
at z t 0 - • , , 

(17) 

I now assert that the following set of formulas gives a 
solution to (16) and (17): 

az· { } af= Zpr, (18) 

r(z, t, e)= R(Z(z, t, e), t, e), (19a) 

R(z, t, &)= - f e de' ~~ I . (19b) 
o Z-l(z,I,Ii'),I,e' 

Proving this assertion completes the task of finding K. 

To prove that (18) is a solution, it must first be noted 
that when e is zero, R vanishes. Using (19a) and (18), 
this implies that (17) is satisfied. To prove that (16) is 
satisfied by (18) and (19), I will calculate both sides of 
equation (16) USing (18) and (19), and show them to be 
equal. 

Using (18), the left-hand side (lhs) of Eq. (16) can be 

put :::{ :~m,' + { z" :; }. (20) 

Rewriting the second term using (19a) and the chain rule 
gives 

lhS={aZ i ,r} + {Zp ~ I } ae ae Z(z,I,e),I,e 

+,0{Z.,~1 xaz l }. (21) 
1 t aZ l Z(z,I,B),I,e ae 

Then using (9) on the first and third terms, Eq. (21) 
becomes 

lhS={{w,Zi},r}+{Zi>~~ I } 
Z(z, I, e) ,I, e 

+,0{Zil ~R I X{w,Zt}}' (22) 
1 Zl Z(z,t,e),I,e 

Recognizing the chain rule in the following form: 

6 :R I x{w, Zl}={W, R(Z(z, t, e), t, e)}, 
1 Zt Zl(Z' I, e), t,B 

(23) 

and inserting (19b) into the second term of (22) results 
in 

lhs={{w, Zi}, r] +{~~ ,Zi}+{ZO {w, rH. (24) 

Jacobi's identity allows equation (24) to be written in 
its final form. 

lhS={~~ , Zi}+ {w,{Zo rH. (25) 

This expression is seen to equal the right-hand side of 
(16) upon using (18), proving the assertion. 

The results of this section show the existence of a 
formula giving the new Hamiltonian in terms of the 
infinitesimal generating function w. Combining (14b), 
(15), and (19), the final result is. 

K(z, t, 6) = h(Z-l(Z, t, e), t) _fede'~1 . 
o at Z-l(z,I,!J'),I,e' 

(26) 
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To connect these results to Dewar's, 4 operators 
corresponding to the transformation are defined by 

(T(Ii}j)(Z, I, B)=j(Z(Z, I, B), I, B). 

Then Eq. (26) becomes 

K= T- 1(B)h _ fede' T 1(B') 00
1
;' (B'). 

a 

Though this equation appears to differ from Dewar's 
equation (27),4 it is only because of differences in 
conventions. 

(27) 

(28) 

As Dewar points out, by expanding w in a power series 
in B, Deprit's perturbation theory can be derived. 
Since the operator T is also a power series, this way 
of doing perturbation theory involves multiplying series. 
I would like to point out that in practical calculation, 
(28) is more convenient than Dewar's formula since 
there is one less operator series to multiply. 

III. THE SYMMETRY-EQUAlS·INVARIANT THEOREM 

Now I would like to consider the application of (26) to 
the symmetry-equals-invariant theorem. In its time 
dependent form, this theorem was partially discussed by 
Whittaker. 6 Recently, Anderson gave a more complete 
discussion. 5 Here I would like to show that the proof of 
this theorem need not be based on expansions; in fact, 
its proof for a finite composition of infinitesimal 
transformations becomes straightforward using (26). 

First, definitions for the terms used must be given. 
A family of canonical transformations is said to be a 
symmetry, if the new Hamiltonian K is identical in form 
to the old Hamiltonian h up to the addition of an arbi
trary function of I and B alone. 

K(Z, I, B) = h(z, t) +f(t, B). (29) 

An invariant of the motion g(z, t) is any function whose 
total time derivative is zero. 

. ag { I 
cr,,=~+ crhr=O 
,., (J t"" ' (30) 

With these definitions, the following theorem is proven. 

The Symmetry -Equals -Invariant Theorem: Given a 
family of canonical transformations which is a symme
try of the Hamiltonian h, one can construct an invariant 
of the motion g. Conversely, the canonical transforma
tion generated by any invariant g is a symmetry of the 
Hamiltonian. 

Proof: To prove the first statement, we assume that 
we know the symmetry Z(z, t, e), and we have con
structed the generating function w(z, t, B) as in the 
Appendix. Using the symmetry property (29) in equation 
(26) gives 

h(z, I)+j(l, B) 

=h(Z-1(Z, t, B), t) _fe dli' 0:,IJ I . (31) 
a ut Z-1(z, t,e'),t,1i' 

Differentiating (31) with respect to Ii results in 

aj =E i3J2.1 x aZ11 

_ a,o 1 . (32) 
c e z iJz z Z-1(z,t,e),t ali (II Z-1(z,t,e),t,8 
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Now using equation (10) and transforming z, (32) 
becomes 

0W + { h} + jL - 0 at w, ae - . (33) 

The function g(z, I, e) = 10(Z, t, e) - ftdt'(af/a B)(I', Ii), is 
seen to be an invariant of the motion for all B. 

To prove the second statement, I assume a function 
g(z, t) is known which is an invariant. Then, the trans
formation Z (z, t, e) is determined by integrating (9), 
using 

W(z, I, e) =g(z, I). (34) 

To prove this transformation is a symmetry, differen
tiate (26) with respect to Ii. 

aK = B ~ I x oZ1
1 

_ iJg I . 
iJli I i1zz Z-1(z,t,9),t oe al z-\z,t,e),t 

USing (10), this becomes 

2K = _({!?" lz}+ 2
g )1 ' 

,H! at Z-1(z,t,8),t 

but since g is an invariant 

~=O (1B • 

This of course tells us that 

K(z, t, 1i)=K(z, I, O)=h(z, I), 

proving the theorem. 

IV. CONCLUSIONS 

(35) 

(36) 

(37) 

(38) 

It has been shown that Dewar's formula for the 
remainder function for a succession of infinitesimal 
transformations can be proven by consideration of 
particle trajectories rather than Liouville's equation. In 
the process, an equation has been derived which is 
simpler to use when doing perturbation theory. Finally, 
this equation has been used to give a rigorous proof of 
the symmetry -equals -invariant theorem. 
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APPENDIX: PROOF OF THE lEMMA 

Ll'mma: Given a differentiable family of invertible 
mappings Z(z, I, Ii), there exists a function IV(Z, I, Ii) 
such that 

aZ k { Z \ 
~LJ-= UJ, kr. 
C" 

(AI) 

Proof: The lemma will be proven by construction. 
Consider first the vector V(z, I, e) given by 
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v aZ'1 Vk(Z, t, e)=~ Y'kae -1 • 
Z (s, t, B),t,B 

(A2) 

Suppose V can be shown to be the gradient of a potential, 
i. e. , 

aw 
V k = ---. aZ k 

Then UJ is given by 

w(z, t, e)= W(Z(z, t, e), t, 8). 

(A3) 

(A4) 

This can be seen by inserting (A2) into (A3), multiply
ing the result by Ykm , summing over k and uSing (3b) to 
get 

aZm I =.2] oW Ykm ={W, Zm}' 
a8 Z-I(s,t,B),t,e k aZ k 

(A5) 

Upon transforming z, this becomes 

~~m ={W(Z(z, t, e), t, 8), Zm(z, t, ej}. (A6) 

So it is seen that once the potential W has been found, 
the lemma has been proven. 

To find the potential W, first the symmetry of the 
partial derivatives of V must be shown: 

aVk ? av, 
az , = aZ

k 
• 

Once this is proven, W is found by integrating V: 

(A7) 

W= - rE V,(z', t, e)dz;. (A8) , 
To prove the symmetry (A7), the partial derivative 

must be calculated. This is done by differentiation of 
(A2). 

oVk=_2:;y
km

.2] o2Zm I xoZ;l. (A9) 
a Z , m r a ea Z r Z -I( " t ,8), t, B a Z , 

Digressing for a moment, it is noted that (3b) and (4) 
can be combined to give 

(AW) 
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Also, differentiating (5a) and transforming Z gives 

<5 - 2:; aZj • aZ;l I. (All) 
jI- r aZ r az, Z(z,t,8),t,8 

At this point the fact that the matrix azj/az r is inverti
ble, since the transformation Z(Z, t, e) is invertible, is 
used to imply, from (AW) and (All), the following 
relationship: 

az- 1 I az, 
__ r_ = -.6 YII-- Ypr ' 
az, :I(s,t,B),t,8 ip oZp 

(A12) 

Transforming Z in (A12) and inserting the result into 
(A9) gives the final form for the partial derivative: 

(A13) 

To prove that the right-hand side of (A13) is symmet
ric in k and I, Eq. (4) is differentiated with respect to 
e. 

(A14) 

Upon inserting this relation into (A13) and USing the 
antisymmetry property of the Y matrix, the symmetry 
(A7) is seen to be true, proving the lemma. 
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Neutron slowing down and transport in a medium of 
constant cross section. I. Spatial moments8

) 
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(Received 14 March 1977) 

Some aspects of the problem of neutron slowing down and transport have been investigated in an infinite 
medium consisting of a single nuclide scattering elastically and isotropically without absorption and with 
energy-independent cross sections. The method of singular eigenfunctions has been applied to the 
Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron 
flux. Formulas have been obtained for the lethargy dependent spatial moments of the scalar flux 
applicable in the limit of large lethargy. In deriving these formulas. use has been made of the well-known 
connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the 
flux in the "eigenvalue space." The calculations have been greatly aided by the construction of a closed 
general expression for these "eigenvalue space" moments. Extensive use has also been made of the 
methods of combinatorial analysis and of computer evaluation. via FORMAC. of complicated sequences of 
manipulations. It has been possible to obtain for materials of any atomic weight explicit corrections to the 
age theory formulas for the spatial moments M 2. (u). of the scalar flux. valid through terms of order of 
u -5. Higher order correction terms could be obtained at the expense of additional computer time. The 
evaluation of the coefficients of the powers of n. as explicit functions of the nuclear mass. represent the 
end product of this investigation. 

1. INTRODUCTION 

Perhaps the simplest problem of linear transport 
theory involving transport combined with energy change 
is the slowing down and transport of neutrons by purely 
elastic scattering in an infinite homogeneous medium 
with cross section independent of energy. 

Yet, it has not been possible to find analytic solu
tions for the neutron flux density as a function of space 
and energy even when the problem is further restricted 
to scattering isotropic in the center-of-mass system. 
Attention has for the most part been concentrated at 
finding approximate solutions for certain limiting cases. 
Thus, for energies very small compared to the source 
energy (i. e., at large lethargy) the neutron must have 
suffered many collisions. Its track in phase space is 
then described by a random walk with many steps, and 
the law of large numbers may be used to describe the 
energy and spatial distribution of the neutrons, at least 
not too far from the sourceo The resultant predictions, 
known as "age-theory," have been widely used in prac
trical applications. 

Very little has been done to define precisely the 
limits of validity of age theory or to obtain corrections 
that can be used for a wider range of conditions. It is 
likely that the requirements for age theory as given in 
the older literature, mostly dating from studies during 
World War II, are not correct. Thus Davison1 states 
explicitly "that age theory .•• is nowhere valid in hydro
gen" (p. 407), while Mclnerney2 and Amster3 have 
shown that even in hydrogen, age theory is the correct 
limiting form for large lethargyo 

Marshak in his 1947 review paper on neutron trans
port4 made brief reference to some remarkable results 

alResearch partially supported under USERDA Contract 
EY-76-S-02-2509. 

blpresent address: Oak Ridge National Laboratory. Neutron 
Physics Division, Oak Ridge. Tennessee 37830. 
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obtained by Placzek in a then unpublished 1942 report. 5 

Placzek concentrated on the set of equations, obtained 
from the Boltzmann equation, for the spatial moments 
of the various components of the angular flux density. 
By working with the Laplace transform of the lethargy 
dependent Fourier space transform of the flux, he was 
able to derive formulas for the spatial moments of the 
scalar flux which incorporate the first correction term 
in reciprocal lethargy (i. e., in u-1) to the age theory 
prediction. USing the same methods Huang6 extended 
Placzek's results to correction terms of the order of 
u-2 for scatterers heavier than hydrogen. 

The method of singular eigenfunctions, 7,2 applied to 
the Laplace transformed Boltzmann equation, provides 
a powerful technique for seeking higher order correc
tions to the spatial moments. This is the approach 
chosen in the present inVestigation. Formulas have been 
obtained for the lethargy dependent spatial moments of 
the scalar flux applicable in the limit of large lethargy. 
In deriving these formulae, use has been made of the 
well-known8 connection between the spatial moments of 
the Laplace-transformed scalar flux and the moments 
of the flux in the "eigenvalue space." The calculations 
have been greatly aided by the construction of a closed 
general expression for these "eigenvalue space" mo
ments [i. e., Eq. (40), below]. Extensive use has also 
been made of the methods of combinatorial analysis and 
of computer evaluation of complicated sequences of 
manipulations. It has been possible to obtain for mate
rials of any atomic weight, explicit corrections to the 
age theory formulas for the spatial moments, ~H2"(U), of 
the scalar flux, valid through terms of the order of u-5. 
Each of these terms can be represented as a finite power 
series in n, and the explicit formulas in terms of the 
nuclear mass, of the coefficients of the powers of n rep
resent the end product of this investigation. 

2. THE SPATIAL MOMENTS OF THE LAPLACE 
TRANSFORMED BOLTZMANN EQUATION 

We consider the time independent homogeneous 
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Boltzmann equation for the case of neutron transport 
under the following conditions: infinite medium, plane 
geometry, azimuthally independent scattering, and 
cross sections that are constant in energy. The explicit 
form is 

(J.L a~ + 1) >Ir(x, J.L, u) 

=c ( jf(O'O/,U-UI)>Ir(X,Il"UI)dUldO/, 
JOI u' 

(1) 

where >Ir(x, Il, u) is the angular flux density of the neu
trons per unit solid angle and lethargy. All other quanti
ties in (1) are in the standard notation of transport 
theory and have their usual meaning. 

The scattering kernel for isotropic scattering in the 
c. m. system by a single element of mass A is: 

f(O '0 /, u - u' ) 

= exp[-(u-u')] (A +1)2 .°[0'0/- (A+1 
87T A 2 

x exp[ - (u _ u')/2] _ A; 1 exp[(u _ U I )/2])]. 

. A+1 
for (u-uI)E:[0,~Jwlth€=2ln A-1' 

= 0 for (u - u') > € • (2) 

By expanding the scattering kernel in spherical harmon
ics, applying a one-sided Laplace transform in lethargy 
and using the convolution theorem, we obtain from (1) 
and (2): 

(IJ. a~ + 1) >Ir(x, Il, 17) 

00 2n+l /1 , , , 
=c6 -2- gn{rj) Pn(IJ. )>Ir(x,1l ,17)dll, 

n.O -1 

where 

and 

Equation (3) has the same form as the one speed 
transport equation with anisotropic scattering to all 
orders in terms of Legendre polynomials, depending, 
moreover, on the additional parameter 17. 2,1 

Substituting 

>Ir(x, Il, T}) = ¢(v, /J.,1) exp(- X/II) 

and defining 

¢n(v, 1) == f.! ¢(II, Il, 17)Pn(ll) dll 

we obtain the well-known eigenvalue equation2, 7, 9 for 
¢(v, /J., 17) 

~ 

(3) 

(4) 

(5) , 

(6) 

(7) 

(v - /J.) ¢(II, /J., 1) = t cv 6 (2n + 1) gn(1) Pn(/J.) ¢n(v, 1), (8) 
n=o 

where the normalization of ¢(II, IJ., 1) being, at this stage 
arbitrary, can be chosen such that 

¢0(1), 1) ~ .G ¢(I), Il, 17) d/J. = 1. (9) 
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Multiplying Eq. (8) by P R{Il), integrating over /J. from 
- 1 to + 1 and using the recurrence relation for the 
Legendre polynomials, we obtain the recurrence rela
tion for the polynomials ¢n(lJ, 1): 

~nl)¢n(lJ, 1) = (n + 1) ¢n+1 (v, 1) + n¢n_l (1),1), 

where 

and 

Yn(1) = 1 - cgn(1). 

Relation (10), together with Eq. (9) and ¢-1 == 0 (9') 
clearly define all 1>n's. 

We now recall some essential (and well-know2,7,9) 

properties of the eigensolutions ¢(II, IJ., 1). 

(10) 

(11) 

(12) 

The eigenvalue spectrum contains a continuous por
tion extending over (-1, + 1), while the discrete eigen
values are the roots of 

A( ) -1 .l j1 1vI(I), /J., 1) d v,1) = - 2 C l) Il 
I) - Il 

-1 

1 I jl M(/J., 1l,1) d -0 
= -"2CV v-IJ. IJ.-, (13) 

-1 

where 

The series in Eq. (14) will be uniformly convergent if9 
L;~.0(2l + 1) Igz(1) I "" 00 since both Pz(/J.) and 1>z(Il,1) are 
bounded for Il E: [-1,1]. 

The solutions belonging to the discrete spectrum are 
given by 

(15) 

where Vi depends on 1), while the continuous spectrum is 
expressed as 

with 

XCv, TI) = 1 - kvp j1 M~~ ~ 1]) d/J. 

-1 

(P denotes Cauchy principal value). 

(16) 

(17) 

The normalization integrals for the discrete and con
tinuous spectrum eigenfunctions are defined by 

NJ ± (± Vi' 1]) = r: 1l¢2(± V,, Il, T}) dll (18) 

and 

N(v, TI) </J(v, T}) = f.~ /J.¢(v, /J., 1]) 

x f.~ </J(~, 17) ¢(~, Il, 17) d~ dM, (19) 

where </J is a function which may be expanded in terms 
of the eigenfunctions 1>(11" Il, 1]) and ¢(v, M, 1). 

We now consider a plane, monoenergetic source S 
isotropically emitting neutrons: 
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sex, /1, u) = o (x) o(u)/2. (20) 

By Laplace transforming the inhomogeneous Boltzmann 
equation, by employing appropriate boundary conditions 
and using the above listed properties, one can show2,7 

that the Green function for this problem can be written 
as 

for x>O, Re(vJ»O. 

The scalar flux is 

w~(x, 71) =fl wG(x, /1,71) d/1 
-1 

=B exp(- X/VI) +/1 
, 2NJ(vJ,Tj) 

o 

exp(-x/v) 
2N(v,Tj) dv. 

(21) 

(22) 

We can define the spatial moments of the scalar flux 
as 

~ov 1 0 0 

1 ~1v 2 0 

0 2 ~2V 3 
1 

1>n(v, 71) = t 0 0 3 ~3V • , 
n. 

0 0 0 0 n-l 

0 0 0 0 n-1 ~"_lv 

+ 

where 

w, = (j+ 1)2/~j~J+1 (28) 

is a function of j and 71 and ~) is as defined in (11). 

As in monoenergetic transport, the polynomials 
1>"(v,1) are orthogonal, in the Stieltjes sense, over the 
interval (- 111' + vl) (what we shall call the "eigenvalue 
space"), where \ vl \ = max) \ v) \, with a proper weight 
function w(v,Tj). The actual proof of the orthogonality 
relations can be carried out along the same lines as has 
been variously used in monoenergetic transport 
theory. 2,7,9,10,12_14 The validity of these approaches is 
not affected by the presence of the additional parameter 
1). We write the orthogonality relations as9

: 
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(23) 

Because of symmetry, i.e., w~(x,Tj)=wg(-X,Tj), we 
have 

(24) 

Using (22), Eq. (24) becomes 

n=0,1,2,··O. 

(25) 

In order to proceed further with the evaluation of the 
spatial moments of the scalar flux, we shall turn our 
attention to the polynomials 1>n(v,Tj), and discuss some 
of their most important properties in relation to the 
associated moment problem. 

From (10) and the initial values (9), (9') we can 
write 1>n(v,Tj) as the continuant9- 11 : 

for n ~ 1. 

2~kl = f1 1>k(V, 1) 1>1(V, 1) N(; 71) dll 
1 -1 ' 

+ E [1>k(V),7) 1>1(V,,1) N,:11) 

(26) 

(27) 

+ 1>k(- v), 7) 1>1(- Vi' 7) C~-~~0 J ' (29) 

or, more concisely, as 

JV1 1>k1>ldw=2okzl~p 
-Vl 

(30) 

where the function w(v,Tj) is nondecreasing in the inter
val (- Vb + v1) and may be expressed9 as the continuous 
distribution: 
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(31) 

and the sequence of horizontal lines 

M II 
W('F 11,1]) = w('F 1,1]) 'F IE FJ:- for 11m < /11/ < Vm_l , (32) 

with 

M II 
w('F 11,1]) = w('Fl,1])'F 6 it for 111 < /v/. 

1:1 I 
(33) 

A. Properties of the "Eigenvalue space" moments mk ( 11 ) 

We can now introduce moments mk related to the 
orthogonal polynomials qJn(II,1]), defined as 

mk := mk(1]) = 1""\ Ilk dW(II, 1]), for k = 0,1,2, ' 0, • (34) 

Because of symmetry, the odd order moments vanish 
and Eq, (34) becomes 

{
o for k=odd 

mk= 2!o"l v kdw(II,1]) for k=even. 
(35) 

Previous investigations (e, g., Inonu, 9 etc, ) have not 
led to a closed and general formula for the m/s. We 
propose instead a method which will be shown to lead to 
a closed form, explicitly displaying the dependence of 
m2n(1]) on n and on certain w's. 

For this purpose, we multiply Eq. (27) by dW(II, 1]) 
and integrate it over the interval (0, "l)' Taking also into 
account the orthogonality relations (29) and Eq. (35), 
we obtain 

m2p = m2!p_ll A 1,p - m2Cp_2l A 2,p + m2Cp_3l A 3,I> 

with 

+ .•. + (_l)k+l m2CP_kl A k,P + ... + (-l)P+ln;oAJ>,J> 

for p> 0, 

mo = 2/~0 = 2/ro(1]) for p = 0, 

where 

(36) 

(37) 

(38) 

By successively setting p = 1, 2, ' •. , n (36), we obtain 
a system of n linear equations, which can be solved for 
m2n by Cramer's rule. The determinant of this set of 
equations is automatically unity, since all terms on the 
main diagonal are + 1 and all elements on one side of 
the main diagonal are zero. Hence m2n is given by 

(-1)n+1An,n -Al,n A 2,n (- 1)n-2A n_2,n (- 1)n-1An_1,n 

(-1)nAn_1,n_l 1 -A1,n_l 0 (-1)n-3An_3• n_1 (_1)n-2An_2.n_l 

o 
o ° 

° 
1 

° 
By reducing the first column to zeros, except for Au, 
then using Laplace's theoremu and repeating the process 
on the resulting determinants, Eq, (39) can be reduced 
to 

(40) 

where the m2n's and w's are functions of 1] and the 
nuclear mass A. The values for m2n obtained through 
Eq. (40) satisfy identically relationships among m2n as 
presented by Inonu9 and as can be found in the standard 
theory of orthogonal polynomials. 10,13-15 Equation (40) 
is of basic importance, insofar as it gives the depen
dence of m2n(1]) on the coefficients gn(1]) [i. e., the 
Laplace transformed coefficients of the Legendre poly
nomial expansion of the scattering kernelj(n· n', }.l)], in 
a closed and structured way, facilitating the investiga
tions of the most important characteristics of m2n(1]), 
which in turn, will translate [via Eq. (48), below J into 
properties of the spatial moments M 2n (ry). Based on 
Eq. (40), we have calculated moments up to, and in
cluding mlS' using the symbolic computer language 
FORMAC,16 on Columbia's IBM 360/91. A listing is 
presented in Appendix A. 17 
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(39) 

1 

We now present some of the properties of m2n(1]) 
particularly pertinent to our goal of evaluating the 
spatial moments. These characteristics are derived 
from Eq. (40) using the methods of combinatorial 
analysis. Examination of the nested sums in Eq. (40) 
indicates that the right-hand side of the equation can 
be written as a single sum of terms all of the form 

where the indices are subject to the restrictions 

° ~ jl ~ i - 1 

i; ~jl-l + L 
(41) 

It is obviously consistent with these restrictions for 
there to be terms in which an index j, can be equal to 
another index jk' so that powers of various w's can 
occur. Indeed, all powers through n can occur, e. g., 
wa is a valid term in Eq. (40). Details of the procedure 
are omitted in the interests of brevity, but the following 
explicit formulas for the coefficients of some specific 
terms are given by way of illustrations: 
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coeff{ufo-kwt) = (n - 1) 1/ (n - k - 1) I k I, 

coeff(w~-kw1W2 0 o. Wk ) =n - k, 

coeff{ufo-ku1-Jw2 0.' WJ+1 = (n - j -1) 1/ 

x (n - 1 - k) I (k - j - 1) I • 

(42) 

(43) 

(44) 

[By coefficient of a term is meant the number of times 
the term appears in the expansion of the right-hand side 
of Eq. (40). J In addition, Appendix B presents the first 
32 terms in Eq. (40) in order of decreasing powers of 
wo, starting with ufo. 

Some other properties of m2n may be mentioned. 

Let E 2n be the number of terms in the fully expanded 
expression of m2n [i. e., sum of all coefficients in 
Eq. (40)J. Then E 2n is given by 

where Ki,J is the jth triangular number of i, L e. , 

J 

(45) 

K/,J =L K i _1,T> Ko,J = 1, Kid = jo 
r=1 

(46) 

Also, the number of distinct terms in m2n is given by 
2n-1. Moreover, for a particular m2m the number of dis
tinct terms that contain a particular w,:-r (k = 0 to n - 1; 
r = 0 to n) is given by 2r. These properties of Eq. (40) 
enable us to recast the expansion of m2n in the form: 

n-1 1 r 
m2n(1) =moufoL rI: n'B r ,,(1), (47) 

roO Wo ,=0 

where the quantities B r,,(1) are related in an obvious 
way to the coefficients of uIQ (k = 0 to n). A listing of 
B r " from r, s = 0 to 5 is presented in Appendix C. 

A simple relation exists between the "eigenvalue 
space" moments m2n and the spatial moments M2n de
fined by (23), as has been demonstrated by Case8 for 
monoenergetic transport. The proof used there depends 
baSically on the identity of the density functions W{II, 1) 
appearing in the orthogonality relations Eq. (30) and the 
solution representation Eq. (22). In as much as 1) ap
pears here solely as a parameter, the derivation can be 
taken over without change, leading to 

(48) 

where 

(49) 

3. THE LAPLACE INVERSION: FORM OF M 2n (p) FOR 
C=1 

As we have already pointed out, the lethargy-depen
dent spatial moments of the scalar flux \[t~ (x, u) are given 
by 

(50) 

In order to carry out the inversion, properties of the 
relevant poles of m2n(1) have to be discussed. 
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From Eqs. (5) and (12) one can easily see that the 
I'n(1) are entire functions and have the following 
properties18,19: 

limgn (1) = 0 for Re(1) > 0, 

lim gn(1) =0, 
Re(~)_ ~ 

forc~l: 

I I'n(1) I < 1 for real 1) > 0, 

and for c=l: 

(51) 

(52) 

(53) 

1'0(1) = 0 at 1) = 0 and 1) = 0 is the zero with the largest 
real part. (54) 

It is now seen from Eqso (28) and (47) that m2n(1) has 
poles at the zeros of 1'/(1) (i = 0 to n)o While it seems 
impossible to obtain the exact Laplace inverse of (47), 
Tauberian theorems20,21 permit the investigation of 
M2n {u) in an asymptotic senseo Specifically, the be
havior of M 2n {u) for small values of u (at or near the 
source) can be found by studying the behavior of m2n(1) 
for 1) - 00 and, correspondingly, the behavior of M2n {u) 
for large u is dictated by the pole of m2n(1) that has the 
largest real part. 

Since m2n(1) has a pole of order (n + 1) at 1) = 0, as 
can be readily seen from Eqs. (47), (37), (28), and (54), 
the residue appearing in the right-most member of Eq. 
(50) evaluated at 1) = 0 is 

R - 1 ~ [n+1 () l ()J es -, d n 1) exp 1)U 2m 2n 1) ~=o· n. 1) 
(55) 

We expand Eq. (47) in a power series of 1). The lead
ing term in this expansion of m2n is of order 1)-(n+1) 
which cancels the corresponding factor in Eq. (55), 
which can now be written as 

1 1 [ 1 ]nd"[ ] 
Res = n! ('oeO) 3('0(0)('1(0) d1)n exp(1)u)h{1) ~=o' 

(56) 

where 

h(1) =(E ~ofo nS 
Br,s V[(Eo ~1)k) n+1 (E~ bk1)k) nJ ' 

with 
(57) 

fork=1,2,···, (58) 

and 

1 l[d
k ~ 

bo = 1, bk = 1'1 (O) k! d1)k 1'1 (1)J ~=o 

for k = 1,2, •• 0 • 
(59) 

Applying Leibnitz' differentiatiation formula to (56) we 
obtain 

1 T"..p.. (n) 1 (m) 
Res = 1"(0) ,L mh(O) , on. moO r;z u 

(60) 
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where 

(61) 

and 

(62) 

In the following, the function hlw» appearing in (62) will 
be cast into a form suitable for practical applications. 
Specifically, we will show that 

m 

h~Wi =(m)!Cm(n)=m!.0 Cm,JnJ , 
J=O 

(63) 

The coefficients Cm" in (63) are functions of the nuclear 
mass only. The values of Cm,J can be obtained through 
a recursion relation which can be derived by the followin 
sequence of steps: 

(i) The numerator in (57) is expanded in an infinite 
power series in 17, around 17 = 0. The coefficient of 17 m 

in this power series is seen to be a polynomial in n 
with coefficients tm,J' The explicit form of the tm./s, 
after invoking Leibnitz' differentiation rule and after 
some algebraic manipulations, is found to be 

t = -.0 L; m - B(m-s) 1 m S ( ) [( 1) (s) J 
m,J m! S=J T=J s wli T,J ~=o ' 

for m,j=0,1,2, ••• andj"'m 

with to,o = 1. (64) 

It will be recalled that Wo is defined in Eq. (28) and that 
the quantities BT,J are defined by Eq. (47) and examples 
of BT,J are listed in Appendix C. 

(ii) The same procedure is used on the denominator: 
A single power series in 17 (around 17 = 0) is formed from 
the two factors of the denominator. The coefficients 
of this power series are again polynomials in n with 
coefficients 

for m,j=0,1,2,o.o andj"'m 

with Zo, 0 = 1. (65) 

Here the Xm.J 's in Eq. (65) come from the first factor 
in the denominator of (57) and obey the recursion 
relation 

1 m 
Xm,J = m L; ak(kXm_k,J_t + (2k - m)Xm_k), 

k=t 

for m,j=0,1,2,oooandj"'m 

with X o,o=l andXm,J=O for j>m. (66) 

Similarly, the quantities Ym,J that appear in (65) 
come from an expansion of the second term of the de
nominator of (57) and obey the recursion relation 

1 m 
Ym,J = m L; bk(kYm_k,J_t + (k- m) Ym-k,J], 

k=t 

m,j=0,1,2,o., andj'" m 

with Yo,o=l and Ym,J=O for j>m. 

(67) 

(iii) In consequence of the manipulations described in 
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the previous two steps, h(17) in Eq. (57) can be written 
as the ratio of two power series in 17. Evaluating the mth 
derivative of h(17) with respect to 17 at 17 = ° we are led, 
after some algebraic manipulation to the polynomial 
form of h\W» given in Eq. (63), with the coefficients 
Cm,J determined by a recursion relation of the form 

for m,j=0,1,2, •• o, wherej"'m 

with Co,o=l andCm,J=O ifm<j. (68) 

Equation (68), in combination with Eqs. (64)- (67), has 
been programmed in FORMAC for use on the IBM 
360/91. We have by this means obtained algebraic ex
pressions for the coefficients Cm,J as functions of 
nuclear mass A, from m,j=O to m,j=5, A partial 
listing of the results is presented in Appendix D. t7 

Substituting now Eq, (63) in (60), we can write 

1 T" n nl 1 m 
Res - -- - L; - J; nJC (69) 

- yG(O) n! m=O (n - m) 1 um ~ m,J 

and, by Eq. (50), we find the expression for the spatial 
moments of the scalar flux, valid for large lethargies, 
as 

1 T" n n! 1 m 
M 2n (u)=(2n)1 '(0) -, L; ( )1 --;n L; niCmJ , (70) 

Yt n. m=O n - m u J=O ' 

It should be emphasized again that the coefficients 
Cm,J are independent of n and are functions only of the 
running indices m and j and of the nuclear mass, Sup
pose, for example, it is desired to calculate correction 
terms through u.s consistently for all even moments. 
Then the necessary coefficients Cm,} need be obtained 
through the analysis of only the even spatial moments 
through MtO ' The results will be valid nonetheless for 
all higher moments to the given order of approximation, 

4. CONCLUSION 

The form of the lethargy-dependent spatial moments 
of the scalar flux, M 2n (u) given in Eq. (70) is similar 
to that of the results obtained by Placzek,5 and our Cm,J 
correspond to his Am,J' Placzek explicitly calculated 
Ao,o, At,o, and At,t and also obtained the special 
relation 

(71) 

As expected, our values agree with his for the above 
three coefficients and Eq, (68) can be simplified for the 
particular case j = m to recover Placzek's expression 
for Am m' It would be very difficult to carry Placzek's 
method beyond correction terms in u·2; the technique 
described here can be used in a straightforward, albeit 
lengthy, procedure to go to any desired order of correc
tion, It does not seem likely, however, that significant 
useful information could be obtained from corrections 
beyond u.s and therefore only coefficients through this 
order were explicitly obtained, It may be noted that the 
computer time on the IBM 360/91 needed to calculate 
the coefficients presented here was about seven 
minutes, 

The results for M 2n (u), Eq. (70) and Appendix D may 
be used to explore analytically and numerically the 
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APPENDIX A 

Values of m2n(1)) for n=O, 1,2, etc, as calculated with the help of FORMAC, from Eq. (40). 

mo=2/ro(1)) [see Eq. (37)] 

m2 =mowo 

1114 = mO(w1wO + w~) 

m6 = mO(w2w1wO + wiwo + 2W1W~ + w~) 

1118 = mO(w3w2W1wO + W~W1WO + 2W2Wi wo + wiwo + 2W2W1W~ + 3wiw~ + 3W1W~ + wt) 

m10 =mO(w4w3W2W1wO + W3 2W2W1WO + 2W3W~W1WO + W~W1WO + 2W3W2Wiwo + 3w~wiwo + 3W2Wiwo + w~wo + 2W3W2W1w~ 

+ 2W~W1W~ + 6W2Wiw~ + 4wiw~ + 3W2W1W~ + 6wiw~ + 4w1wt + w~) 

11112 =mO(w5w4W3W2W1wO + 2W4W~W2W1wO + 2W4W3W~w1WO + 2W4W3W2Wi wo + 2W4W3W2W1W~ + W3W2W1wO + 3w~W~W1WO 
3 3 4 2 2 2 6 2 2 4 3 2 3 3 +6 2 3 4 4 5 + w3 w2w1wO + w2 w1wO + w3w2w1wO + w3W2W1wo + w2 w1wO + w3w2w1wO w2 w1wO + w2 w1wO + w1wO 

+ wlw3W2WtWo + 2W~W2W1wO + 4W3W2WtW~ + 2w~W1W~ + 6W3W2Wiw~ + 9w~wiw~ + 12w2wiw~ + 5w1w~ + 3W3W2W1W5 

+ 3W~W1W~ + 12w2wiw~ + lOwiw~ + 4W2Wtwt + lOwiwt + 5w1w~ + w~). 

See Ref. 17 of the main text for information on the availability of computer listings for higher terms through m18. 

APPENDIX B 
First 32 terms in Eq. (40), in order of decreasing powers of wo, starting with WOo 

Wo power Multiplied by Coefficient Wo power Multiplied by Coefficient 

WO 1 1 WO-5 w~ 
(n - l)(n - 2)(n - 3)(n - 4)(n - 5) 

1·2,3·4·5 

WO-1 (n -1) WO-5 W~W2 
(n - 2)(n - 3)(n - 4)(n - 5) 

w1 1· 203 

w'Q-2 wi (n - l)(n - 2)/2 WO-5 wiw~ (n - 3)(n - 4)(n - 5) 

W'Q-2 w1 w2 (n - 2) wij-5 Wi W2W3 (n - 3)(n - 4)(n - 5)/2 

u'ij-3 wi (n - l)(n - 2)(n - 3)/(1 .2.3) w'Q-5 wiw~ 2(n - 4)(n - 5) 

w'Q-3 Wi W2 (n - 2)(n - 3) w;)-5 WiW~W3 3(n - 4)(n - 5) 

urn-3 
0 W1W~ (n - 3) WO-5 WiW2W~ (n-4)(n-5) 

WO-3 
W1 W2W3 (n - 3) WO-5 Wi W2W3W4 (n- 4)(n- 5) 

ufo-4 wi 
(n - l)(n - 2)(n - 3)(n - 4) WO-5 W1W~ (n - 5) 

1·20304 

wo-4 Wi W2 (n - 2)(n - 3)(n - 4)/2 WO-5 W1W~W3 3(n - 5) 

w"-4 0 u1w~ (n - 3)(n - 4)3/2 WO-5 W1W~W~ 3(n - 5) 

WO-4 
u1W2W3 (n - 3)(n - 4) WO-5 W1W~W3W4 2(n - 5) 

wij-4 W1W~ (n-4) wo-5 W1W2W~ (n- 5) 

W"-4 
0 Wl~W3 2(n-4) wij-5 W1W2W~W4 2(n- 5) 

WO-4 W1W2W~ (n - 4) WO-5 
W1 W2W3Wl (n- 5) 

WO-4 W1W2W3W4 (n - 4) w'Q-5 wl w2w3w4W5 (n - 5) 
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APPENDIX C 

The coefficients Br,ir]) from r, S == 0 to r, S = 5 

Bo,o = 1, Bl,o == - wl' B l ,l = wi> 

B2,0 == wi - W1W2, B2,1 = - ~ wi + W1W2, B2,2 = (1/2!) wi, 

B3,0 = - w~ + 6wiw2 - 3wlw~ - 3W1W2W3, 

B 11 3 5 2 + 2+ 3,1 = T Wl - W1 W2 W1 W2 W1 W2W3, 

B 3,2 = - w~ + WiW2' 

B 3,3 = (1/3!) w~, 

B 4,0 = w1- 12w~w2 + 18wiw~ + 12wiw2W3 - 4(W1W~ + 2W1W~W3 + W1W2W~ + W1W2W3W4), 

B4,1 = - '* wi + 13w~W2 - -¥-wiw~ - 7wiw2W3 + W1W~ + 2W1W~W3 + W1W2W~ + WlW2 W3W4' 

B4,2 = (35/4!) wi - tW~w2 +~wiw~ + WiW2W3' 

B 5 4 1 3 
4,3 = - 12 wl + j/w l w2, 

B4,4=(1/4!)wjo 

Let 

El = w~w~ + iW~W2W3' 

E2 = 2wiw~ + 3wiw~W3 + WiW2W~ + WiW2W3W4' 

E3 = W1W~ + 3wlW~W3 + 3W1W~W~ + 2W1W~W3W4 + W1W2W~ + 2W1W2W~W4 + W1 W2W3W1 + wlW2w3W4w5' 

Then 

B5,0 = - wi + 20wjw2 - 60El + 20E2 - 5E3, 

B5,1 = (274/5! )w~ - (154/3! )WiW2 + 47El - 9E2 + E 3, 

B5,2 = - (225/5!)wi + (71/3! )WiW2 - 12El + E 2, 

B5,3 = (85/5! )wi- (14/3! )wjW2 + E l , 

B 5,4 = - (15/5!)wi + (1/3! )wj, 

B5,5 = (1/5! )wi. 

APPENDIX D: LISTING OF COEFFICIENTS CmJ FOR m,j= 0 TO m,j=5 

The coefficients Cm,J will be given in terms of the quantities yt defined as: 

(nl _ ~ [ ()J . n = 1, 2, 3, .•• 
Yj -d1}n Yj1} ~=o, i=0,1,2,3, ... • 

Since Yin>, as defined above, are functions of the nuclear mass A only [by virtue of Eqs. (12), (5), and (2)J, the 
coefficients Cm,J will themselves be functions of the nuclear mass A only. 

Co,o = 1 [see also Eq. (68) J, 
C - 4y(1)/y '!'y<2l/y (ll 

1,0 - - 5' 0 2 - 2 0 0, 

C1,l = - yPl hl + ty~ll /Y2 - iy~2l h~ll, 

C
2 

0 = - - _0_ .!:.1 + _ _0_ + -216 (y(ll) 2 Y 16 (y<1l) 2 4 
, 175 Y2 Y3 25 Y2 5 

108 (y(ll) 2 Y 1 (y(ll) 2 4 y(ll y (ll 1 y(ll y (2l 1 y(ll 24 (Yy~12l) 2 4 y~lly~ll 2 y~2l 
C 2 1 = - _0_ .!:1 + - ~ + -~ + - ~ - ~ - - ~ + -

, 175 Y2 Y3 2 Yl 5 Y2 Yl 2 Y1YO - 2 Yl - 25 - 5 (Y2) 5 Y2 

3 (y(2l) 2 1 y~3l 

+8 *' -6 nrr' 

2443 J. Math. Phys., Vol. 18, No. 12, December 1977 D.G. Cacuci and H. Goldstein 2443 



                                                                                                                                    

1 +-
4 

c _ 432 2:'.t (y~1») 3 54 1'~2)1'~1)l't 
3,2 - 875 1'3 1'2 - 175 1'3 (1'2)2 

-- ~ --::-;IT) ~ +- 4-'d-+_!J..... 1 (1'<1l) 3 1 1'~2) (1'(1») 2 1 1'(2)1'(1) 24 1'(1) 

2 Y1 2 Yo Y1 2 (1'1) 25 1'1 
(1';:») 2 

'I/(1)y(2) 3 1'(1) (y(2») 2 1 y(2)1'(2) 1 1'(1)y(3) 
LL!..L __ !J.....:S¥rr +-~ +-~ 

1'2Y1 8 Y1 Yo 4 1'11'0) 6 I'tYO 

4 YP)I'P)y~l) 2 YP)I'~1) 2 
+ '5 I't(h)2 - '5 1'21'1 - '5 
_ ~ y~1)(1'~1»2 _ ~ (y~1») 

25 (1'2)3 125 1'2 

1 (1'(2») 3 1 1'(3)1'(2) 

-8 * + 12 -m-, 
C 3,3 = (1/3! )(C1,t)3 • 

I'P)I'(2) 2 Yb3) 

W-I5 1'2 

See Ref. 17 of the main text for information on the availability of computer listings for higher terms through C5,5' 

lB. Davison, Neutron Transport Theory (Oxford University, 
London, 1958), 

2J.J. McInerney, Nucl. Sci. Eng. 22,215 (1965). 
3H.J. Amster and K.C. Chan, Nucl. Sci. Eng. 61,388 (1976). 
4R.E. Marshak, Rev. Mod. Phys. 19, 185 (1947). 
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cal Information Center, ERDA, Oak Ridge Tennessee. 
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12K. M. Case, J. Math. Phys. 15, 974 (1974). 
13G. Freud, Orthogonale Polynome (Birkhauser Verlag, Basel, 
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14G. Szego, Orthogonal Polynomials (American Mathematical 

Society, Providence, RI, 1975), 4th ed. , Vol. XXIII. 
15H• S. Wall, Analytical Theory of Continued Fractions (Van 

2444 J. Math. Phys., Vol. lB, No. 12, December 1977 

Nostrand, Princeton, N.J.,1948). 

16PL/1-FORMAC Symbolic Mathematic Interpreter, IB:'.I 
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17A full listing of the computer produced expressions for m2" 
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A variational principle for the Gel'fand-Levitan equation 
and the Korteweg-de Vries equation 

M. Kanal and H. E. Mosesa) 

Center for Atmospheric Research, College of Pure and Applied Science, University of Lowell, Lowell, 
Massachusetts 01845 
(Received 15 March 1977) 

A functional is constructed from the spectral density used in the general Gel'fand-Levitan equation and 
an arbitrary function N of two sets of variables. This functional is shown to be an absolute maximum 
when N satisfies the Gel'fand-Levitan equation. In the case of the Gel'fand-Levitan equation for the 
one-dimensional and radial Schriidinger equations and certain generalizations, this result can be translated 
into a theorem about the area under a curve to a given point (x or r), considered as a functional of N. 
This curve is given by the scattering potential to the given point when the functional takes on its 
maximum value. The functional may thus be considered a method of obtaining the scattering potential 
from the spectral data through a variational technique. In the case that the Gel'fand-Levitan equation is 
that for the one-dimensional Schriidinger equation the results can be interpreted as a theorem about the 
area to a given point x under the curve given by the solution of the Korteweg-de Vries equation. That is, 
at a given time t the area under a curve to a given point x, considered as a known functional of N, takes 
on its maximum value for all x and t when the curve represents the solution of the Korteweg-de Vries 
equation with appropriate initial conditions. 

1. THE VARIATIONAL PRINCIPLE FOR THE 
FREDHOLM EQUATION Am(y) =m(y) + t a(y, z)m(z)dz. (4) 

We shall give a general variational principle for the 
Fredholm equation in which the kernel satisfies a posi
tive definite condition. Our proof follows that of Ref. 
1 (p. 318) and is included in the present paper mainly 
to make the paper more self contained. 

Let us consider the Fredholm equation 

j(y)=g(y)- ta(y, z)j(z)dz, (1) 

where j is the unknown function, g is the given function, 
and a is the kernel. The functions j, g, and a are com
plex in general. Though we shall proceed in our proof 
as though the variables y and z and the constants c 
and d are one-dimensional, they may actually be gen
eralized to be collections of variables and constants in 
an obvious way. 

We require that a be Hermitian and satisfy a positive 
definite condition, 

a(y, z) =a*(z,y), 

(2) 

where m is one of a set of complex functions of suitable 
integrability and the equality holds only for m (y) ;:, O. 

It will now be convenient to introduce a more abstract 
notation. The inner product of two functions m and n 
will be defined by 

(m,n)=jdm*(y)n(y)dy. (3) 
c 

Likewise, the operator A acting on functions m (y) is 
given by 

a)Research spflnsored by the Air Force Office of Scientific 
Research, Air Force Systems Command, USAF, under Grant 
No. AFOSR-77-3169. 
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From Eq. (2) the operator A is positive definite, 

(m,Am);" 0, (5) 

for all functions m, where the equality holds only for 
m(y);:,O. 

The Fredholm equation (1) now takes the form 

Aj(y) =g(y). 

The fundamental theorem for the variational principle 
is the following: 

(6) 

From a class of suitable functions {m(y)}, construct 
the functional 

F(m) = (m,g) + (g, m) - (m,Am). 

Then F(m) is an absolute maximum if and only if m(y) 
= j(y), where j is a solution of the Fredholm equation 
(1) or (6). 

Let us first prove the sufficient condition. We set 

m(y) =j(y) + n(y). 

Then 

F(m) =F(j) - (n,An) 

= (f,Aj) - (n,An), 

(7) 

(8) 

(9) 

where we have used (6) and the Hermitian character of 
A 

(m,Ap) = (Am,p), (10) 

for any two functions m(y) and p(Y). The sufficient 
condition then follows from the positive definite char
acter of A given by Eq. (5). 

To show the necessity replace the function n(y) by 
en(y) where e is complex. We do not assumej satisfies 
Eq. (6) but wish to prove that it must if F(j) is a maxi
mum. Thus we assume 
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F{f) ~ F{f + En) (11) 

or 

2 ReE(n,Aj - g) + IE 1
2(n,An) ~ 0, (12) 

for all E and all functions n(y). Let E be real. 

Then 

Re(n,Aj - g) = 0, (13) 

for, if it were not, then one could pick E so that the 
left-hand side of Eq. (12) is less than zero, which is a 
contradiction. Similarly by making E purely imaginary, 

Im(n,Aj-g)=O 

so that 

(n,Aj - g) = ° 
for all functions n (y). 

Hence we may take n =Aj - g and Eq. (6) follows. 

2. APPLICATION TO THE GEL'FAND-LEVITAN 
EQUATION 

(14) 

(15) 

We refer to Ref. 2, Part I for a general discussion 
of the Gel'fand-Levitan equation, We shall use essen
tially the notation for the one-dimensional Gel'fand
Levitan equation (Parts III and IV of Ref. 2). However, 
the results hold with obvious modifications for the 
radial equation (Refs. 3 and 4) and for the three-dimen
sional equation (Part V of Ref. 2). Recently one of us 
(H. E. M.) has generalized the one-dimensional 
Gel'fand-Levitan equation so that Ho includes part of 
the scattering potential and the radial equation so that 
H 0 operates in a more general space than heretofore 
(Refs. 5 and 6). The variational principle holds for 
these cases also. Indeed, the variational principle 
holds for the most general Gel'fand-Levitan equation 
(defined in terms of "triangularity" conditions on the 
Gel'fand-Levitan kernel) as discussed in Part I of 
Ref. 2. 

We now proceed to discuss the one-dimensional case 
as a prototype of the other cases. The Gel'fand
Levitan equation is 

(16) 

If x is taken to be a fixed parameter, Eq. (16) is a 
Fredholm equation of the form of Eq. (1) and (6) with 

a(x Iy) =n(y Ix), j(y) =K(x Iy), g(y) = - n(x Iy), 
(17) 

c=_oO, d=x. 

[In the one-dimensional case all quantities are real. In 
the general case nand K are complex. ] 

The function n(x Iy) satisfies the positive definite con
dition (2). Hence the variational principle is valid for 
the Gel'fand-Levitan equation. 

We shall now express the variational principle ex
plicitly in terms of a trial kernel N(x Iy) which is to 
approximate the Gel'fand-Levitan kernel K(x Iy). Since 
the Gel'fand-Levitan equation for the one-dimensional 
and radial equation cases and their generalizations 
are real, all quantities will be taken as real. Let the 
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functional to be maximized be called F(N, x) to express 
its dependence on the trial kernel N and on x which is 
regarded as a parameter, From Eq. (7) 

F(N,x) =- r N(xly)dy[W(x Iy) +N(x Iy) 
-~ 

+ J x n(y Iz)N(x Iz)dz]. (18) 
-~ 

Let us now evaluate the maximum value of F(N,x) 
which, by the theorem of the preceding section, is 
given by F(K, x). From the Gel'fand-Levitan equation 
(16) and the symmetry of n, we obtain the surprising 
result, 

or 

F(K, x) = - J~ K(x Iy)n(y Ix) dy =K(x Ix) + n(x Ix). 

Thus we have as our principal result 

K(x Ix) ==-F(K, x) - n(x I x) 

K(x Ix):::: F(N, x) - n(xl x), 

(19) 

(20) 

(21) 

where the kernel N approximates the Gel'fand-Levitan 
kernel K. To use the variational principle, one would 
insert a trial kernel N on the left-hand side of Eq. (21). 
This kernel would depend on various parameters. One 
would maximize F(N, x) with respect to these param
eters to obtain the best approximation to K(xlx). It is 
clear that the optimum parameters will, in general, 
depend on x, since x is a fixed parameter with respect 
to the variational principle. 

It should be noted from Eq. (21) and the Gel'fand
Levitan Eq. (16) that F(N, x) gives the correction to the 
lowest order approximation to K(x Ix) which is the in
homogeneous term for y =x in Eq. (16), namely 
- n(x Ix). From Eq. (16) K(x Ix) - - n(x Ix) as x - - 00. 

Thus F(N, x) adds a correction for finite x and for x 
- +00. 

Since the scattering potential Vex) is given by 

Vex) ==- 2 :x K(x I x), 

we have 

r Vex') dx':::: 2 [F(N, x) - n(x Ix)]. 
-~ 

(22) 

(23) 

The variational principle can now be stated in terms of 
the scattering potential. Consider functions VN(x) de
fined by the requirement that the area under the curve 
y ==- VN(x) from - 00 to x is given by 

J~ V N(X') dx' ==- 2 [F(N, x) - n(x I x) J. (24) 

That function VN , for which the area is a maximum for 
all x, is the scattering potential associated with the 
function n (x I y ). 

We shall give a simple example of the use of the 
variational principle. Let us consider the case where 

n(x Iy) =17 (x + y) sinh(x + y), 

where 17(x) is the Heaviside function 

17 (x) = {I for x> 0, 

° for x< 0. 

M. Kanal and H.E. Moses 

(25) 

(26) 
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This example has been treated in Part III of Ref. 2 
where it is shown that 

K(x Ix) = - (2)1 /21] (x)tanh[(2)1/2x ]. 

As a trial function let us use 

In Eq. (28) C is a constant (actually a function of the 
parameter x) which is to be found by maximizing 

(27) 

(28) 

F(N, x). The form of the trial function is suggested by 
the form of n(x I y) in Eq. (25) but is otherwise very 
crude. The approximate kernel KN(x Ix) given by the 
variational principle Eq. (21), after choosing C appro
priately, is 

KN(x Ix) = - 21] (x) tanh.x. (29) 

Clearly K(x Ix) ~ KN(x Ix) • KN reproduces the function 
shape very well and is always of the correct order of 
magnitude. 

The case in which n (x I y) has the form 

n(x Iy) =1](x + y)g(x + y), (30) 

where g(x + y) is a real function, and the example of 
Eq. (25) is a particular case is particularly interesting 
for the one-dimensional case, for the form (30) is a 
necessary and sufficient condition for K(x Ix) to vanish 
for x < 0, i. e., for the case that V(x) = 0 for x < O. In 
this case the trial function Eq. (28) is indicated where 
generally, however, C is a function of y to get a better 
trial function than for the case C is a constant. 

As another example, let us consider the case 

n(x /y) =- ~1](x + y) exp (- ~ (x + y») 

which is also treated in Part III of Ref. 2. 

(31) 

Using as a trial function N as given by Eq. (28), it 
is found that KN is exact when the functional is maxi
mized with respect to C, 

KN(X/x)=K(X/X)=~1](x). (32) 

In this case N(x Iy) =K(x Iy) = (A/2)1](x + y) because of the 
theorem. 

3. APPLICATION TO THE KORTEWEG-de VRIES 
EQUATION 

The variational principle for the Gel'fand-Levitan 
equation leads to a variational principle for the 
Korteweg-de Vries equation. Let us consider the 
Korteweg-de Vries equation in the form 

a a a3 

at V(x,t)-6V(x,t) ax V(x,t)+~V(x,t)=O. (33) 

In Ref. 7 a method is given for solving this equation 
under the condition that V(x, t) dies down sufficiently 
rapidly as x - ± 00. 

One gives Vex, 0) = Vex) and solves the direct problem 
of scattering for the one-dimensional Schrodinger 
equation. Thus one solves for the continuous spectrum 
eigenfunctions 1/J(x I k) 

(- -b + vex») <P(x /k)=k21ji(x /k), (34) 
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under the boundary conditions 

lim~)(x I k) = exp(ikx) + b(k) exp(- ikx), 
(35) 

lim<p(x I k) = t(k) exp(ikx). 

The quantities b (k) and t(k) are the reflection and trans
mission coefficients respectively. 

One also solves for the eigenvalues and eigenfunctions 
of the discrete spectrum, 

(- .fb + V(X») <Pi (x) = Ei<P;(x), 

subj ect to the boundary conditions 

lim1/!;(x)=exp[K;x] (E;=-KD. 
x-+ -~ 

The normalization C i are then obtained from 

J +~ [ 2 C i = ljii(X)] dx. 
-~ 

We now treat time t as a parameter and construct 
n(xly), 

n(xly) = (21T)-1 r'" b(k) exp[i(- 8k3t- kx - ky»)dk 
-~ 

(36) 

(37) 

(38) 

+ L exp[(KjX + Kty - 8K~t)] (39) 
j C j 

One now solves the Gel'fand-Levitan equation (16) using 
n(x Iy). Then the solution of Eq. (33) is 

Vex, t) = 2 :x K(x Ix). (40) 

Of course the Gel'fand-Levitan kernel K(x Iy) is a 
function of the time parameter t. 

We define the functional F(N, x) as before (N may 
now depend on t and F does depend on this parameter). 
Let VN(x, t) be defined by 

1.: VN(x',t)dx'=2[F(N,x)-n(xlx»). (41) 

We then have the theorem: The function VM(x, t) is a 
solution for all x and t of Eq. (33) if and only if JI/l taken 
from the kernels N is such that the area given by the 
left-hand side of Eq. (41) is a maximum for all x and t. 

This theorem dispenses with the explicit use of the 
Gel'fand-Levitan equation, just as Eq. (24) derives 
the scattering potential without its use. These maxi
mum principles are analogous to Hamilton's principle 
in mechanics which replaces the differential equations 
of motion but is equivalent to them. 
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Integral theory of radiative heat transfer with anisotropic 
scattering and general boundary conditions 

v. C. Botti and G. Spiga 
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An integral formulation of the theory of planar radiative heat transfer with anisotropic scattering and 
general boundary conditions is proposed in the paper. Explicit expressions for the relevant kernels are 
obtained, and the correlations between the structure of these kernels and the properties of the bounding 
surfaces as well as the interaction between the bounding surfaces themselves are investigated for a variety 
of physical situations. The lines along which exact and approximate analytical solutions can be 
constructed are indicated and commented upon. 

INTRODUCTION 

Radiative transfer is one of the classical and most 
expanded transport theories. The literature on the 
subject is so vast that it is not easy to review it con
sistently without a long and special preparation. In view 
of this complexity, we restrict ourselves to recall that, 
for the field of astrophysics, the theory and applications 
of radiative transfer in partiCipating media are 
illustrated in the renowned monographs by 
Chandrasekhar,l Kourganoff,2 Sobolev,3 and Busbridge. 4 

For the engineering applications, ranging from radiative 
heat transfer problems in scattering, absorbing, emit
ting media up to the study of the interaction of radiation 
with other modes of heat transfer, the reader can refer 
to the equally well-known monographs by Sparrow and 
Cess,5 and OZisik. 6 Additional material is, naturally, 
represented by the numerous papers that-since the 
appearance of the basic bibliography quoted above-have 
been published in the various journals and magazines 
devoted to the subject. Leaving apart the contributions 
of numerical type, we shall now give a short account of 
the analytical methods proposed for the solution to the 
functional equations of radiative transfer, (In this 
account we shall emphasize the case of radiative heat 
transfer, that will be the final task of the present work. 
Heat problems can also be regarded, in fact, as an 
excellent basis for treating extensions and applications 
to other problems of radiative transfer. ) After the 
classical methods illustrated in Refs. 1-4 (the H-equa
tion method, the variational method, etc.), then, by 
referring to the last few years, we recall that analytical 
solutions to planar radiative heat transfer problems 
have been systematically obtained by Case's method7 

(see, for instance, the literature quoted in Refs. 6 and 
8). Case's method, however, can supply reliable analy
tical solutions only for ideal problems. For more 
realistic problems, Case's method discloses, indeed, 
a rather limited field of applicability. As a typical ex
ample of an application of Case's method to r.~diative 
heat transfer, we quote the paper by Beach, Ozisik, and 
Siewert,9 where the case of a linearly anisotropic scat
tering slab with reflecting boundary is treated through 
Case's normal mode technique: A semi-analytical solu
tion plus simple approximate analytical solutions are 
discussed there, and completed by numerical results, 
A more recent, and even more sophisticated, evolution 
of the approaches based on Case's method is the one in 
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which one employs a contour integral method rather than 
the singular eigenfunction Case's formalism,lo,n 

In this paper-on the basis of standard methods of 
classical mathematical analysis-we succeed in develop
ing a compact, exact, integral theory of the general 
radiative heat transfer problem that takes place in an 
anisotropic ally scattering, absorbing, emitting, noniso
thermal, gray medium confined between two plane
parallel bounding surfaces. These surfaces, that are 
separated by the optical distance 2a, are diffusely 
emitting, and diffusely and specularly reflecting sur
faces of the general type in the sense that in the 
boundary conditions we incorporate also the effects of 
the angular distribution of the radiation diffusely emitted 
and reflected by the bounding surfaces themselves. We 
assume the azimuthal symmetry scattering as well as 
the azimuthal symmetry of the internal source and of 
the boundary conditions. 

The paper consists of two parts. 

In Part I, the way according to which the starting 
linear integro-differential Boltzmann equation governing 
the problem under consideration can be handled is dis
cussed. The first steps of the theory-leading to the 
formulation of a general iterative integral scheme for 
the evaluation of the angular radiation intensity-are 
made for the case of a general anisotropy. Then, the 
usual representation of the angular transfer function of 
the scattered radiation in terms of Legendre polynomials 
is invoked. As the kernels relevant to the previous 
iterative integral scheme are now separable, it can thus 
be shown that the core of all the theory consists of a 
system of infinite linear integral Fredholm equations for 
the infinite Legendre moments of the unknown angular 
radiation intensity. In terms of these Legendre moments 
not only the angular radiation intensity can be easily 
built up upon the prescribed general boundary conditions, 
but also the whole problem under consideration can be 
fully described. How the theory can be exploited in 
practice is at last considered upon the assumption of 
an anisotropy of arbitrary finite order, say 0 ~ L < 00 

(L = 0, 1,2' .. ). In this case, in fact, the infinite system 
of linear integral equations for the relevant Legendre 
moments reduces to a system of finite order L + 1. 

In Part II, we carry out some applications of the 
theory. Rather than going on studying analytical solu-
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tions to the general case discussed in Part I, we prefer 
to analyze-for a variety of physical situations-the 
correlations between the structure of the relevant ker
nels and the properties of the bounding surfaces as well 
as the interaction between the bounding surfaces them
selves. Hints are then given for constructing analytical 
solutions for the cases of both isotropiC and linearly 
anisotropic scattering, and for some interesting 
specialization of the interaction between the bounding 
surfaces. 

PART I: THEORY 

1. THE CASE OF A GENERAL ANISOTROPY 

The linear integro-differential Boltzmann equation for 
radiative transfer which we start with is 

aI(T jJ.) f' ! 
jJ. a' +I(T,jJ.)=Q(T,jJ.)+ dep' c(T)II(T,jJ.o) 

T 0 _1 

Xl(T, jJ.')djJ.' (1) 

(-a.; T';a, -1.; jJ.'; 1), 

where I( T, jJ.) is the unknown angular radiation intensity, 
Q( T, jJ.) is the internal sourc e, and 

(1a) 

is the scattering angle in the laboratory system. The 
other symbols have the usual meaning. In Eq. (1) we 
account, however, for two further generalizations, 
namely, both the albedo 0.; C .; 1 and the angular transfer 
function II (T, jJ.o) of the scattered radiation are taken to 
be functions of the optical variable T, the extinction 
coefficient being not necessarily constant. 

The bounding surfaces 1 and 2, pOSitioned at T = - a 
and T=a, respectively, are kept at uniform tempera
tures T1 and T 2 • The surfaces are diffusely emitting 
with emissivities El and E2' and diffusely and specularly 
reflecting with reflectivities Pj = ~ + P~ (i = 1, 2). In 
formulating the boundary conditions at these surfaces, 
we account also for the angular distributions of the 
diffusely emitted and reflected radiation so that, with 

Qj=Ejar:, f3 j =P:, Yj=P~ (i=1,2), 

Eq. (1) will be integrated upon the most general 
boundary conditions, jJ. E (0, 1), 

(1b) 

(2) 

l(a, - jJ.) =;;h2(jJ.) + f32I(a, 11) + Y~2(11101 11'I(a, 11')d!1', 

where the positive functions h j (JJ.) and gj (/-J.) (i = 1,2) are 
normalized to 

(2') 

Some special cases treated in the literature can be 
obtained from the problem described by Eqs. (1) and (2). 
ThUS, for instance, the case f3 j =YI =O (i=1, 2) has been 
considered in the allied field of neutron transport 
theory. 12 When h l (I1)=gj(I1)=2, then the boundary con-
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ditions of Eqs. (2) coincide with those usually adopted in 
the literature for radiative heat transfer problems. 6,9 

Resorting to the Green's function method, it can now 
be verified that the original integro-differential problem, 
Eqs. (1) and (2), is equivalent to the integral problem, 
I1E (0,1), 

1( T, 11) = e-(a+'r)/ "1(- a, 11) + .!:.jT e-(T-1"') / "Q*( T' , Il) dT', 
11 -a (3) 

I( T, - 11) = e- 1a -n /" I(a, - 11) + ~fa e(T -T') / "Q* (T', - l1)dT', 

where by Q*(T, 11) we denote the rhs of Eq. (1). For 
11- 0 we get 

I(T, 0) = Q*(T, 0) (4) 

as follows from Eq. (1) itself or by letting 11 - 0+ from 
above in either of Eqs. (3). Correspondingly, the func
tions 1(- a, 11) and I(a, - 11) are assumed to be appropri
ately shaped in the neighborhood of 11 = Q+. Setting now 

(5) 

the pair of Eqs. (3) can be converted into the following 
system of two linear integral equations for II and 12 : 

+fTfl k!2( T, T'; 11, 11')12( T' ,11') dT' dl1' , 
-a 0 (6) 

I2( T, 11) = e-(a-'t) /" I2(a, 11) + ~/: e-(T-'t') / "Q( T' ,- 11) dT' 

+ fa 101 

k;I(T, T';I1, 11')I1(T', 11')dT' d!1' 

1al
o

1 

k;2 (T, T'; 11, 11')I2( T', 11') dT' dJ1'. 

In Eqs. (6) both the unknowns II and 12 are defined in the 
same bi-dimensional domain D 2 = (- a,a)0 (0,1), and the 
kernels are given by 

k* (T T" 11 J1')=-- exp (_1)i_-C(T') ( T- T') 
Ii ' "J1 11 

where 

xk(r'; (_1)j+i j.J., J1') 

U,j=1,2), 

r2• k( r; J1, J1') = Jo II( r, J1o) dep', 

with 

k(T; - J1, - J1')=k(r; J1, jJ.'), 

k(T; - 11,J1')=k(r; 11,- J1'). 

We note the following relationships: 

e(T-'t' l/ "k!l (T, T'; 11, J1') = e-(T-T') /" k;2( r, T'; J1, J1'), 

e(T...-' )/"k!2(r, r'; 11, 11')=e-1T- T')/"k;l(r, r'; 11,11'), 

k!2 ( T, T'; - 11, 11') = - k;2 ( r , T'; 11, 11'), 

k!2(r, T'; Il, - 11')=k!I(T, r'; jJ., jJ.'), 

V.C. Boffi and G. Spiga 

(7) 

(7a) 

(7b) 

2449 



                                                                                                                                    

k;,(T, T': - fl, fl')= -k1,(T, T': fl, fl'), 

14,(T, T': fl, - fl ' )=I(;2(T, T': fl, fl'), 

1,12 ( T, T': fl, - fl') = - k;, ( T, T': - fl, fll), 

k;, ( T, Tf : fl, - fl') = - 1,12 ( T, T': - fl, fll), 

1(!2( T, T'; - fl, - fl') = -I,; 1 (T , T'; fl, fl'), 

I<;,(T, T': - fl, - fl/)= -1<12(T, T';fl, fl'), 

(8) 

which essentially follow from the rotational invariance 
of the scattering, as expressed by the first of Eqs. (7b). 
These relationships can be regarded as a generalization 
of those considered, in a similar context, by 
Chandrasekhar. ' 

The system of Eqs. (6) can be interpreted as a system 
of mixed type: Its equations are, in fact, of Volterra's 
type with respect to the space variable T, whereas they 
are of Fredholm's type with respect to the angular 
variable fl. For an aSSigned k(T; fl, fl/), the system of 
Eqs. (6) could be evidently solved by iteration in 
connection with Eqs. (2). If the source terms in Eqs. (6) 
were of class L 2 (D 2 ) and the general "iJ (i ,j = 1,2) were 
of class L2(D2'~' D2 ), then the iterated solutions should be 
sought in the same Hilbert space L 2(D2)' We shall not 
discuss here these requirements that could also be of 
interest in predicting some appropriate express ions for 
k(T:fl, fl'). We prefer instead to use for 1?(T;fl, fl') the 
alternative separable express ion that holds when the 
angular transfer function II (T, flo) of the scattered radia
tion is represented in terms of a Legendre polynomial 
expansion. 

2. GENERAL ANISOTROPY IN TERMS OF 
LEGENDRE POLYNOMIALS 

Let us set 

where 

III (T) = 21T f,PI (fl o)I1( T, flo) d flo 

with 

(g) 

(ga) 

(9b) 

PI(U) standing for the Ith Legendre polynomial. On the 
basis of the addition theorem for Legendre polynomials, 
we then obtain for k( T; fl, fl') the separable form 

(10) 

as follows from Eqs. (1 a) and (7a). If we now denote by 

(lla) 

the Ith Legendre moment of the unknown angular radia
tion intensity, and in Eqs. (2) we set 

J , (fl) =I( - a, - fl), J 2 (fl) = I(a, fl), 

then the system of Eqs. (3) becomes 

(lIb) 

~ 21+1 PI(fl)fT - , I(T,fl)=6---- c(T')n (T')e (T-1" l/"'I(T')dT' 
1=0 2 fl -a I I 
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+j3 e-(a-Tl/'"J (fl)+Y <T (fl)e-(a-Tl/'"j·j fl'J (fl')d"l" 
2 2 2...,2 0 2 ,..... 

Also this system is of mixed type. but with both Volterra 
and Fredholm kernels separable. From this system we 
might calculate the angular radiation intensity I(T, fl) for 
- a ~ T ~ + (/, - 1 ~ 11 ~ 1, once the moments II (T) (Z = 0, 
1,2, ... ) and the J

i 
(Il)'s (i = 1,2) were known. If we now 

observe that 

multiply the first of Eqs. (12) by 21TPk(fl)rf~1 and the 
second by 21T(-1)"Pk(ll)dll, integrate over /1 (- (0,1), and 
sum up the resulting equations, we then recognize that 
the Legendre moments I,,(T), 11(T),'" are in turn solu
tions to the system of linear integral equations 

I(T)=t
21

+
1
ja C(T')I1 (T')sgn(T-T,)k+IK (IT-T'I) 

k 1=0 2 I kl 
-a 

XI/T')d T' +i~ f: Hki(T, fl)J j (ll)dfl + Fk(T) 

(k=0,1,"·). 

For Jj(/J.) and J 2 (fl) we obtain instead the system 

'\'21+1Ja- -
Jj(Il)=I~ ~ -a Hil(fl, i) II(T)dT+ Fj(fl) 

+ (3.,e-2a / '"J., (11) + y.,<T.,(Il)e-2a /1' fl'J.,(fl')dfl' 
ttl <"'1 t 

a 

(13) 

(i'f-i, i,i'=1,2) (14) 

as follows by setting T = - (/ and T = a in the second and in 
the first of Eqs. (12), respectively. The func::tions Kkl(T), 
Iikj(T,Il), Fk(T) appearing in Eqs. (13), and H il (ll, T), 
F

j
(ll) appearing in Eqs. (14) are known functions, and 

are listed in Appendix A. Equations (13) and (14) all 
together thus constitute a system of infinite linear inte
gral equations for the unknowns J , (Il), J 2(1l), Io(T), I,(T), 
12(T), .... However, J,(Il) and J2(fl) can be eliminated, 
and therefore a full description of the problem is ob
tained in terms of only the moments Io( T), 1, (T), 12( T), ••• 
of the unknown angular radiation intensity. For this pur
pose we take advantage of the separability of the kernels 
in Eqs. (14). We set 

so that from Eqs. (14) we extract (i=1,2) 

J. (fl) = (1 - p,i32e-4a / '")"' 

, xt{t..(jl .(fl)F (11) + t..(3-jl'tj y g (fl)e-2al '" 
J=I .,3-) J .OJ J J j 

+ t 21
4
+ 1 t..~JL/fl)fa HJl(fl, T)II( T) dT} 

l~o 7T I, -a 

in which we use 
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(15) 

(16) 
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(i,j,l=1, 2), (16') 

If now we multiply Eqs. (16) by JJ.dJJ. and integrate over 
/.L E (0, 1), we find for 1)t (i = 1,2) the following algebraic 
system 

{ 
/

1 (3t'Ytgl(ll)e-4all> } 
1 - 1 ,Q (3 -4. I JJ. d JJ. 1) t 

a - 1-'1 2e 

(i'of-i, i, i'=1,2). (17) 

If the determinant D of the coefficients is different from 
zero, the solution to the system of Eqs. (17) exists and 
is unique, and can be cast in the form as 

1). = o. + .0-
4
- G·1(T)I1(T)dT - 2l + 1f ,-

1 I 1=0 IT -a t 
(i=1,2), (18) 

the constant O. and the func tion G., ( T) being explic itly , ,. 
given in Appendix B. Using now Eq. (18) in Eq. (16) we 
obtain 

(19) 

where the functions jt(ll) and Ki/(Il, T) are also listed in 
Appendix B. By means of Eqs. (19), J 1(1l) and J 2(/.L) can 
be thus eliminated from the system of Eqs. (13), and we 
get for the moments Io( T), 11 (T), 12 ( T), ••• the sought 
autonomous system 

(20) 

k=O,l,''') 

with 
2 

H!.l (T, T') = H~~l( T, T') + L;Hkt>( T, T') 
i=l 

(21a) 

and 

(21b) 

It is interesting to comment on the structure of the sys
tem of Eqso (20), with particular regard to the role 
played by the emitting and reflecting properties of the 
bounding surfaces. As for the general kernel H!.l (T, T'), 
we observe that if the bounding surface i (i = 1, 2) were 
not reflecting, then the corresponding H!P(T, T') would 
vanish. Consequently, we may refer to H!1 l(T,T') as the 
direct component of the kernel IlkI(T, T') inasmuch as it 
represents the contribution-from II (T) to I k( T)-due to 
the scattering colliSion, whereas H~il (T, T') is the con
tribution due to the reflections by the bounding surface 

2451 J. Math. Phys., Vol. 18, No. 12, December 1977 

io An analogous interpretation holds for the general 
source term ~ (T) of Eq. (20). It can be, in fact, split 
into the sum of F~",Q)(T)"'F~(T), which is the contribution 
coming directly from both the internal source Q( T, Il) 
and the emitting properties of the bounding surfaces, 
plus .6:=1 F~n (T), the general addend of which is just the 
contribution due to the reflections by the bounding sur
face io 

3. THE CASE OF A FINITE ORDER ANISOTROPY 

The application of the system of Eqs. (20) becomes 
more practicable if, as usually done, we restrict the 
infinite sum in the rhs of Eq. (9) [and consequently in 
the rhs of Eq. (20) itself] at the term with l = L, 
0.,; L < 00, that is, if we refer to the case of an aniso
tropy of arbitrary finite order L. In this case, the sys
tem reduces to a system of L + 1 linear integral equa
tions in the L + 1 unknowns I~L l( T), ••• ,I~ Ll( T), 

!;,2l + 11' IfL l( T) =L..,-- lP. (T, T')IIL l( T')dT' + P( T) 
k 1=0 2 _, kl I k (22) 

(k = 0, 1, ... ,L), 

where by IkL l( T) we just denote the general solution 
associated with the assigned order of anisotropy. (We 
remark, however, that, for a fixed L, the first L + 1 
moments are still sufficient for the exact determination 
of the unknown angular radiation intensity 0) It could be 
easily proved that the kernel Ilkl( T, T') and the source 
~(T) of Eq. (22) are elements of L 2(D1:9 D 1) and of 
L 2(D 1 ), with Dl = (- a, a), respectively. They are, in fact, 
bounded continuous functions for -a< T, T'< a, except 
for some singular terms which, however, exhibit only 
a weak (logarithmic) singularity in their domains of 
definition. The hypotheses of regularity requested for 
the functions ht(JJ.) and gj(/l) (i = 1,2) are, in turn, very 
weak (summability is sufficient "ad abundantiarn"), and 
are broadly satisfied owing to the physical meaning of 
the functions hj(ll) and gt(/l) themselves. The system of 
Eqs. (22)-as well as the preceding one of Eqs. (20)-is 
then of Fredholm's type, and its general solution IkL l( T) 
(k=O, 1, ... ,L) will belong to L 2 (D 1 ), if 1 is not an 
eigenvalue of the matrix integral operator defined by the 
(L + 1)2 kernels H!.Z<T,Tl), The problem of showing that 
for L ~ 00 I~L l( T) tends to the solution I

k
( T) '" I~- l( T) of 

Eqs. (20) in the norm of the Hilbert space L 2 (D 1 ) should 
not present particular difficulties once one resorted to 
the classical projection methods. 13 This problem will be, 
be, however, the object of a future separate papec We 
conclude by underlining an important feature of the 
theory. Let us take L = 1. Then, the system of Eqs. (22) 
reduces to a system of two linear integral equations, 
whereas for the same linearly anisotropic case, and 
independently of the quite different meaning of the un
knowns, the application of Case's method as discussed 
in Ref. 9 leads to a system of four linear integral equa
tions. (The situation gets even more complicated in 
Chandrasekhar's approach, in which, however, a differ
ent problem with zero boundary conditions is con
sidered. 1) Thus the present theory halves the order of 
the system to be considered, with all the consequent 
advantages on a practical ground. 
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PART II: APPLICATIONS 

1. THE CASE OF ISOTROPIC SCATTERING 

Henceforth we assume that both c and II do not depend 
on T, the internal source Q( T, /.J.) is zero, and the bound
ign surfaces are diffusely emitting and reflecting in an 
isotropic way. Then, in the general theory of Part I, 

C(T),n(T,/.J.o), nl(T)=>C, n(/.J.o), n" Q(T,/.J.)=O, 

hj(/.J.) =gj(/.J.) = 2 (i=1, 2). 
(23) 

Let us first examine the case of isotropic scattering. 
With L = 0, the system of Eqs. (22) reduces to the single 
linear integral equation 

lo( T) = ~(Hi;o( T, T')lo( T') dT' + Po (T) (24) 

for the zeroth moment 10(T)=10(0)(T) of the angular radia
tion intensity. [We omit the superscript (L ).] In Eq. 
(24) we have 

for the kernel, and 

Po (T) =Fo(T) + ±j1Ho .(T, /.J.)j.(/.J.)d/.J. 
i=l 0 t l 

(25b) 

for the known term. We recognize that (i, i' = 1,2): 

Koo(1 T 1 )=E1 (1 TI), 
HOi(T, /.J.) = 21TP

j
e-<a-(-1)iT )/I' + 4 1T y

j
E 2[a - (- l)j T]/.J., 

- C . H. (II T)=-e-<a-(-l)'T)/I' 
,0 ,...., /.J. ' 

Fo( T) = 2 Ct 1E 2(a + T) + 2 Q!2E2(Q! - T). 

For the kernel of Eq. (24) we get, after some 
manipulations, 

H(;o( T, T') = H~g)( T, T') + {H~~)( T, T') + H~~'Y)( T, T') 

+ H~~,2)( T, T') + Hb~,l)( T, T'l} 
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(25c) 

I {I /.J.e- 2a / I' } 

+ 2Y1E 2(a + T)j 0 1 _ i31P2e-4a / I' d /.J. • (26) 

As already commented, if the bounding surfaces are 
not reflecting (Pj=Yj=O' i=l, 2), the kernel mo(T,T') 
reduces simply to the direct kernel 

(26') 

which diverges logarithmically as T - T' - 0. For the 
other components of the kernel H~o( T, T') we observe that 
H~~) ( T , T') takes into account the quantity of radiation 
contributed by the specular reflections from the sur
faces, whereas H~~'Y)( T, T') refers to the contribution in 
which only the last reflection is of the diffusive type. 
Hb~' 2) (T, T') and H~~' 1) ( T, T') represent, at last, the mixed 
contributions due to the diffusive and specular reflec
tions at the bounding surfaces. For a more comprehen
sive illustration of the mechanism of interaction between 
the bounding surfaces, we refer to the next section, 
where we shall investigate the expressions that the 
kernel morT, T') of Eq. (26) takes in connection with 
some interesting specialization of the properties of the 
bounding surfaces under consideration. 

2. EXPRESSIONS FOR THE KERNEL H* (7,7'), Eq. (26) 
00 

(0 A first meaningful example of interaction between 
the bounding surfaces is the one when 

(27a) 

that is, the bounding surface 1 is black and the bounding 
surface 2 is diffusely and specularly reflecting (the 
assumption Q!2 = 0 is unessential). In this case the kernel 
H(;o( T, T') of Eq. (26) becomes 

H(;o ( T , T') = eEl ( 1 T - T' 1 ) + C P2E 1 (2 a - T - T') 

+ 2cy2E 2 (a - T)E2(a - T'). (27b) 

A first feature of this kernel is that it is a symmetric 
kernel, that is, m (T, T') = H(; (T' ,T). Other features are 
the following ones. Bes ide the direct kernel eEl ( I T - T' : ) 
we have the kernels C {32E1 (2a - T - T') and 2CY2E2(a - T) 
E 2(a - T') which are associated with the specular and the 
diffuse reflectivity, respectivelv. of the bounding sur
face 2. The kernel cP2E1(20 - T- T')-in the argument 
of which we recognize the sum (0 - T') + (a - T) of the 
forward and backward optical paths-means that the 
radiation passes from T' to T after a single 
specular reflection on the SUrfac e 2, with attenuation 
/32' When both T and T' tend to a, this kernel diverges 
logarithmically. In turn, the kernel 2cY2E 2 (a - T) 
E

2
(a - T')-which is separable-means that the radiation 

passes from T' to T after a single diffuse reflection on 
the surface 2. In this kernel we observe not only the 
separation between the forward and the backward optical 
path, but also the regularization due to the circumstance 
that now the function E 2 (u) is a bounded continuous func
tion, tending to 1 as the argument vanishes. 

The known term 1'6 (T) of Eq. (24) in correspondence 

V.C. Boffi and G. Spiga 2452 



                                                                                                                                    

to Eq. (27a) is 

F;\' (T) = 2 Cl,E2(a + T) + 2i320',E2(3a - T) 

+ 4y20',E3(2a)E2(a - T), 

as follows from Eq. (25b). 

(27c) 

In passing to examine other physical situations, we 
first realize that the explicit knowledge of the different 
components of the kernel mot T, T'), Eq. (26), requires 
the evaluation of integrals of the type as 

f ' e-'/u 
a J.lr 1 _ i3,i3

2
e-4a / u d J.l, (28a) 

where r = - 1, 0 and s is, in general, a function of T, T', 
and a. (In the case of anisotropic scattering r would also 
take the values 1, 2, .... ) Since P1P2 e-4a / u < 1, the inte
gral of Eq. (28a) can be always performed by series 
yielding 

The general term of this infinite sum is thus related to 
the radiation which comes back to one of the two bound
ing surfaces after having crossed j times the slab (4a 
being, in fact, the length of each crossing) and having 
undergone reflection at the opposite surface. The pro
duct p,i32 is the attenuation connnected with each cross
ing. On the basis of these results we are now able to 
process the investigation of the following two other 
physical situations, 

(ii) Y'=Y2=0: Equation (26) for mo(T,T'), then, 
reduces to 

=cE,(IT-T'fl 

+ c{t i3{+'i3~E, (2a + T + T' + 2j2a) 
J=o 

+J~p{i3r'E,(2a - T - T' + 2j2a) 

+ tpf'tW'E,(2a + T - T' + (2j + 1)2a) 
J=O 

+ ti3r'p~+'E,(2a - T+ T' + (2j + 1)2a)}. (29a) 
j=O 

The first (second) series refers to the radiation which 
has undergone the first and last reflection from the 
bounding surface 1 (2), and has traversed the separation 
distance 2a an even number of times, plus the first path 
a + T' (a - T'), and the last one a + T(a - T). The third 
(fourth) series refers, instead, to the case when the first 
reflection takes place at the surface 2(1) and the last one 
at the surface 1(2), with the same number of impacts 
against each of the two surfaces, and an odd number of 
crossings of the separation distance 2a, plus the first 
path a - T' (a + T') and the last one a + T(a - T). According 
to the circumstance that P" /32 < 1 and that the function 
E 1 is rapidly decreasing, it is plausible to expect that 
good results can be obtained by retaining a finite and 
small number of terms in the infinite series in the rhs 
of Eq. (29a). When 13, = 132 , then the kernel of Eq. (29a) 
is symmetric. Other functions of interest for the case 
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Y,=Y2=0 are (i=1, 2) 

K ( )_"ZJ=,t.:~LJ(J.l)jjJo(J.l, T) 
/0 J.l, T - 1- i3,i32e-4a/u ' 

2 (J) ( ) - ( ) . ( ) _"Zt=1t. i ,3-J J.l F! J.l , 
J i J.l - 1 _ p,{32e-4a u 

(29b) 

whereas the determinant D of the system of Eqs. (17) is 
simply 1. 

(iii) 13, = (32 = O. In this case the determinant D is D = 1 
- 4y,y2E;(2a) > 0 since E 3(2a) <·L and Eq. (26) for 
mo(T, T') becomes 

mot T, T') =H~g)( T, T') + [H~~,r l( T, T')]a .=0 + [H~~,2)( T, T') 
I 

+ H(2, 1)( T T')] 
00 , (3i:O 

= cE,( 1 T - T' I) + 2c[1 - 4y,y2E;(2a)]-' 

x {y,E2(a + T')[E2(a + T) + 2y2E 3(2a)E 2(a - T)] 

+ y2E2(a - T')[E2(a - ,) + 2Y,E 3 (2a)E2(a + T)]} 

=cE, (1 T- T' I) + c{t22J+'y{+lyfE;J(2a)E2(a+ T) 
J=o 

~ 

X E2 (a + T') +.:0 22J+'y{ y~+lE;J (2a )E2(a - T) 
J=o 

E 2(a - T') 

+ .t22J+2Y{+IYf'E;J+'(2a)E2(a - T)E2(a + T') 
j=O 

+.t 22j+2r1+1yf'E;j +1(2a)E2(a + T)E2(a - T' )}. 
J=o 

(30a) 

The first (second) series in the rhs of Eq. (30a) refers 
to the case of first and last collision against the bounding 
surface 1(2). The generaljth term, in particular, re
fers to the case of 2j + 1 diffuse reflections, j + 1 against 
the surface 1(2), and j against the surface 2(1), when the 
radiation has traversed 2j times the separation distance 
2a, with attenuation E 3 (2a) at each crossing. The third 
(fourth) series represents the case of first reflection 
against 1 (2) and last one against 2 (1), with 2j + 2 impacts, 
j + 1 against each surface, and with 2j + 1 crossing from 
T= -a to T=a. Also here as y" Y2< 1 and E 3(2a)< t, all 
the series considered should be rapidly convergent. 
This problem is, however, now less urgent than before 
since one is dealing with numerical geometrical series. 
We further observe that if Y, = Y2 , then the kernel 
mo(T, T'), Eq. (30a), is symmetric. We also observe 
that all the components of the kernels, but the direct 
one, are separable. 

For the known term of Eq. (24) in the case (3, = /32 = 0 
we get 

(30b) 
+ [2Cl 2 + 4Y2Cl ,E 3 (2a)]E2(a - T )}l1 - 4y, Y2E;(2a). 

3. THE CASE OF LINEARLY ANISOTROPIC 
SCATTERING 

This case can be discussed as done in the preceding 
section for the isotropic scattering. We restrict our
selves to reporting the results connected with the case 
represented by Eq. (27a). With L = 1, we need therefore 
the four kernels mo(T, T'), m,(T, T'), Hto(T, T'), 
Ht,(T, T'), as prescribed by Eqs. (22). NOW, mo(T, T') is 
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the same as in Eq. (27b) whereas for the other kernels 
we find 

H7,1 (T, T') = c 1J0{sgn( T - T' )Ez( 1 T - T' I) + P2EZ(2a - T - T') 

+ 2YzE 2(a - T)E3(a - T')}, 

Hio(T, T')=c{sgn(T- T')E 2 (1 T- T' I) - PZE 2 (2a - T- T') 

- 2Y2E 3(a - T)E2(a - T')t, 

Hil (T, T') = c IJO{E3( 1 T - T' 1 ) - P2E3(2a - T - T') 

(3la) 

It is interesting to observe that lIt I (T, T') is a symmetric 
kernel like morT, T'), Eq. (27b). We recall that Mo, the 
average cosine of scattering in the laboratory system, 
follows from the second of Eqs. (9b) in the limit of 
constant n ( T, J.l o). 

For the source terms Pi; (T) and Fj (T) required in Eqs. 
(22) with L = 1, we note that Pi; (T) is the same as in 
Eq. (27c), whereas 11(T) is given by 

11( T) = 2 G' I[E 3 (a + T) - P2E3(3a - T) 

- 2y2E 3 (2a)E 3 (a - T)l. (3lb) 

4. HINTS FOR THE SOLUTION TO THE SYSTEM OF 
EOS. (22) 

It would be possible to show that, for a large class of 
kernels Ilkz(T, T'), the system of Eqs. (22) can be solved 
by means of a general constructive procedure. In order 
to focus the essence of this procedure let us refer to the 
case of isotropic scattering with (31 = P2 = O. In this case 
the kernel and the known terms of Eq. (24) are given by 
Eqs. (30a) and (30b), respectively. If, for the sake of 
simplicity, we also take YI = Yz = Y and Ci l = G'z = G', 

Equation (24) explicitly becomes 

where 

Qn( T) = f: EI (I T - T' 1 )Pn(:)dT' . (33') 

With the positions 

L=j,a E
2
(a - T')Io(T')dT', 

-a 

we then deduce that the solution to Eq. (32) is of the 
form 
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(34) 

form 

c ~ 2n + 1 
In( T) = -2 6-2- ~nQn( T) 

n=o ([ 

[ 
t. + 2yE3(2a )t- 2a ] 

+ CY 1 _ 4yE;(2a) + 1 _ 2yE3(2a) Ez(a + r) 

[ 
L + 2yE3(2a)tt 2a ] 

+ cy 1 _ 4yE;(2a) + 1 _ 2yE
3
(2a) E 2 (a - T). 

(35) 

This form becomes explicit once the infinite constants 
tt' L, ~o' ~1l'" are known. They can be determined 
by adopting the theory of the linear integral equations 
with separable kernels, as permissible here in force 
of the functional properties of the kernel E I ( 1 r - r' 1 ). 

Projecting in fact the solution, Eq. (35), over the 
sequence of the linearly independent functions Ez(a + T), 
E 2(a - T), poe T/ a), P I ( T/ a), •.. , one gets the coupled 
infinite algebraic system from which the unknown coeffi
cients tt' L, ~o' ~u ~2' ••• of Eq. (35) can be extracted. 
Practical solutions-the sequence of which converges in 
the mean of L 2(DI) to the exact and unique solution of 
Eq. (32)-can be obtained by restricting the infinite 
series in the rhs of Eq. (33) to a finite number of terms. 

APPENDIX A 

In Eq. (13): 

with 

K 00 ( 1 T 1 ) = E 1 ( 1 T 1 ), K 01 ( 1 T 1 ) = K 10 ( 1 T 1 ) = E2 ( 1 T 1 ), 

K u (l r l)=E 3(ITI), 

(AI) 

(AI') 

and so on. [En(z) is the exponential integral of order n.1 

Hk/ T, J.l) = 21T( - 1 )(lti )k{PiP k( J.l )c-I a-(-I )iTI / I' + Y
i 
Gk( r) J.l} 

(i=1,2) (A2) 

with 

(A2') 

F
k
( r) = 21T (I Pk(/J) dJ.l{f T C-(T-T') / I'Q( r' , /J) dr' 

'lo /J -a 

+ (-l)fTaC(T-T')/I'Q(r" - J.l)dr' 

+ a.!alpk(J.l)c-<a+Tl/I'hl(/J)dJ.l+ (-Oka.:f: Pk(/J) 

xc-(a-Tl/"h2 (J.l)d/J (1<=0,1,"')' (A3) 

In Eq. (14): 

ii. (II r)= (_l)il Pz(J.l) c(r)n (r)c-la-C-l)iTl/" (A4) 
tI ,.., J.l z , 

(i'*i, i,i'=1,2). (A5) 
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APPENDIX B 

In Eq. (18): 

o. =!.fl {[1-f! 1 f3iYi'f.[i,(/J.')e-
4a/

l"' IJ 
' D /J. /J. 1-60 -4a /l"' d/J. o 0 !'"2e 

i,i' =1,2), 

xf! /J.~;j=lf).:;;(/J.)~I(/J., T) d } 
o 1 - f3 1f3

2
e-4a 1 I" /J. 

(i ' n, i, i' = 1,2). 
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(B1) 

(B2) 

(B3) 

2 

Kil(/J., T)== (1 - f31f32e-4all")-1,~[f).i~~)/J.)iijl(/J., T) 

+ f).(3~j)( /J.)C'
I 
(T)y.g,( /J.) e-2al 1"]. 

t,; ), J 
(B4) 
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On the properties of collision probability integrals in 
annular geometry. I. Analysis 

Michael S. Milgram 

Applied Mathematics Branch, Atomic Energy of Canada, Ltd., Chalk River, Ontario, Canada KOJ IJO 
(Received 23 May 1977) 

Two integrals fundamental to the analysis of the integral transport equation in infinitely long, annular 
geometry are defined and represented as sums of Meijer's G-function. Transformations useful for thick or 
thin annuli are derived, limiting forms for voided annuli are recorded, and asymptotic series are 
investigated. Special results include the identification of probability integrals for infinite cylinders and 
generalized, associated Bickley-Nayler functions as G-functions with appropriate parameters and 
variables. The incomplete, generalized, associated Bickley-Nayler functions are defined for annuli of finite 
length, and represented as sums of G -functions for long and short annuli. Asymptotic forms are given for 
both integrals, one of which reduces to Sievert's integral. Some illustrative examples important for 
numerical analysis, evaluation of multiple integrals, summation of series, and the study of the transport 
equation are reported. 

1. INTRODUCTION 

In the solution of the integral transport equation, 
escape and collision type probability integrals are fre
quently encountered. In the simplest cases, for homo
geneous convex bodies of volume V, these integrals are 
of the form1 

Po = 4;V 11 exp(- LR)dndV 

1 rrrs 
exp(-LR)n.ndndSdR, 

= 41TV lllo 
n· n being the direction cosine at the body surface and 
L the total macroscopic cross section of the medium. 
In more general cases, the integrals may involve vari
ous trigonometric and other factors in the integrand2 

and extend to complicated geometries, e. g., annular 
regions. 

When considering homogeneous slabs, the integrals 
reduce to the well-known exponential integral, and so 
the analytic properties of the probability integral for the 
slab may be derived from the known properties of this 
function. In cylindrical geometry the integrals are more 
complicated and the associated general theory less well 
developed. For infinitely long homogeneous cylindrical 
regions the Bickley-Nayler functions 3 Kin(x) appear in 
the integrand, These functions have been partially 
studied analytically and adequate numerical representa
tions are known. 4 However, other than expressing them 
as repeated Bessel function integrals, 4,5 the identifica
tion of Kin(x) as special functions in mathematical 
physics has not been previously established, For the 
case of the infinite cylinder, certain of the probability 
integrals have been evaluated explicitly and shown to be 
related to the sums and products of the modified Bessel 
functions Io(x), Ko(x), and their derivatives, 1,2,6,7 How
ever, no general formulation has been offered 
previously. 

In the case of an infinitely long annular region, the 
probability integrals become incomplete integrals of the 
homogeneous cylindrical case. The integrals are func
tions of two variables, the macroscopic cross section 
L and some geometrical variable K. This is the sim-

2456 Journal of Mathematical Physics, Vol. 18, No, 12, December 1977 

plest idealization of the real-life situation in nuclear 
reactor analysis. Because these integrals have not been 
well studied, it is difficult to obtain efficient numerical 
procedures for their calculation. Additionally, the ef
fort required to obtain analytic properties for numerical 
studies, theoretical modeling and limiting values of the 
variables, can be quite taxing, 2,7 because no general 
theory has been established. 

It is the purpose of this paper to develop a theory of 
the generalized probability integrals in annular geom
etry within the confines of the theory of special func
tions. Two fundamental forms are studied, and it is 
shown that these may be identified with Meijer's G 
function and sums thereof, and hence as generalized 
hypergeometric functions. 8 From these results proper
ties may be obtained in special cases from the theory of 
G functions. Manipulations are simplified, limiting and 

NOTE' R sin 8 0 K sin IjI 

x 0 L b 
K : a /b 
)..2 0 1- K 2 

"rJ =_K2/)..2 

R2
0 I+K2- 2K cosljl 

Z = x).. 

w = 2 Z2 / ( I + K) 

--

j RADIUS b 0 I 

MACROSCOPI C 
CROSS SECTION 

I L 

~l 
FIG. 1. Illustration of the geometry and notation used through
out the text. 
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asymptotic forms may be found, and, from the analytic 
structure, hints may be gleaned as to the best way to 
obtain efficient numerical approximations. 

Sections 3 and 4 of this paper will treat the manipula
tions necessary to identify the integrals under study 
as G functions. The variables and parameters are 
more general than need be for applications, but the 
price of this is little added complexity. A companion 
paper9 considers the problem of developing numerical 
methods for the evaluation of the integrals for a specific 
set of parameter values often encountered. In Sec. 5, 
asymptotic forms are investigated. Associated, gen
eralized Bickley-Nayler functions are defined, identi
fied, and manipulated in Sec. 6, where an analysis is 
also given for the incomplete integrals of these func
tions, one of which reduces to Sievert's integral. 10 

Some simple applications are presented in Sec. 7. 

2. THE FUNDAMENTAL FORMS 
The geometry shown in Fig. 1 will generate integrals 

of the following form when the transport equation is 
studied; define 

J ~ /2 1. _/2 
L;:~(x,K) = s{n-1KdB 0 dj3sintBcos"e 

xcosv-1j3sinT-1j3exp(- 2xcose/cosj3), (2.1) 

1. sin-IK 1. -/2 
·~:~.6(x,K)= 0 de 0 dj3sinOLl/icos5QCOS'e 

x sint e cosv-1j3 sinT
-
1j3 exp[ - xRj<jJ)/ cosf3] 

with (2.2) 

RJI/!) = (1 - 2 K cosl/! + K2)1 /2 

and E = ° or 1. The variables x, K, and angles e, I/!, Q, 
and j3 are depicted in Fig. 1 in terms of the geometry 
and cross section. 

In applications, we usually find that T= 1, ~ = ° and 
demand that J.I.=m, v=n, l5=j (m,n,j integers); in this 
sense the following developments are quite general. The 
restriction E = ° or 1 is necessary only to eliminate 
complicated triple sums. 

The generalization to arbitrary values of the param
eters is the key to the analYSiS, however, because the 
case of integral parameters is usually the "exceptional" 
one, requiring limiting processes and delicate cancella
tions. The results obtained are usually not amenable to 
further analytic manipulation so a tacit, but vital tactic 
used throughout this work is that whenever a relation
ship is not valid for particular (integral) values of some 
parameter, even a summation index, the offending 
parameter is aSSigned an arbitrary (complex) value 
within a range where the relationship is valid; the 
parameter is then allowed to approach its desired 
(integral) value. The justification for this methodology 
is a well-known part of the process of analytic con
tinuation. For example, the form of Eq. (2. 2) requires 
the conditions Re(~) > - 1, Re(T) > 0, which may be 
relaxed when a representation valid for other values of 
these parameters is obtained. 

The integrals may also be written in a more familiar 
form 

LT.:~(X,K)=J·/:1 cos"esin(eKi~(2xcose)de (2.3) 
, siu I( 
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(2.4) 

where we define the associated generalized Bickley
Nayler function 

Ki~(x) == 1
0
./

2 cos"-Ij3 sinT
-
1j3 exp(- x/ cosj3) dj3 (2.5) 

for Re(v) > 0, Re(T) > 0, degenerating into the usual3 

Bickley-Nayler functions when 7=1, v=n, an integer. 
These functions may be obtained from Eq. (2.2) by the 
limiting process (for either value of E) 

Ki;(x) = limlM;:~.o(x, K)/K. 
K-O 

(2.6) 

In a more applied context, identifyl1 the probabilities 

po" = (4/1T)L~: ~(x, K) (2.7) 

and 

pl"= (4/1T)lM1•O (x K)/K 3,0,0, , (2.8) 

where poo is the radial component of the (outer-outer) 
transmission probability; pia is the radial component of 
the (inner-outer) transmission probability. In each 
case, an isotropiC bath of particles at the respective 
entrant surface is assumed. Six other fundamental 
probabilities for annuli may be obtained1

•
12 from con

servation of probability arguments and reciprocity 
relations. A detailed examination is given elsewhere. 9 

Note that the (escape probability) Po for the infinite 
homogeneous cylinder is 

Po = (l/2x)[1- (4/1T)Lk~(x, 0)] 

in this notation. 

3. IDENTIFICATION 

The obviOUS difficulty in analyzing the functions is the 
existence of the singularities in the integrands of Eq. 
(2.1) and (2.2). The strategy employed here is to invert 
the order of the integrals, and express the exponential 
as a power series, treating secj3 as a parameter lying in 
a range where the B integration is valid. Afterwards, 
proceed by analytic continuation, allowing j3 to lie in the 
range [0,1T/2], and evaluate the j3 integral explicitly. To 
do this, we must frequently consult various formulae 
from the theory of functions. The most pertinent of 
these are reproduced in Appendix A, and cited in the 
text; others are simply referenced from the literature. 

The notation is that of Luke8 except that (extraneous) 
semicolons are used in the parameter list of specialized 
G functions to simplify reading and manipulation. The 
placement of the semicolons is self-evident. Also, L:, 
means L:~.o throughout. 

In this section the two basic forms will be identified 
as a sum of particular cases of Meijer's G function, 
valid for 0 ~ Re(x), 1 ;\,21 < 1. Transformations to other 
ranges of x and ;\,2 may be derived from the definition of 
the G function. Useful alternative representations are 
given in Sec. 4. 

To facilitate the analysis, let cos8=>..t in Eq. (2.1); 
in Eq. (2.2) let sin8=tK, and set cosj3=v, a=x/v 
throughout, to obtain the integrals in the form of Euler 
transforms 
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L~: ~ (x, K) = .\".1 fo 
1 
dt j~ 1 

dv vv- I (1 _ v 2) T /2-1 

X t"(l - .\2 f) (~-l) /2 exp(- 2x.\t/v) (3.1) 
I I 

€jW'~ (x K) = K~'I ( dl ( dv vV-I(l _ V2)T/2-lt~'" 
v, J.L. 6 , J 0 J 0 

X (1 _ t2)0 /2 (1- K2t2) (,-1> /2R': (t) 

x exp[ - xR.(t)/v 1 (3.2) 

with 

R.(t) = (1- K2f)1 /2 _ K(l- f)1 /2 

and E = ° or 1. 

ToevaluateL;:~(x,K)whenO~Re(x), 1.\21 <1 consider 
the t integral, writing 

(1- .\2t2)<Hl/2 _ Y; (.\t)2/ r «1/ 1;)/2 +Z) - t r«l -~) 2)r(l + 1) 

= l F o((1- ;)/2; .\2t
2

) (3.3) 

when I.\t 1 < 1. After interchanging the integral and the 
sum, and using Eq. (Al) to evaluate the simplified 
integral, obtain 

l l
dt tlf. (1 - .\2t2)<Hl /2 exp(- 2a.\t) 

o 
_ 1 .\21 r«l_ ~)/2+l) 
- 2/:;rT«1- ~)/2) ~ r(l + 1) 

(3.4) 

which is a well-defined function for all the variables and 
parameters when 1.\ 1 < 1, particularly for a = x/v in the 
range of the v integral. Insert Eq. (3.4) into the v in
tegral of Eq. (3. 1), and again interchange the order of 
summation and integration; let v 2 = l/t to obtain an in
tegral of the form of Eq. (A3). The final result, setting 
Z =x.\, is 

T.~ _ .\"'lr(T/2) .\21 r«l_ ~)/2+1) 
Lv." (x, K) - 4IiTr((1- ~)/2) Z; r(l + 1) 

XG3.1( 2\(1- 11 )/2-1; (v+T)/2 ) (3.5) 
2.4 Z v/2, 0, t; - (11 + 1)/2 -1 • 

To evaluate 'M~:~.6(X,K), again for O~Re(x), 1.\21 <1, 
consider first the integral 

J-= K~'11 [{'''(1- K2t2)<,-l)/2(1_ [2)0/2[(1_ K2t2)1/2 

o 

- K(l- t2)1/21"exp{_ a[(l- K2t2)1/2 - K(l- t2)1/2]rdl 

(3.6) 

by expanding exp[ - aRjt)] as a power series in aRjt). 
Thence equate 

I~(K, ~, 11,0) 

=/01 dtt~·If.(l- K2f)<'-O/2(1_ [2)0/2 

x [(1- K2t2)1/2 - K(l- f)I/21"·n 

.\ "".n-l r(1l + n + l)r«l + ~ + 11)/2)) 
2" .. ·1 r«fl + n + 1 )/2)r(1 - E + (fl + n)/2) 
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XG2.2[ \- 0/2, (1 +E - 11- n)/2; (1 +E + Il +n)/2) 
3.3\ 1) 0, t; - (1 + ~ + Il + 0)/2 

(3.7) 
from Appendix B where 7J = - K2/.\2, Express the G func
tion as a sum of two 3F2' s which can each be expanded 
as a power series for 17J I < 1 and interchanged with the 
n sum in Eq, (3,6); this sum is then further split into 
its even and odd components, 

After some manipulation (Appendix B) we find 

J- = K~+I.\ .. ,,-1 r((1 + ~ + fl )/2)/2 

[
;; (- 7J)'r(l + 1 + 0/2) 

X '--( r (t + l) r (1 + 1"-:-:) r~(:-:-(3-"-+---'-~ -+-fl-+--'O )-'/'--2 -+ Z) 

XG2.2(L 1- fl/2, (1- Il +E)/2 +1; ) 
2.4 4v 2 0, t; E-Il/2, (1- fl-E)/2+1 

-y{l-Z+t} J. (3 0 8) 

The term {1 -1 + 1/2} means the first 1 sum with I re
placed by 1 + t The G function is defined for all values 
of v, and so the v integral in Eqo (3,2) can be evaluated, 
after the 1 sum and integral are interchanged, The final 
result is 

'AI~: ~,6 (x, K) = Kl.~.\ .. ,,-1 r«l + ~ + 1l)/2)r( T/2)/ 4 

r (- 7J)'r(l + 1 + 0/2) 
x rt r(~ + l)r(l + 1)r«3 + ~ + fl + 0)/2 + 1) 

XG3,2(z2/- fl/2, (1- fl +E)/2 -I; (v + T)/2) 
3.5 4 v/2,0, t;E-fl/2,(1-fl-E)/2+1 

- L?{l -l+ H]. (3.9) 

Note added in proof: Note that J> of Eq. (38) and Sec. 
7 D generates similar expressions for transport in
tegrals in spheres and slabs, cf. G. Bittelli and A. 
Turrin, Nucl. Sci. Eng. 60, 3, 324 (1976) and this 
author's comments submitted to Nucl. Sci. Eng. (1977). 

Considerable simplification is possible here for par
ticular values of the parameters. 

A few points are worth noting about these forms. 
First, the G functions can be identified as the sum of 
generalized hypergeometric functions [Eq. (A2)] of the 
form lF2 ( ••• ) or 3F4(' •• ) and hence there will be rapid 
convergence for a large range of z, because of the form 
of Eq. (A10). Secondly, the .\2 sum and the sum in the 
definition of the pF; s can be interchanged, to produce 
a result of the form Z jE I (.\2)ZI, where EI (.\2) is some 
function only of the geometry of the problem. Since in 
most practical cases (e. g., nuclear transmutation or 
slowing-down calculations), the geometry is invariant 
with only z changing because of changes in L, it is suf
ficient to compute the functions £1(.\2) only once per 
problem, and thus obtain efficient and rapid numerical 
evaluations of the integrals. Thirdly, although Eqs. 
(3.5) and (3.9) give valid representations for complex 
values of all variables with the exception that 1.\21 < 1, 
in the case that v= n an integer, we face an exceptional 
case of the G function. To simplify this form, utilize 
a well-defined limiting process and obtain both a power 
series and logarithmic term. This is discussed in more 
detail in Sec. 7 and elsewhere. 9 
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4. VARIATIONS 

The results summarized by Eqs. (3.5) and (3.9) are 
most useful for thin rings (;\2 - 0) or thick rings (1)2 - 0) 
respectively. Each representation may be transformed 
to an expansion valid for thick rings (;\2 -1) or thin rings 
(1)2 - 00) respectively, by rewriting the intermediate Eqs. 
(3.3) or (3.7) using known transformation formulas for 
hypergeometric series or for C functions as illustrated 
by Eq. (A6). Otherwise, work with the final representa
tion themselves. The technique of transforming sums of 
C functions has been described elsewhere. 13 In this sec
tion we record expansions valid for alternate ranges of 
;\2 as well as explicit forms for annuli of small macro
scopic cross section (voids). 

For the function defined by Eq. (3. 5), we use l 3, 14 the 
transformation law ;\2 -1- ;\2 for an 2Fl and eventually 
obtain 

r(T/2)r«1+ S)/2) C31( 21(1-J-L)/2;(V+T)/2 ) 
4 liT 2;4 x v/2, 0, i; - (J-L + ~)/2 

;\"+1(1_ ;\2)(1+0/2r(T/2)r«1 + 0/2) 
4 liT 

(1 - ;\2)1 3,1 ( 21- (J-L + ~)/2 - Z; (v + T)/2) 
XLt r«3 + ~)/2 +Z) C2,4 Z I v/2, 0, i; - (J-L + ~)/2 ' 

(4,1) 

a form most useful for thick annuli (;\2-1), 

If ;\2 = 1, the second term in Eq. (4.1) vanishes and 
reveals a simple representation of the probability in
tegral for an infinite cylinder. For particular choices 
of the parameters, this reproduces specialized results 
given by Murrai when the G function is expanded ac
cording to Eq. (A2). 

From Davison's analysis6 identify 

L 1,o(x 0) = ~liTlim C3,1 (X21 i; (v + 1)/2) 
n,O, 4 v- n 2,4 v/2, 0, i;o 

+ Cn(x)l~(x)/{O(X) + Dn(x)}, (4.2) 

where An(x), Bn(x), Cn(x), and Dn(x) are polynomials in 
x, lo(x) and /{o(x) are modified Bessel functions of the 
first and second kinds, and the prime denotes differen
tiation with respect to X. Use Eq. (A2) to unveil a sim
ple power series representation for the right- hand side 
of this equality, illustrated in Eq. (7. 1). 

In addition, a comparison of Eqs. (4.1) and (2.1) 
immediately identifies the second sum in Eq, (4.1) as 
a representation of the complement of the integral in 
Eq. (2.1) with limits (0, sin-1K), 

In the case that ~ = 0, the intermediate 2Fl in the con
tour integral representation of the C function in Eq. 
(3.5) admits a quadratic transformation13,15 of the form 
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32( 1(1-f..I.)/2,(1-f..I.)/2-Z;(V+T)/2 ) 
XC3;5 W v/2,0,i;(1-f..I.)/2+Z,-(1+f..I.)/2-Z ' 

(4.3) 

where w = 2z 2/[1 + (1 - ;\2)1/2]. This representation is 
particularly useful for annuli of all sizes, since there 
are no numerical Singularities or cancellations present 
for 1 ;\21 <S 1. For special values of the parameters, 
further Simplification is possible. 

Similarily, the equality (3. 9), useful for 11) 1 <S 1, may 
be transformed to the range 11) 1 ~ 1 by using Eq. (A2). 
Intermediate representations worth recording are 

EM~;~,a (x, K) 

X---.!.. (ds r(v/2 - s )r(- s )r(i - s )r(1 + J-L/2 + s) (z2)S 
27Ti JL r(1- E + f..I./2 + s)r«v + T)/2 - s) \4 

XC2,2 (.!11,i;(3+~+f..I.+6)/2 ) 
3,3 - 1) 11 + 6/2, (1 + J-L - E)/2 + s; (1 - f..I. - E)/2 - s ' 

(4.4) 

where the contour L encloses the real s axis in a nega
tive sense, crossing at Re(s) < mineO, Re(v/2». This 
form is equivalent to 

E}\I;;~,a(x, K) 

_ K1+( E."-l r (.!...:!=. ~ + f..I.)!(T/2) [sin(7T(V + T)/2) 
-;\ 2 4 sin(7Tv/2) 

r(1 + f..I./2 +j)r(1- (v ~2+j)(Z2/4)J~(1) 
x ~ r(1- v/2 +j)r(~ +j)r(1 - E + f..I./2 +.j)r(j + 1) 

_ sin7T[(v+ T-1)/2] (Z2)1/2 
sin7T[ (v- 1)/2] 4 

L:: r«3 + f..I.)/2 + j)r«3 - v- T)/2 + j)(Z2/ 4)J H}(1) 
x j r«3 - v)/2 +j)r(i+j)r«3 + f..I.)/2-E+j)r(j + 1) 

sin(7T T/2) (Z2)V/2 
- sin(7T1I/2) sin7T[(1- 1I)/2J 2 

r(1+(II+f..I.)/2+j) x'1 r(1 + 11/2 + j)r«1 + 11)/2 + j) 

.r(1-T/2+j)(z2/4)JHj(1) ] 
x r (1+(II+f..I.)/2-E+j)r{j+1) , (4.5) 

where 

H~(1) ) 

-C2,2 ( 1- 6/2, (1- f..I. - v+E)/2 -.1; (1 + v+ f..I. +E)/2 +.1) 
- 3,3 -1) 0, i; - (1 + ~ + J-L + 6)/2 . 

(4.6) 
Employ Eq. (A6) to arrive at an expansion valid for 

11) 1 > 1. The general form is complicated, but for 
special values of the parameters9 useful forms emerge, 
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The eventuality that x" 0, as in a voided annulus, is 
worth some exposition. From Eqs. (3.1) and (3.2) we 
infer 

(3 
axL::~ (x, I() =- 2L~~tl'.I(X, I() (4,7) 

and 

(4.8) 

Integrate once, 8 use Eq. (A2) in (3,5) or Eq. (4.5) 
alone to evaluate the G functions at x = 0, and, provided 
that Re(lI) > 0, discover 

LT.' ( ) _ x,,·lr(r/2)r(II/2)r«1 + fJ.)/2) 
".1' x, I( - 4r«v + r)/2)r«3 + fJ.)/2) 

x F (1 - ~ 1 + fJ. • 3 + fJ. • X2) 
,1 2 ' 2 ' 2 ' 

xXI'+'r(r/2) :6 X2lr«1- 0/2 +Z) 
- 4{1Tr«1- ~)12) I r(Z + 1) 

G3• 2 (,! ~,-fJ./2-Z;(v+T-l)/2 ) 
x 3.5\Z (v-l)/2,0,~;-I-Z-fJ./2,-~ 

(4,9) 

and 

=KH x •• ,,_lr(1 +; + IJ) r(;/2) 

{ r(v/2)r(1 + IJ/2) 

5. ASYMPTOTIC FORMS 

We seek a representation useful for thick or thin 
annuli with a large interaction cross section and fixed 
geometry, such that the variable z2 is large. An 
asymptotic sum for L~:~ (x, K) may be found from Eq, 
(3.5) for all values of ~, or from Eq. (4.2) for the case 
~ = 0. The method is the same in both cases, and gives 
the same x-I'·l dominance. To illustrate, use Eq. (A4) 
with Eq, (3.5), noting that 

to obtain 

r(T/2) 
L;:t (x, /() = 4v'1Tr«1- ~)72) 
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x ~ { r((1- 0/2 + Z)r«v+ fJ. + 1)/2 + Z) 

X r{(l + fJ.)/2 + Z)r«2 + IJ)/2 + Z) 

X [r(l + l)r( (" + T + fJ. + 1)/2 + l)x2!·1'·11-1 

X 21+1' +1 r«l - ~)/2 + l) 
r(l + 1) 

G4• 0('j;(V+T)/2,(1- IJ )/2-Z )} 
X ,.4\Z v/2,0,L-(1+IJ)/2-1;' (5.1) 

The function Gi' f(z2 I ••. ) is one of the fundamental 
forms at infinity ~nd has known asymptotics. 16 So, for 
large values of z2, split the I sum into two, the first of 
which SD is the dominant asymptotic series that gives 
x," -1 behavior, and a second sum So which takes the 
form of an asymptotic correction series 

, _ J..".1r(T/2) ( ) I'_I_T/2 
SO 4r«1- ~)72) exp - 2z z 

x:61-:0 X'Ir«1- ~)/2 + z)Mk(Z) 
k Zk I r(l + 1) , 

(5.2) 

where Mk(n may be determined by recipes given else
where16 and Alo = 1. The I-sum in the expression for So 

is easily seen to be of the form 

P
k
(X2)/(I- X')('·ll/ 2 , 

where Pk(X 2) is a polynomial in X'2 of degree k. For a 
particular set of parameters, the expression (5.1) for 
S D reduces to that of Hwang and Toppel, 17 who omit the 
explicit form of the Sc term. 

To obtain the asymptotic form of '.'ft.::~.5(X,K), a new 
representation must be derived. Starting from Eq. 
(3,2), use a simple change of variables to discover 

~J\I~:~ .5(X, K) 

=2e-2-'~-5K-I'·5(1_ /{)2e-'(1 +K)c.o+I'.' 

x ~1I'1''l t-3.,.".o.e(1_ yt2)D.l(1 +yt2)e 

x [(1 - y,(,)(t' - 1) J<I' .,.1 l / 'K\: (x(1 - K)t) dt, (5. 3) 

where y = (1 - K)/(l + K). In the following, assume' 
= B + 1, which covers the most interesting cases, and 
note that the case' = 0, B arbitrary can be derived in a 
similar manner. For this section only then, E can have 
continuous values, emphasized by writing E =', a con
tinuous parameter. 

Expand parts of the integral according to18 

n 
(1- Y't4)o+1(1_ y't')("·'·ll/2 =:0 y2n:0 gn(r)tZ(n+rl, (5.4) 

n r~O 

where 

(-vr(2 + B)r(n - r- (IJ + ~ -1)/2) 
gn(r) = r(2 + B _ r)r«1 - !1 - ~)12)r(r + 1)r(n - r + 1) 

('5.5) 

split the integral into the difference of two, with limits 
(1,00) and (1/v'Y,00), and employ a known integration 
formula8 after replacing K\:(x(1 - K)t) by a G function 
according to Eq. (6.1), to eventually find 
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x [r(r /2)/J"""i J L: y2n t gn(r) [r(1 + 11 + ~) 
n r=O 2 

G4 0(z2Y\;(V+T)/2,(3+~+Il)/2-n-r) x 2'4-, 4 I-n-r,v/2,0,i; 

_ yl-n-r L: «1- 11 - ~)/2), yl 
, r(l + 1) 

XG4,O(Z21; (v+r)/2,2+z-n-r)] 
2,4\4 1+1-n-r,v/2,0,i; • 

(5,6) 

In Eq. (5.4) the r sum truncates if 1i = -1,0,1,"', 
and the G functions in Eq. (5.6) have known asymptotic 
propertiesl6 for z/Y - 00. The first term dominates if 
y« 1, and the coefficient of the leading power of z in the 
second term vanishes identically, so eventually we dis
cover after summing over rand n 

6+1M,::~ ,6 (x, K) - r«l + 11 + ~)/2)r (T/2)46-1(1 _ K)26 K<H .... )/2 

x (2/ zv'Y )<I+'+I'+T)/2 exp(- zv'Y). (5.7) 

For special values of the parameters, this reproduces 
the results of Hwang and Toppel,17 who omit the 
geometric factors in Eq. (5.7). 

For large values of z and K-l, efficient, approxi
mation may be found from Eq. (4.5). For large values 
of z and K- 0, use Eq. (3.9) together with (A4) to 
transform the G function into forms with known asymp
totics, and truncate the Z sums. 

6. GENERALIZED ASSOCIATED BICKLEY
NAYLER FUNCTIONS 

A. Complete form 

The generalized, associated Bickley-Nayler func
tions are defined by Eq. (2.6), which suggests that we 
evaluate the limit 1) - ° in Eq. (3.9), with ~ = 11 = 1i = ° 
and E = ° or 1. Only the 1 == ° term in the first sum con
tri,mtes, and so 

K"T(X)== r{T/2) G3,O(X21; (v+ T)/2). 
1,:, ~ 1,3 4 v/2 ° L , ,2, 

(6. 1) 

From Eq. (4.10) an alternate form is 

K"T( )_ r(T/2)r(v/2) xr(T/2) 
1,:, x - 2r«v + r)/2) - 4J"""i 

x 3 l(x2Ii; (v+ T-l)/2 ) 
G2: 4 4" (11-1)/2,0, i; - i ' 

(6.2) 

provided that Re(v) > 0; applying formula (A2) yields 
rapidly converging power series near x'" 0, some of 
which reduce to known results. 3,12 The asymptotic form 
of K~(x) may be easily obtained. 16 The result for x 
- +00 is 

K~(x)- ir(T/2) exp(- x)(2/x)' 1 2 L: Mk(2/x)k, (6.3) 
k 
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where the Mk in the asymptotic series may be found 
from 

M k == (- t)kCk 

and C k obeys the three-part recursion formula 

2kC k = (1- k - r/2)[(4 - 2v- 3k - 3T/2)Ck _1 

+ (2 - k - T/2)(2 - k - v - T/2)C k _2J, 
Co=l and Ck==O if k<O. 

(6.4) 

(6.5) 

An interesting expansion of K~(x) in orthogonal func
tions may also be found from Eq. (2.5). Substitute 
cos{3 = v, extract a factor e-x from the integrand, set 
v = 1 - t, and note that the integrand now contains the 
well-known Hill-Hardy generating function19 for 
Laguerre polynomials. Thus 

Kj,';(x)=2 T
/
2-1e-x L: e;,L;:'(x) (6.6) 

n 

after the sum and integration are interchanged. Identify 
the coefficients e~ as special cases of the incomplete 
beta function from its integral representations 

T r(T/2+n) 1 

en == r(l + T/2 + n) 2Fl (1- T/2, n + T/2; 1 + n + T/2; 2'). 

(6.7) 

[The representation of Eq. (6.6) is extremely slow to 
converge. J Now expand e~ as a power series using Eq. 
(AI0), interchange the resulting sums in Eq. (6,6) and 
recognizing that20 

L: L~(X)/(T/2 + n + l) = r(T/2 + l)iP(T/2 + I; 1- v; x) 
n 

find 

x (WiP(T/2 +1 + v; 1 + v;x), (6.8) 

where Kummer's transformations has been applied to 
the confluent hypergeometric function of the second kind 
[~(a;y;x)J. An interesting identity is obtained by com
paring Eqs. (6.8) and (6.1), if one notes8 that 

iP(cr y' x) - 1 G2, tf.ll -a; ) 
" - r(a)r(l+a-y) 1,2\X O,l-y; 

_ xG2'0( I; 1- y + a) 
-e 1,2XOl_y' • , , 

B. Incomplete form 

For the case of annuli of finite length, we define the 
incomplete functions K~(x, a) by 

K~ (x, a) = foCi. if-I (1 - v2)'/ 2-1 exp(- x/v) dv. (6.9) 

These can be manipulated in a manner similar to the 
analysis of L~:~ (x, K) in Sections 3 and 4 by using 
J"""i exp(- 2{y)=Gk8(y 1&,1/2;), Eq. (3.3) to expand the 
integrand, and Eq. (A3) to evaluate the integral. The 
result is 

(6. 10) 
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which is particularly useful when a 2 '" 0, and x 2/4a 2 '" 0. 

If x2/4a 2 _00, the dominant behavior of the G function 
is known,16 and the first term of the asymptotic series 
is 

(6.11) 

In analogy to the developments surrounding Eq. (4.1), 
an expansion useful for a 2 ", 1 is found: 

K'T( )=K'T( )_aVr(7/2)(1_a2t/2 
\. x, a \. x 2v7i 

(1_0'2)1 
X ~ r(1 + 7/2 + 1) 

x G3 o( X2 I; (v + 7)/2 \ 
1;3 4a2 (v+7)/2+1,0,~;)' (6.12) 

And in the eventuality that 7 = 1, a quadratic transfor
mation15useful for la21 < 1 exists, in analogy to Eqo 
(4.1): 

, 1 ( 2a 2 
) vI2 

K~(x, a) = 2,f7i 1 + (1- (2)1!2 

([(1- ci)l 12 _ 1 ]/2)1 
X ~ r(l+l) 

x G4'O(X2L1 + (1- ( 2)11 2] \; v/2 -1, 1 + v/2 + l) 
2,4 40'2 o,~, v/2, v/2 + l; • 

(6.13) 

In the case v=7=1, these results give useful formulas 
for the numerical evaluation of Sieverts integral. 10 

7. APPLICATIONS 

In this section, some applications of the representa
tions developed herein are offeredo Obviously, without a 
complete examination of the relevant literature, the 
list of applications cannot be inclusive. The purpose of 
presenting these details is to indicate some obvious uses 
for the theory. More details of only one aspect of these 
applications are offered elsewhereo 9 

A. Series expansions 

For infinitely long cylinders, a useful function7 in
troduced in Eq. (4.2) is 

L1,o ( 0) _,f7i l' G3'1( 21 (1- m)/2; (1 + V)/2) , 
n,m

x , - 4 un 2,4
X ° ~ /2'- /2 ' v-*-n , 2, V , 117 

if n=2k+1, then 

Lh21,m(X, 0) 

= r: (_)krr2 
k (_ x2)jr(~ + m/2 + j) 

x E r(1 + k - j)r(t + j)r(~ - k + j)r(j + 1)r(1 + m/2 + j) 

( )k ~ 1'(1 + m/2 + j)r(~ - k + j)r(k - j)(- x2)j 
- - X i=O r(% + j)rG + m/2 + j)r(j + 1) 

2k+l r(1+m/2+j+k)r(~+j)x2j<p"m(x») 
-x ~ r(t+ F?+j)r(%+m!2+k+j)r(k+j+1)r(j+1) , 

(7.1) 
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where 

z/!J,m(x) = z/!(j + 1) + z/!(j + k + 1) + z/!(1 + m/2 + k + j) 

+ z/!(1 + k + j) - z/!(k + j + 1 + m/2) - z/!(j +~) 

- 2logx 

and z/!(Z) is the digamma function. The infinite series 
converges rapidly for small values of xo 

To calculate pOD [cL Eq. (2.7)] using the representa
tion (4.1) valid for ;\ 'l_ 1, note that 

G 3,1(Z2j-m/2-Z;1+k) 
2,4 Fe +~, i, 0; - m/2 

_ ± (- )krr2r(1 + m/2 + Z + j)(_ z2)j 
- i=O r(1 + k - j)r(~ - k + j)r(~ + j)r(1 + m!2 + j)r(j + 1) 

_ z2k+l I! r(~ + ;n/2 + ~ + k,- j)r(- ~ - j):(j + 1).(- Z2)-1-J 
j:O r(z + k - ])r(z + m/2 + k - ])r(k -]) 

Z2k+l r; r( h m/2 + Z + k + j)r(~ + j)z2Jz/!1:~(z) 
- J r(j+1)r(t+ k +j)r(1+ m/ 2 +k+j)r(j+k+1) 

(7.2) 

where 

<p~:;(.z) =z/!(1 + k + j) + z/!(1 +k + j) + z/!(1 +m/2 +k+ j) 

+ </!(j + 1) - z/!(1 + m/2 + Z + k + j) - z/!(j +~) 

- 2logz 

is again a rapidly converging form with readily com
putable coefficients. 

The case IJ. = 1, v = 3 is of particular interest, so for 
a thin annulus, use Eq. (3.5) and (2.7) to discover 

pOD=1_K+ ZZ;\2 [1-!(K-1)J- 8Z;\2 D1 (;\2) +;\2Z
3 

1 + K 3 K + 1 3rr' rr 

x(r; rO + j)[z/!G + j) - z/!G + j) - z/!(j + 1) - z/!(j + 2)]DJ (X2)Z2 i 

j r(j + 1)r(j + 2)r(j + }) 

r(~ + j)r(~ + j)Ej(;\2)Z2 j 

-Y r(j+1)r(j+2)r(t+j)rq-+j) 

r(i+j)Dj (;\2)z2j ) 
+ 2logz y r(j + 1)r(j + 2)r(j + p (7.3) 

where 

Dj(X2) = 2Fl(~' % + j; t + j; ;\2) 

and 

( 2) (1 S • S • 7 + . 7 + '. '2) Ej ;\ =3FZZ,Z+],z+];z ]'2 ],It. 

For ;\2 - 0, both Dj(;\2) and Ej(X2) are readily computable 
and obey recursion formulas. Note that 

D_l(;\2) = _ 3(1- ~.z)1/2[1_ tan-1X/K)/(K;\»)/2. 

This form is particularly' useful for numerical evalua
tions because of its rapid convergence for small values 
of z and ;\2. Recalling the nature of the problems in 
which poo needs to be used, it i:~ sufficient that the func
tions Dj(;\2) and Ej(;\2) be precomputed. It is also worth 
mentioning that the expansions for pvi defined in Eq. 
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(2.8) are of the same form as those for poo; these are 
given explicitly elsewhere. 9 

B. Multiple integrals 

The variable K appears in a simple form in the rep
resentations (3.5) and (3.9) and so further integration 
over K is possible. An example follows. 

Benoit, 1 Berna,1 and Love and Kushneriuk in Eq. 
(C9) of Ref. 7 introduce the integral 

21'/2 10'12 Dl (:~~a) = - - cos2\[! a\[! cosj3 dj3 
rr 0 0 

1"" u+acos\[! 
X 2 + 2 + 2 \[! exp(- uL:,/ cosj3) duo o u a au cos 

Convert to the geometry of Fig. 1, using 

du d sin\[! = db2 dt/2a(b2 _ t2)11 2 

and rearrange the order of integration, revealing 

Dl (L:,a) = - (2/rr) 101 
dK lM~: ~,1 (x, K)/ K2. 

SO, from known integration formulas, 8 we find, after 
making use of Eqs. (3.9) and (A4) and setting Y = L:, 2a2 /4 

D 1(2vy)=- Wlim[WG~:1(YI~;%/2 ° ~.) 
v .. 2 ,v , ,2, 

+~ r(z+2)G~:1(YlzE+-t;~/2 ~ 1') 
1=0 2, 1I ,2, , 

x [r(Z + 1)r(Z + ~ )r(z + ~) ]-1 

- ~ {z-z + nJ. 
1=1 

(7.4) 

Curiously, by using the contour integral (Barnes) rep
resentation for the G functions,13 this combination of 
sums can be explicitly evaluated in terms of simple 
functions and series. U sing Bailey's transformation21 

for a nonterminating Saalschiitzian 3F2' simple expres
sions22 for the value of a particular 3F2 of unit argu
ment, and taking the limit 11- 2 bares the result 

Dl (2vy) 

= _ 1: (_1_ f r(1 - S)r(E - s)r(- s)r(- s)r(1 + sly' ds 
4 4rri LO r(f - s) 

__ 1_ [ r(- 1 + s)r(- E + s)r(- S)r(E - s)r(1 - sly' ds\ 
4rr2i JLll2 r(2 + s) I 

= - t({-lOgy - 2y - 2}- {(8vy/3)[10gy - 1/!W - 1/!(~)]} 
+ «y/4){[10gy - 2 - 1/!(2) - 1/!(3)]2 +4rr2/3 + 25/4}) 

rr 31 2 £ r(j+~)r(j+l)(-y)J 
- "2 Y i=O r(j + 2)r(j + -})r(j + t)r(! + j) 

y t r(j+E)r(j)(-y)j1/!j(y) ) 
+"2 J=l r(j + l)r(j + 2)r(j + 3)r(i + j) , 

where (7.5) 

I/!j(y)=1/!(j+H+1/!(j) -1/!(-t-j)-I/!(j+l) 

- 1/!(j + 2) - I/!(j + 3) + logy, 

y is Euler's constant, the contour Ll/ 2 encloses the 
positive s axis in a negative direction, crossing be
tween s = ° and s = E, and Lo encloses only the singular
ity at s = 0, again in the negative sense. 

The first three terms in curly brackets in this ex-
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pression result from evaluating the residue at the two 
dipoles and the triple pole at s = 0, t, and 1 respectively 
in the complex s plane. This form explicitly illustrates 
the analytic structure of the function near y - 0, and is 
useful for numerical evaluation near the origin, since 
the sums converge rapidly. The G functions appearing 
in Eq. (7.4) have known asymptotics, 8 and so an 
asymptotic series for Dl may also be derived. 

C. Explicit summation 

The evaluation of integrals sometimes requires that 
sums of Bickley-Nayler functions be obtained. For 
example, as part of the discrete integral transport 
(DIT) method,2 the integral 

P~::,,(T) = (1 + (_)m.n.,,+v) 10'/2 p;(cose)p~ (cose) 

x exp(- T /sine) sin/-1e de 

is expressed as triple sum of K~(T); one of these sum
mation can be explicitly performed using Eq. (6. 1) and 
the method of Ref. 13. The result 

B G)<-)PKi;+2P(T) 

= -~ r(k + ~)G3'O(r I; s/2 + E + k) 
/7i 2 1,3 4 S/2,0,E 

=2Ki;k+1(T) (7.6) 

can be employed within the context of the DIT method, 
neglecting the developments of Sec. 3 which suggest 
other expressions for integrals over the T variable. 

D. Transport kernels 

The function €M~:~,6(X, K) defined in Eq. (2.2) appears 
in various forms as part of the kernel in the integral 
formulation of the transport equation in cylindrical 
geometry, relating the transport probability of a 
particle scattered from the near radius of a shell to a 
point in space. In addition, the transport probability 
from the far radius is required, so define the analogous 
generalized form: 

€,V'.'€ (x K)=K€+1J,1 d1 ) (1 dtvV - 1(I_v2)T/2-1 
tit ~,6 , 0 Jo 

xt€-"(I- t2)6 /2(1_ K2t2)(€-O 12 

XR~ (t) exp[ - aR.(t)l, 

where 

(7.7) 

and E = ° or 1, where we note the sign change of fl in 
the exponent of t. In analogy with Eq. (3.6), 

r- €+1'>' (_a)n 1'( t ) 
- K t.;: r(n+ 1) -n K,." - fl, 6 

and the equivalent of Eq. (B3) is 

5+= _1_ G2'2(a2
;>.,z 1(1 +E - fl)/2 -l, 1- E - fl/2;) 

n ,fiT 2,4 4 0, E;(I-E - fl)/2 +l, 1- fl/2 • 

This gives the representation 

€N~:~,6(X, K) = K€+1;>.,€+,,-1r«1 + ~ - fl)/2)[r(T/2)/4] 

x [,>, r(1 + 6/2 + Z)(- 1))' 
Y r(1 + l)r(! + Z)r«3 + ~ - fl +-15--:-)j"2'---+---:Z7') 
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XG3,2 (Z211-e - J.l/2, (1 +€ - J.l)/2 -1;(11+ 7)/2\ 
3,54 1I/2,0,i;(1-€-J.l)/2+1,1-J.l/2 J 

(7.8) 

a form which contains sinh and cosh in the integrand 
when J.l = 0, with the - part of ± corresponding to the 
1 sum with 1 replaced by 1 + i. 

Similar, and useful results originate from these de
velopments when incomplete integrals are defined. Let 

EM;:~,6(X, K, a) 

= K1+t J",1 dt 101 
dv v"-1 (1- v 2)T/2-1 [l+"(1- f)6 /2 

X (1- K2f) (f-1> /2 R':(t) exp[ - xRjt)/v], (7.9) 

and similarly define fN;:t,6(X, K, a). Following the 
derivation of Sec. 3 and Appendix B, we ultimately 
identify 

and 

XG3,2(Z21- J.l/2, ~1 +€ - J.l)/2 -1; (II + 7)/2) 
3,5 4 11/2,0, "2;€ - J.l/2, (1- J.l- €)/2 +1 

-~{I-I+UJ (7.10) 

XG3,2(Z211-€ - ~/2, (1 +€ - J.l)/2 -1; (11+ 7)/2) 
3,5 4 11/2,0,"2; (1- € - J.l)/2 +1, 1- J.l/2 

+~{z-I+i}} (7.11) 

where f32 = 1 - a 2
• These integrals and their comple

ments appear in explicit expressions for the transport 
kernels in cylindrical geometry. 

8. SUMMARY 

In Sec. 2, two fundamental forms, basic to the analy
sis of the integral transport equation in infinite annular 
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An interesting identification for the meaning of the 
sums in Eqs. (7,8) and (3.9) can be found by remember
ing that € = ° or 1 means the G functions in the two equa
tions are identical. Comparing the integral representa
tion and the Sums (with the transformation ~ - ~ + 2J.l in 
one) gives 

geometry are defined. The first of these is related to 
transmission probabilities for particles that do not in
tersect the inner radius of an annulus; the second is 
useful for paths in which the inner radius of an annulus 
is intersected. The most general forms of the two func
tions are defined as integrals, whose integrands con
tain trigonometric functions of the important geometric 
angles to arbitrary powers. In applications, the powers 
become integral and certain limits of the general results 
must be evaluated. 

In Sec, 3, the two functions are identified as sums of 
known functions (Meijer's G function), from which sim
pler results may be obtained by consulting the litera
ture. In particular, double sums analogous to multipli
cation and addition expansions emerge, which are 
particularly useful in applications. The sums neatly 
factor into a sum over a geometric quantity which does 
not usually vary for the duration of a particular calcula
tion, and a sum over a cross-sectional quantity, which 
does. In Sec, 4, analytic transformations are invoked to 
reveal expansions useful for thick or thin annuli. As a 
by-product, simple forms emerge for the case of 
cylindrical geometry, and limiting values of the inte
grals are explicitly recorded for the case of voids. 

In Sec. 5, general asymptotic series are derived for 
both integrals in the limit of large interaction cross 
section. 

The generalized, associated Bickley-Nayler func
tions are identified as G functions in Sec. 6, and the 
incomplete form of these functions (useful for annuli of 
finite length) is also displayed as a sum of G functions. 
Expansions useful for long or short annuli are disclosed 
for the incomplete form, and asymptotic series are de
veloped for both forms. In a digressionary segment, the 
complete, generalized, associated Bickley-Nayler func
tions are expanded in a series of orthogonal (Laguerre) 
polynomials, and as a series of confluent hyper
geometric functions of the second kind, 

Some applications of the previous theory are estab
lished within Sec. 7. These include explicit double sum
mation formulas of use in numerical analysis, the 
evaluation of a multiple integral extracted from the 
literature, the illustrative identification of an interest-
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ing sum of Bickley-Nayler functions and the identifica
tion of related transport kernels. 

A companion paper exploits the theory presented 
here, with the intent of obtaining simple, swift, and ac
curate numerical evaluations for particular cases of the 
general integralso 
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APPENDIX A: USEFUL RELATIONS 

The key to the analysis of both integrals examined in 
the text can be found by deriving the relationship 

1 
fo t2--1(1_ t2)p-l exp(- xt) dt 

~ 2dJC2\I-V;)J ( =r(p)r(Z)G1: 3\4 ~,O;I_V_P/1T. AI) 

On a superficial level, this result comes from com
bining the hypergeometric functions appearing in ReC 
23 0 To obtain these functions, one expands the exponen
tial in Eq. (AI) as a power series, transposes the sum 
and integration, and identifies the remaining integral as 
a beta function. Split the resulting sum into its even and 
odd components to obtain the quoted result. This is in 
analogy with the procedure followed in Appendix B. 
(The case p = I gives an interesting identification for the 
incomplete gamma functiono ) 

The G function is described in Ref. S by Luke, whose 
notation is used throughout, with the addition of two 
(extraneous) semicolons in the parameter list. A useful 
property of this function is its representation as a finite 
sum of hypergeometric functions: 

(A2) 

for p "" q, I "" m "" q, and appropriate values of z. Here 
we use 1'> = P - m - n, the asterisk means j"* h, and empty 
products are set equal to 1. If any of the first m of the 
b/s differ by an integer, a limiting process is required. 
This is performed throughout the text, tacitly and other
wise. 'I.le representation is valid only when a j - b~"* N, 
N a positive integer, j = 1,. " ,n, k = 1, .•• ,m. 

Another relation involving G functions, vital to the 
text, is 

f" r"'(t-1)"'-8-1G;:-qn~tl~:) 
=r(a_{3)Gm+1.n (zla~,a) 

~+1. q+1 {3, bq 
(A3) 

(for certain ranges of the parameters) allowing multiple 
integrals to be explicitly evaluatedo A second result24 

that is utilized is 
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= (_ )rGm+1. n (z \ a" a) ,+1.q+l \; b, bq 

_ (_ r IT}:!1 r(b j - b) IT 1.1 r(1 + b - aj)zb 
ITJ=m+1 r(1 + b - bj) ITtn+1 r(aj - b)r(r) 

when a - b = r (r integral) coupled with the reduction 
formula 

The G functions may be analytically continued using 

G;:':(z \~:) =Gi;(~ I! = ~;) 
for appropriate ranges of z. 

(A4) 

(A5) 

(A6) 

Recall that symmetry exists for interchange of ele
ments of a, and bq on either side of the semicolon in 
explicit cases. Other useful results may be found in 
Ref. S. 

We also appeal to several properties of Gauss' hyper
geometric series. The most important of these involve 
the transformation formulas: 

2F1 (a, (3; y; u) 

_'" r(y)r(y- a - (3) 
=u r(y- a)r(y- (3) 

x 2 F1(a, 1 + a - y; 1 + a +{3-y; (u-1)/u) 

+u"-f(l- uV-"'-6 r (y)r(a + (3- y) 
r(a)r(!3) 

x 2F1(y- a, 1- a; 1 + y-a - f3; (u -l)/u) 

An identification of particular interest is 

2F1 (a, a +~; 2a + 1; u) ={[1 + (1- u)1 /2]/2}-2". 

Of course, the hypergeometric function 

is itself easily defined as a power series 

(
a, \ ) _ ~ r(a~+l)r(bq)x' 

,Fq bq x - ~ r(a,)r(bq + l)r(l + 1) , 

(A7) 

(AS) 

(A9) 

(A10) 

convergent for p = q + 1 and Ix I < 1 or p "" q and all x. 

In manipUlating gamma functions, it is well to be 
aware of the reflection identity 

r(z)r(l-z)=1T/sin1Tz (All) 

and the duplication formula 

.f.iTr(2z) = 22z- 1r (z)r(z + ~). 

APPENDIX B: EVALUATION OF €M::~,6 (x, fd 

Consider the integral 

Michael S. Milgram 

(A12) 

2465 



                                                                                                                                    

I:(K, ~, IJ., 0) 

= i1 
dt t~+IL(l- t2)6/2(1_ K2t 2)(e-ll /2 

X[(l- K2t2)1/2 _ K(l- t2)1/2]IL+n 

= (;\2/2)IL+n [1 dtt~+IL(l- t2)6/2(1_ K2t2)(e-IL-n-1l/2 

X(l +K[(l- t2)/~1- K2t2)P/2)-IL-n. (Bl) 

Substitute 

K2(1- t2)/(1- K2t2) = 1- u 

to obtain a form that may be represented as a Gauss' 
hypergeometric function according to Eq. (A9). Impose 
the subsequent transformation u - (u - l)/u given by Eq. 
(A 7) and find 

e (;\)IL+n reIJ. + n + 1) 
In(K,~,iJ.,O)="2 ;\re(iJ.+ n + 1)/2) 

x f 1 dt (1 _ t2)6 /2t~+/.I.{r(1)(1- K2t2r/2 
o r«iJ. +n)/2 + 1) 

X2F1«iJ. +n + 1)/2, (1- iJ. - n)/2; i; 7)(1- t2» 

Kre-1)(1- t2 1/2(1_ K2t2)(e-ll /2 
+ r«iJ. +n) 2) -

x 2F1«iJ. +n + 1)/2, (1- iJ. - n)/2; i; 7)(1- t2»} , 
where 7) = - K2/;\2. Absorb the embarassing factor 
(1- K2t2)1/2 into either the first or second 2Fl according 
to whether € = 1 or a, respectively, using Eq. (AB). 
Each of the resulting integrals is now in a form that 
may be explicitly evaluated. 25 Or, obtain an equivalent 
form by expressing the combination of terms in the 
curly brackets as a G function, according to Eq. (A2), 
and, after substituting 1 - t2 = v, determine 

e _ ;\e+/.I.+n-1r(iJ.+ n + 1) 
In(K,~, iJ., 0)- 2/.1.+n+lr«iJ. +n + l)/2)r«IJ. +n)/2 + I-E) 

x [1 dt (1 _ t) (~+/.I.-1l /2t6 /2 

G21 ( t\(I+E-IJ.-n)/2;(I+E+iJ.+n)/2\ 
x 2: 2 - 7) a. 1.. J. 

,2. 

This integral may be evaluated8 and the immediate 
result is Eq. (3,7). 

To confirm the final result (3.9), express 

G2,2 L 1- 0/2, (1 +E - iJ. - n)/2; (1 +E + IJ. +n)/2) 
3,3\ 7) a,~; - (1 + ~ + iJ. + 0)/2 

as a sum of two 3F2'S according to Eq, (A2), expand 
each of the resulting hypergeometric series explicitly 
after the manner of Eq. (Ala) and transpose the sums 
in Eq. (3.6). This establishes that 

J- = Kl+~A '+/.I.-lr(~)r(i)r«l + ~ + IJ.)/2) 

{ 
(-7)'r(l + 1 + o~ 

x y re1+l)r(1+1)r«3+~+IJ.+0)72+1) 
x'6 (- oA/2)nr«iJ. + n)/2 + 1) 

n 
x r«l + IJ. + n - E)/2 + Z) [r«n + 1)/2)r(1 + n/2) 
x r«iJ. +n)/2 + I-E) re(l + iJ. +n +E)/2 -1)1-1 

2466 J. Math. Phys., Vol. 18, No. 12, December 1977 

- y {z -1 + U}, (B2) 

where {I -1 + H means the repetition of the 1 sum with 
all values of 1 replaced by 1 + t This form is obtained 
by considerable use of the duplication and reflection 
formulas (All) and (A12). Now consider~, the inner 
sum over n in Eq. (B2) and separate this into its even 
and odd components. This yields two sums which are 
identifiable as generalized hypergeometric series. 
Explicitly, 

X 2F3(1 + IJ./2, (1 + IJ. -E)/2 +l;i, IJ./2 + l-E, 

(1 + IJ. +E)/2-1;02;\2/4) 

x 2F3 «3 + IJ.)/2, 1 + (IJ. - E)/2; i, (3 + IJ.)/2 - E, 

1 + (IJ.+€)/2-1;02;\2/4). 

This combination of hypergeometric functions may be 
expressed as a G function according to Eq. (A2). So, 

S __ !c2'2f02~\-iJ./2,(l-IJ.+E)/2-1; ) (B3) 
n- rr 2,4\ 4 a,~;E-fJ./2,(1-fJ.-E)/2+1 

and 
eM'_ ~ (x K) = K~+I;\ <+/.1.-1 r«l + § + fJ.)/2) 

v, /.1.,6 , 2 

[ 
(-7)'r(l+l+o 2) 

x ~r(t+l)r(1+1)r«3+~+fJ.+o) 2+1) 

X [1 dv vV-l(l_ V2r/2-1 

XG22 (x 2;\21-fJ./2,(1-iJ.+ E)/2-1; ) 
2:4 4v2 a,~;E-fJ./2,(1-fJ.-E)/2+1 

- ~ {l -1 + ~} J. (B4) 

Substitute v2 = 1/t and obtain an integral of the form 
evaluated in Eq. (A3). The result (3.9) is an immediate 
consequence. 
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Dispersion equations for coherent propagation of scalar waves in random distributions of pair·correlated 
obstacles (aligned or averaged over alignment), are obtained by averaging the functional equations relating 
the mUltiple and single scattered amplitudes of the obstacles. The reSUlting bulk indices of refraction and 
bulk parameters, for aligned nonradially symmetric scatterers, specify anisotropic media; the anisotropy 
arises either from the scatterers' properties (physical parameters or shape, or both) or from their 
distribution, or from both. The illustrations include both isotropic and anisotropic cases (in one to three 
dimensions), and the explicit results generalize earlier ones. 

1. INTRODUCTION 

In earlier papers, 1,2 we considered scattering of a 
plane wave exp(ik· r) by a slab region of randomly dis
tributed uncorrelated obstacles. For negligible bound
ary layer effects, the average wave and the associated 
index of refraction (1'/ =K/k) were expressed in terms1 

of the conventional scattering amplitude g(r, k) for one 
obstacle excited by exp(ik' r), or in terms2 of a gen
eralization for excitation exp(iK ·r). In the present 
paper (Sec. 3), representations for 7) and the bulk pa
rameter!;; in unbounded distributions are derived with 
slab-region applications in view. For pair-correlated 
distributions (Sec. 4), we average the functional equa
tion3,4 for the multiple scattered amplitude G = G[g(r, k)] 
(with the ensemble average for two fixed scatterers 
replaced by that for one, 5,6 a procedure which may be 
interpreted by alternative approaches1,8) to obtain dis
persion equations for 1'/. The relations of these key 
equations [(60), (64)] to existing approximations for 1'/ 
in terms of g are indicated, and detailed applications, 
based on eigenfunction series appropriate to the sym
metry of the correlations, are given in Secs. 5, 6, 
and 7 for two, three, and one dimenSions, respectively. 

For radial symmetry (circular in Sec. 5A, and 
spherical in Sec. 6A), to facilitate determining 7), we 
reduce the initial homogeneous algebraiC system (in 
terms of conventional scattering coefficients and lattice
sum analogs) to an inhomogeneous system. The cir
cular case is analyzed in detail to provide prototypes 
for comparison with earlier forms for an equivalent 
uniform slab. For aligned elliptic cylinders (with non
confocal, non similar , and nonparallel scatterer and 
exclusion surfaces) a Mathieu function expansion (Sec. 
5B) leads to explicit low frequency forms «127), (143) J 
which are then generalized directly to the analogous 
problem for triaxial ellipsoids «174»). The results for 
7) specify anisotropic media; the anisotropy arises 
either from the scatterers' properties (physical param
eters or shape, or both) or from their correlations, 
or from both. 

We begin with several definitions and representations, 
and use (1: 3. 4) for Eq. (3.4) of Ref. 1, etc., as well 
as essentially the same notation as before. 1-4 

a)Work supported in part by National Science Foundation 
Grants GP-33368X and MPS 75-07391. 
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2. DEFINITIONS AND REPRESENTATIONS 

We consider a plane wave ¢ exp(- iwt), 

¢ = exp(ik' r), 

k=kk(a)=k(icosa+xsina)=ZY+XT, 0~a<1T/2, (1) 

incident on a slab distribution of identical scatterers 
(completely bounded obstacles, parallel cylinders, or 
parallel slabs in three, two, and one dimensions re
spectively). The obstacles are specified by their known 
normalized isolated scattering amf)litude g(r, k), such 
that for lossless scatterers - Reg(k, k) = ID2lg(r, k) 12 
with Wl as the mean value over all directions of obser
vation r, 1. e., Wl3 = (1/41T) f dO(8, 'P), Wl2 = (1/21T) f de, 
and Wl1 is one-half the forward and reflected values. 
For lossy scatterers, 

- Reg(k, k) = (0' A + a 8)/0' 0, 0'8 = O'oWllg(i\ k) 12, 

0'0= 41T/k2 , 4/k, 2cOSQ (2) 

with 0' A and 0' s as the absorption and scattering cross 
sections respectively. The order for the sequence 0'0 
(and for subsequent sequences) corresponds to three, 
two, one dimensions. In general, we use three-dimen
sional terminology. 

For a fixed configuration, a scatterer is located by 
the vector rs from r:= 0 to the center of its smallest 
circumscribing sphere (of radius a), and all centers 
are within the slab region 0 ~ z ~ d. The obstacles may 
be asymmetrical, and either similarly aligned or 
averaged over alignment. For the ensemble of configu
rations, we specify the one-particle statistics by the 
average number (p) of scatterers in unit volume, and 
the two-particle statistics by pj(R) withj(R) as the dis
tribution function for the separation (R ts = r t - r.) of 
pairs. The minimum separation of centers as a function 
of R specifies the exclusion surface R=b(R); we re
quire j(R) = 0 for R < Ib(R) I, andj(R) -1 for R - 00. If 
b = b:A. is a sphere with radius b ~ 2a, thenj(R) is the 
usual radial distribution function. We use j(R) not only 
for spherical obstacles of radius a but also for more 
general shapes R = a(R) (aligned or averaged over align
ment) regarded as if enclosed in transparent coatings 
whose outer surfaces are spheres of diameter b; the 
transparent shell has no direct influence on an isolated 
obstacle's scattering properties but preserves the radial 
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symmetry of the distribution. For cases where we aver
age over alignment we assume the distribution of align
ments to be uniform and uncorrelated with position or 
separation. The most general case we consider corre
sponds to differently aligned nonsimilar scatterer (a) 
and exclusion (b) surfaces. 

For 1> as the excitation for a single obstacle at the 
phase origin (r:= 0), the external field satisfies 

(V2+k2)~=0, k= Ikl=27T/X, ~=~(k)=1>+u. (3) 

The scattered wave u is the radiative function 

u(r) = Co I [ho(k I r - r/l ) Vu(r/) - uVho] 'd@i(r/):;{ho, u}; 

ho:=h~1>(k I r - r/l), H~i)(k I r - r/l), exp(irx + iy I z - Z' j), 

Co = k/i47T, 1/i4, 1/i2y (4) 

with@i =en as the obstacle's surface, n as the outward 
normal, and V == V." (In one dimension, the brace 
operation with V = 20., corresponds to the sum of the 
values at Zl = a and - a. ) In the scatterer's interior 58 
the field is a nonsingular solution of 

(5) 

where 1)' is the relative index of refraction. On @S, we 
require 

(6) 

with B' as one of the scatterers' relative parameters 
and BI1)/2 = C' as the other. (For example, in small 
amplitude acoustics, ~ determines the excess pressure, 
B'V~' the particle velocity, B ,-i the relative density 
for lossless media, and C' the compressibility. ) Re
writing (4) as u = {h o, ~}, we have from (6) 

u = Co I [hoB'V~1 - ~/Vho] 'd@i:; rho, ~] (7) 

and from Gauss' theorem and (5), 

u = ~ - 1> = - Co I [(C ' - 1)k2ho~1 - (B' - l)Vho 'V~/] dS8(r/) 

(8) 

with C ' =BI1)/2. We also use (8) for ~' - 1> at r in 58 as a 
principal value in that the singularity of ho(k I r - r' I ) 
is excluded by I r - r' I = E - O. 

We write the as~mptotic forms of (4), (7), and (8) for 
r- 00 as u - h(kr) g(r, k) with h as the asymptotic form 
of hoi the corresponding representations for the scat
tering amplitude g(r, k) are 

g{k .. k} = {exp(- ik,. • r/), u}, g[k .. k] = [exp(- ik,. • r/), ~], 

g[k .. k]=[exp(-ik.·r/),~], k,.=kr. (9) 

Using the complex spectral representation3•4 for ho in 
(4), we have (at least for r> a for all r, and for 
r>(r -r/)max for given 17), 

u(r)=jexp(ikc'r)g(rc,k), kc=krc. (10) 
c 

In three dimensions, 4fc=f(8c' CPc) and fc=(1/27T) 
~ f fc!..n(8 c, CPc) with contours as for h61); in two, 3 

r c = r(8c) = k(9c) and f c = (1/7T) J d8 c with contour as for 
H~1>; in one, kc == ± YZ and f c selects the sign correspond
ing to z = ± I z I. 
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For impenetrable scatterers, we take ~' = 0, and con
sider either 1> + U = 0 on @S (e. g., a pressure release 
surface) or 0"(1) + u) = 0 on @S(a rigid obstacle). For 
such cases, we use only the brace operation. 

For a fixed configuration of N obstacles with centers 
located by ra (and s = 1, 2, ... ,N), we write the net field 
asi - 9 

V.(r - r.) == v.(r - r.jri , r 2, ••• , r N ) 

with V. radiating from the scatterer fixed at r •. 
Equivalently, with reference to scatterer t, 

(11) 

(12) 

where ~t may be regarded as the net excitation. The 
functions ~t' ~t' Vt satisfy the same relations (3)-(8) 
at scatterer t as ~, 1>, u for the single obstacle. In 
particular, 

~t - ~t = [ho(k I r - r t - r/l), ~t(rt + r/)], (13) 

where the volume integral is over 113 t (r /) with r' as the 
local vector from the point r t. For I r - r t 1- 00, we have 
Vt(r- r t)- h(k Ir - r t I) Gt• 

The corresponding multiple scattered amplitude Gt 
may be expressed in any of the forms in (9), e. g., as 
the volume integral 

Gt(r) = [exp(- ik •• r/), >I< t(r t + r')] (14) 

or as {exp(- t'k •• r/), Vt} over the surface @St, etc. The 
analog of (10) is 

Vt(r-rt)=j exp[ikc'(r-rt)]Gt(I'c)' (15) 
c 

The requirement that ~t and ~. = 1>. + u. (for an arbitrary 
direction of incidence r.) satisfy the same conditions on 
@it and in58 t corresponds to {~.,~th=o over@it(r /). Con
sequently, Gt(- r.)={1>., Vt}t ={~t' u.h, and we obtain3•4 

Gt(r) =gt(r, k) exp(ik -r t ) 

",,, r (A A) (A) ( ) +L..JsJc gt r,rc Gs rc expikc·Rt., Rts=rt-r., 

where we used the reciprocity relation g(r, k) 
=g(-k-r). 

(16) 

In Secs. 3 and 4 we average (11) and (16) over an en
semble of configurations to derive representations 
(from ~) and dispersion equations (from G) for the bulk 
index 1). 

3. THE AVERAGE WAVE 

The average of ~ over a statistically homogeneous 
ensemble of configurations of N identical and aligned 
obstacles whose centers rs are uniformly distributed 
in V may be written1•5- 9 

(~(r) = 1> + p Iv (V.(r - r.)sdr., 

p=N/V, (V.).=(~s).- (<1>.)., (17) 

where (>I<) is independent of the configurational variables 
(rIO r 2 , ••• , rN ), and ( ) s' the average with r s held fixed, 

Victor Twersky 2469 



                                                                                                                                    

depends only on rs (now, a dummy). We use the radia
tive form (Us(k»s if r is outside of 5Bs =m, and (ws(K'»s 
- (<I>.(k». if inside. Equivalently, we work with the 
principal value form for all r, 

(Ws). - (<I>s). = [ho(k 1 r - rs - r' I), (ws(rs + r'»s], 

(ws(rs + r'»s = exp(irxs) (ws(zs + r'»., 
(18) 

where the second equation, appropriate for V unbounded 
along x (and y), preserves the phase parallel to the 
boundaries (Snell's law). The corresponding average 
scattering scattering amplitude is 

(Gs(r»s = [exp(- ik,. • r'), (ws(rs + r').] = G(r sir) 

= exp(irxs) G(zs:r), 

G(z.:r) = [exp(- ikT ' r'), <w.(z. + r'»s]' (19) 

Using (18) in (17), we integrate1 over x., Ys to obtain 

(w) == 1> 

+ C lod [exp[ir(x - x')+ iyi z - Zs - z' I], (ws(zs + r'»J dZ., 

c = 2rrp/rk, 2p/r, p (20) 

with z.;; z - Z' 'f E, E - O. For the transmitted field, 1 at 
least for z > d + a, 

J,
d A 

(w> = WT = ¢[1 + c 0 exp(- iyzs) G(zs:k) dz s] =1:¢. (21) 

Similarly, for the reflected field, 1 at least for z < - a, 
d A 

(w) - ¢ = wR = ¢'c 10 exp(iYz.) G(zs: k') dz. =':R¢', 

I{l'=exp(ik"r), k'=k(rr- a)=- zy+xr. 

The corresponding internal field, at least for a < z 
< d - a, consists of essentially two waves1 

(22) 

(w> = WI =A1 exp(iKt • r) + A, exp(iK.z • r) = Wi + w, =6 Wi, 

(23) 

with x' K j = r as discussed for (18). For brevity, we use 
~l(r) = ~ Wj (r) with i = 1, 2. If the properties and distri
bution of the scatterers are symmetric to reflection in 
z=O, then1J1=1J2, r2=-rV andK.z=Iq=-Zr1+xris 
the image of Kt. 

At least for r s not within boundary layers (say, at 
least for Z < Zs < d -Z'), the functions ( >s consist of two 
terms with translational property II (zs + r') =/1(r') 
x exp(irjzs)' Thus, we may write 

(ws(rs + r'»s =61ji(r') WierS), 

(<I>.)s =61>j~i' (Us>. =6 Ui Wj, 
(24) 

where <pi, rpi, ui satisfy (3)- (8) as for a single obstacle 
and may be interpreted as the fields of an equivalent 
scatterer. Similarly 

G(r .. ;r) =6 giWi =6 g(kr 1 K i ) Wi =6 Gi(rS;r), 
(25) 

where we use g(kr IKj) or gi to distinguish the present 
amplitudes from those of Ref. 2. We have g(kr I K i ) 

= {exp(- ikr • r'), u i } = [exp(- k,. • r'), <p j
], etc., as well 

asg(-kaIKj)={¢a,ui}={¢l,ua}, etc., with 1>a+ua as 
the solution for the conventional isolated scatterer for 
arbitrary direction of incidence ra = ka/k. 
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From (20), (23), and (25) we obtain 

W =E"'+E'''''+ 2yc 6 g[KjIKj] W ='" ~ (26) 
I 'I-' 'I-' i K'i _ k2 j L..J ;, 

where E = 0 and E' = 0 are the extinction (of 1» and 
cancellation (of ¢') relations: 

E(l) = 0 = 1 + C /1 G(zs: k) exp(- iyz.) dzs 
o 

+ . ('Z)"Gj(Z:k) 
lC exp - 1Y L..J --- , r i - y 

d 

E'(Z') = 0 = c I G(zs: it,) exp{iyzs) dz s 
fl.,' 

Gi (d -l': k') 
- ic exp[iy(d -Z')]6 (27) 

rj+y 

The coefficients of Wj provide the boundary indepen
dent equations9 

K'f - k2 =- i2cyg[K; IKi ]= - {P/co)g[KjlK;] 

=- ipkaog[Ki IKj ], (28) 

a form obtained originally by Reiche10 for spherical 
dipoles, and by Foldy5 for monopoles. The present 
argument [K I K] indicates explicit restriction of the 
form to the volume integral representation of g as in 
(8), i. e. , 

K~ - k2 = - (p/co)[exp(- iKi • r), \Vi] 

=p J[(B'K" - k2 ) exp(- iKi ,r'W(r') 

- (B' - 1) V exp(- iKj 'r') 'V<Pi)d 5B(r'). (29) 

The analog for B' = 1 with K,2 - k 2 as the scattering po
tential was derived originally by Lax,6 who regarded 
g[K I K] as proportional to the result for one scatterer in 
a medium specified by K. 

We rewrite (29) in terms of the external surface inte
gral form (4) ass 

K~ _ k2 =_ pg{KjIKj } , 

• cJ1- p J exp(- iKi 'r')W - ¢j)dSSJ' 

g{Ki I Ki } = {exp(- iKi • r'), ui
}, (30) 

or in terms of the internal surface integral form (7) as 

Jd _ k' = _ pg[Ki IKi ] 

• Cull- p f exp(- iK; 'r') <pI dm] , 

g[K; I K j) = [exp(- iKi • r'), <pi). (31) 

If the argument were kr I Ki corresponding to g(kr I K j) 
of (25), the g forms in (29)-(31) would be equivalent; 
for argument Ki I K j they are not. The three equations 
for K'f - k2 suggest different interpretations in terms of 
unconventional isolated scatterers, as well as different 
expansion procedures in powers of k, K. 

From (31) we have 

K'f - k2 = - p j[exp(- iKi • r') V(1)i + ul
) 

_ (cpi +ui ) vexp(- iK; 'r')] 'd~ 

+ p(K~ - k2)[ exp(- iKi • r') <pi dm, (32) 

which leads directly to analogous relations for impene-

Victor Twersky 2470 



                                                                                                                                    

trable scatterers, 1jJ' = 0 in 58. Thus if n' VIjJ = 0nljJ = 0 
on@5, then 

K~ - k2 = p J (</>' + U') on exp(- iK, • r') d@5, (33) 

and if IjJ = 0 on @51, 

~ - Til- = - p J exp(- i~ • r') 0n(</>I + ul ) d@5. (34) 

Both cases are covered by 

~ - k2 =- (p/co){exp(- iKI 'r'), </>1 +ul} 

=- (p/co)g{~ IKI }'. (35) 

From (21), (22), and (25) we obtain 1: and ffi, and, 
after using (27), 

d 

~ = c f G(zs: k) exp(- iyzs) dz s 
d-I' 

. [. (d l')]" GI(d -l' :k) 
- lC exp - lY - LJ r ' I-y 

I 

ffi=c f G(zs:k/) exp(iyzs)dzs 

o 

(36) 

With (20), (27), and (36) we could seek the field within 
the boundary layers. However, our primary purpose 
is to determine 1/ within an unbounded distribution, and 
to obtain approximations which may be used to specify 
1: and ffi for an equivalent homogeneous slab. 

To facilitate discussion, we list results for the uni
form slab in forms that arose in earlier1•2 approxima
tion procedures for the distribution. Thus, if the trans
lational property (25) holds for 0.; Zs .; d, then, essen
tially as in (2: 10), 

>¥/ =Al exp(i~ • r) + A z exp(iK,z • r), Al = (1- Ql)/D, 

A z = Ql(l- Qz) exp[i(r1 - r 2) d]/D, 

D = 1- Q1Qz exp[i(r 1- r z) d], 

Q _ Zi -1 _ (r, - 'Y,)g(ki I~) 
i - ZI + 1 - (ri +y/)g(kl IKi ) , 

Yi=±Y, kl={~'}' k:={~'}, 
with QI as single-surface Fresnel reflection coef
ficients, and ZI as the associated impedances. 
Similarly 

>¥T= (1- Q1QZ) exp[i(r1 - y)d] </>/D, 

>¥R = - Ql{l- exp[i(r 1 - r 2) d]} </>' /D, 

as in (1:3.14). Corresponding to (25), we havez 

G(r;r) =®(k,.1 Kt) exp(iKt - r)/D 

(37) 

(38) 

+®(k,.1 K,z) Ql exp[i(r 1 - r z) d] exp(iK,z - r)/D, 

(39) 

where®(kr IKI)=(1-Q/)g(k,.IK1) with i=1,2 for </>,</>' 
incident on the distributions z ~ 0, z.; 0 respectively, is 
the multiple scattered amplitude of an obstacle at the 
phase origin of the half-space. For the half-space prob-

2471 J. Math. Phys., Vol. 18, No. 12, December 1977 

lems, the reflection and extinction relations are 

Qn = i(- 1)nc@(k~ I Kn)1 K,.)/(r n + Yn), 

1 = i(- 1)nc ®Ckn I K,,)/(r n - Yn), n = 1,20 
(40) 

For n= 1, with ~ =K, ZI = Z, we have, as in (2:14), 
(2:17), 

{
1} _ cg(k I K) Of cg(k' I K) . 
Z - i(r-y) i(r+y)' 

(41) 

for n=2, we replace Z by -Zz, and r,K by q,K,z. The 
forms >¥[r, Q(Z)] are general results for a uniform slab, 
and only the expressions Q(g) of (37), and reg) and 
Z(g) of (41) (henceforth, the interface approximation), 
relate the results to the distribution of scatterers. 

Writing >¥E for either >¥T or </> + >¥R for z ~ d or z';; 0 
respectively, we see that at z = 0, d the forms in (37) 
and (38) satisfy 

>¥E=>¥/, o8>¥E=Bl1 08>¥/+B1Z o,,>¥1, (42) 

where B11 and BIZ, corresponding to Band B' /ik' x of 
(1:3.26), are specified by 

- (-1)nZn=(Bl1rn+B1ZT)!r, 

T= k'x = K,,' i= k sina, T/Y = tana, 
(43) 

essentially as before l • 

In order to interpret the second condition in (42), we 
refer back to the scalar field IjJ of (3), (5), and (6) and 
introduce an associated vector field w such that 

w=VIjJ, V'w=-kzljJ; 

w'=B'VIjJ', V 'W'=-kzC'IjJ', 1J,z=C'/B'; 

1jJ=IjJ', n 'w=n'w' on @5. 
(44) 

Similarly, corresponding to (>¥) we consider the vector 
field tyv) satisfying 

WE=V>¥E' V'WE=-kz>¥E; 

Wr=B'V>¥/, V'W/=-kzC>¥r; 

>¥E=>¥/,fi·WE=n·W r =1j·B·V>¥1 atz=O, d; 

B=6 BijZiZj, 21 = Z, 1.z =x, 

i. e., the equivalent uniform slab is specified by two 
bulk parameters, the dyadic B and the scalar C. 

From (45), we have 

ThUS, corresponding to wr as in (23), 

K. S. K = K. B. K1j2k 2 =k2C, 

r~Bl1 + r i T(BI2 + B21 ) + T2B22 - k2C = 0, 

1Ji = (r~ + r)/k2
, r/ T= cot/3/. 

For a uniform slab, given Band C, we construct 

(45) 

(46) 

(47) 

rl(a), then 1jj(a) and the complex angles /31 (a). For the 
present synthetic medium associated with the average 
wave (>¥), once we have obtained K~ - k2 = r~ - i and ZI' 
we use (43) and (47) in determining C and B. From (43) 
and r 1 + r 2 = - 7(B12 + B21 )/B11> we obtain Z1 - Z2 
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= (B12 - B 21 ) tana, so that if B12 =B21 (corresponding to 
inversion symmetry), then Z1 = Z2 = Z, and Q1 = Q2 =Q. 

The interface expressions (38) for IlJ T and IlJ R in terms 
of Z(g) of (41), or of the corresponding B, C, may in
troduce discrepancies for the boundary effects. The 
representations for KI as in (28)- (35) are independent 
of boundary layers, and we may derive analogous rep
resentations 9 for B that are similarly independent; such 
results for B apply for an unbounded distribution, and 
their use in Zl to construct IlJ T and IlJ R of (38) may also 
introduce discrepancies for the boundary effects. Com
parison of explicit approximations for B determine 
ranges of the parameters in which the two procedures 
give the same values, and in which the layer effects 
should be negligible. 

Derivations of boundary independent representations 
for the bulk parameters Band C of isotropic distribu
tions are discussed elsewhere in detail; in particular, 
the procedure (9: 51)- (9: 54) may be extended directly 
to the anisotropic case. Thus as before, 9 we write (17) 
within the distribution as 

(llJ(r) = 1>(r) + p Iv_\., (Us(k)sdrs 

+ p 1))3 [(llJs(K')s - (<I>s(k)s] drs. 

Similarly, the associated vector field (W; is now 

:8 0 v(llJ(r) = V1>(r) + p Iv-))3 V(U) sdrs 

+pj' [B'V(IlJ)s- V(<I»s] drs ))3 
with V acting on r in the supressed arguments r - rs' 
The gradient of (48) equals 

V(IlJ) = Vrp + P Iv-ll3 V(U ~ sdr 

+ p 1 [V(IlJ~s- V(<I»s] drs, 
513 

(48) 

(49) 

(50) 

where the surface integrals ± f (1lJ) s d@;that arose in 
the interchange of V and J dr. canceled by continuity of 
(1lJ ~. on @5 (the surface traced by the centers of the 
closest scatterers to the fixed point r, with r - rs = r' 
as the full set of scatterer's surface points). Similarly 
the divergence of (49) yields 

where the surface integrals ± J (W).· d@;that arose in 
the interchange of V· and f canceled by continuity of 
n.(W)s on IS, and where we used v2(IlJ)s=-K'N)s in 
the volume 5E around r (a volume equal to that of one 
scatterer with r - r s = r' as the full set of internal 
scatterer points). 

From (48) and (51) 

- [V· (:8. V) + k2]N(r) = p(B'K,2 - k 2
) J N ~sdrs, 

'!l 

and from (49) and (50), 

(:8-1). V(IlJ) =p(B' -1) 1))3 V(IlJ).dr., 

(52) 

(53) 

with I as the identity dyadic. Substituting N) = L; IlJ I (r) 
=L;Ai exp(ikl · r) of (23) and (1lJs).=L; 1lJ/(rs)I/}(r- rs) 
= L; 1lJ/(r) exp(- ikj • r')q;l(r') of (24), we obtain from (52) 
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~ . :8. K, - k 2 = p(B'K,2 - k 2l.f exp(- iK,. r')iJ;/(r') dm(r'), 

C - 1 = (C' - 1)p 1 exp(- i~. r')iJ;1 dm (54) 

with 7)~Ki . B' ~ = C, 7),2 B' = C'. Similarly from (23) and 
(24) plus the additional step, V r[ IlJ j (r .)q;i (r - r.) 1 
= llJi(r.)vl/i(r'), we obtain from (53) 

~. (:8- f).~ 

= p(B' - 1) f exp(- iK, • r') (- i~) • VIjJI (r') d m (r') 

= (B' - 1)p 1 Vexp(- iK j • r'). vl/i dm. 

(55) 

Thus, if C' = 1, then C = 1 and 7)j2 = Ki . 13 • Ki specifies 
propagation; if B' = 1, then:8 = f and 7)2 = C. 

Subtracting (55) from (54), we again obtain Ki - k 2 as 
in (29). The same result also follows 9 from (48) if we 
decompose the integral over V - m as integrals over the 
boundary layers, say V, and V", plus the integral over 
V- m - V, - V ,'= VB' In VB, we use (24) and Green's 
theorem on (K2 - k2 ) exp(iK. rs)u i = exp(iK· r.)v~1 
-uIV;exp(iK. rs) to rewrite f vB as surface integrals 
over the layer surfaces (z. = i, d - i') and over @5 (cen
tered on r). The layer integrals plus 1> provide the 
extinction (E = 0) and cancellation (E' = 0) relations of 
(27), and the remainder, (1lJ) = IlJ [ of (26) expressed in 
terms of f<0 and fm reduces 9 to (29), 

Alternatively, if we multiply (55) by k 2 and (54) by 
KL and then subtract, we have 

K/ • :8. K/ (K~ _ k 2) 

=p J [Ki(B'K,2- k 2) exp(- iKj • r') q;/(r) 

- k2 (B' - 1)Vexp(- iKj • r')· Viii] d m, (56) 

which may be obtained from (49) by generalizing the 
development (9: 39) ff, i. e" by an analog of the Green's 
theorem procedure for obtaining Ki - 122 from (49). From 
(56), corresponding to the form (32) 

K i • B. Ki(K~ - k 2
) 

= - p I [K~ exp(- iK/ . r')v(rp i + u i
) 

- k 2 (1)j + ui)V exp(- iKj • r')]' d IS 

+ p(Ki - 1?2)B' f V exp(- i~ , r')· Vq;i dm. (57) 

For impenetrable scatterers, B'VIjJ/ = 0, we see that 
~ - ~ 2 

(33) for 0n<P(@5) = 0 corresRonds to ~ • B· ~ = 7)i , and 
(34) for iJ;(@5)=0 to K·:8.K=L 

4. DISPERSION RELATION 

Equation (20) for N) in terms of (1lJ .• is, or (26) for 
(1lJ)=IlJ[ in terms of (Gs (r)s=G(rs;r)=exp(i7JCs)G(zs;r) 
is essentially the first of the hierarchy integral rela
tions for the ensemble. The ensemble average of (16) 
with scatterer I fixed corresponds to the second, 

(Gt(r)t =gt(r, k) exp(ik. r t ) 

+ p J drs!(Rts ) J>t(r, r e)(G • (Te) st exp(ikj • R ts), 

Rts=rl-r., (58) 

where f(R) is zero for R < I b(R) I, say for R in v (b) with 
vas the exclusion volume. The function (G)sl' the 
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average over all variables except r sand r to may be 
represented8 in terms of gs, (G;; st, and an integral over 
drm of (G,Jstm times the three-particle distribution 
function q(Hw Hsm). We truncate the hierarchy system 
by means of (G)st"'(G)s' For identical scatterers, in 
terms of (G)s= G(rs; r), we thus replace (58) by 

G(r t ; r) =g(r, k) exp(ik· r t) 

+ p fv_vdrsf(Hts) Jeg(r, re)G(rs; re) 

X exp(ike · Hts ), (59) 

which we use for aligned asymetrical obstacles, as well 
as for the average over alignment when the distribution 
of alignments is uniform and uncorrelated with position 
or separation. The approximation (G)st",(G)., 
analogous to (<I» st '" (<I» s as used by Lax, 6 excludes 
various scattering processes for fixed sets of obstacles. 
Working with the symbolic form 8 Us(ra - r s)= U~=u~, <I>s, 
we restore the processes for two fixed obstacles by 
means of (8:48), i.e., (<I»s ",[1-u1·u!]-!·[(<I>';s 
+ u; . (<I> t) t 1; the first term corresponds to G (r s; r c) as in 
(59), the first two terms to G(rs; rcl + Ie' g(re, re,)G(r t ; r e,) 
x exp(ikc' . R.t )' etc. To restore scattering processes 
for three fixed obstacles would require double integrals 
f drs J drm involving f(Htslf(Hsml and q(Hts , Hs".). See 
Keller 7 and Ref. 8 for procedures not based on the 
hierarchy integrals. 

In (59) we write f v-vf= f + f (f- 1); for f we take 
boundary layers (VL , Vd into account and use V-v 
= VL + VL ,+ V'; for f (f-1), becausef-1 as R-oo, we 
replace V by V~ (all space) and integrate over V~ - v 
= V It

• In V' and V" we use G of (25), and reduce f v' 
to integrals over the layer surfaces (zs=L,d-L') and 
exclusion surface SIb) [by Green's theorem, essentially 
as discussed for (48) in the paragraph following (55)]. 
The resulting coefficients of g(r, k.)<!>(r t ) and g(r, k')<!>'(r t ) 

are extinction (E = 0) and cancellation (E' = 0) relations 
as in (27), and the coefficients of \[tl(r t ) provide disper
sion equations that determine K I • 

We write the dispersion equation in terms of integrals 
over the exclusion surface S(b) and the depleted volume 
V~ - v(b), such that S(b) = Sn with n outward from v(b). 
Thus 

g(kr I Ki ) = - (Ki! k2)c 0 {exp( - iKi • H), U Ih 

+ p ;:~-v [f(H) - 1] exp(- i~. RlU I dR, 

(60) 

where U is a radiative solution of (V~+k2)U=0 in the 
form (10), 

U(k., kH;~) = UI = Jeg(r, relg(ke I~) exp(ikc ' R) 

= fe F(k., kel~) exp(ike · H) (61) 

with F as the associated radiation amplitude. In terms 
of the Green's surface integral form (4), we have 

F(k., k.1~) =g(i\ ra)g(ka I~) = {exp(- ik. . H), UI (R)h 

(62) 

and in (60), we identify the the analog of the form in 
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(30), 

F{k., KI K}::{exp(- iK· R), Uh. (63) 

From (61) and (63) we rewrite (60) in terms of F, and 
determine K; by 

M(k, K) = p fv ~-v [feR) - 1] exp[i(k - K) . R] dR (64) 

Although U is not defined for H in 1) (b), for radially 
symmetric statistics we may use eigenfunction series 
and replace the integral over SIb) by the result for 
b - 0 with compensating extension of the integral over 
Voo - v(b) to V~ in the sense of a principal value. 

Before proceeding to detailed applications, we in
dicate the relations of (64) to existing apprOximations. 
If we write 

F{k., KI K}=g(r, k)g(k 1 K) 

+ {[exp(- iK· R) - exp(- ik· R)], uh, 

then the leading term of (64) for r = k. and p '" 0, M = 0 
is 

K2 - k 2 '" (p/co)g(k., k) = - Pikaog(k, k):: 2k(Kr k), 

2 ImKR = - paoReg(k., k) = pea A + as), 

ReK~k= 1 + (pao/2k) Img(k, k), 

(65) 

where, as discussed before, ! K R is essentially 
Rayleigh's result!! generalized to arbitrary scaUerers. 

To modify ImKR and include correlations, we approxi
mate the complex Hankel-type integral feFM of (64) by 
the real Bessel type, and replace g(kr I K) by g(r, k). 
For Img» Reg, we obtain 

2ImK'" pa A + pao W[ ig(r, k) 12 W(r, k) J, 
w(r, k) = 1 + p f (f(R) - 1J exp[ik(r - k) • RJ dR. (66) 

Fa: fSR) = feR) equal to the radial distribution function, 
W(r, k) is a standard form in x-ray diffraction by liquids. 
For average spacing between centers small compared to 
A, to lowest order in k, 

2ImK'" pea A + as W), W:: 1 + p f[f(R) - 1JdR, 

as applied elsewhere in detail. 12 

Alternatively, if we write 

F{kr> KI K}=g(r, K)g(kK IK) 

+ {(exp(- iK 'R) - exp(- ikK 'R), U}, 

kK=kK, 

and substitute the leading term into (64) for r = K, 
then 

2 2_ P A A [ 1 
K - k - - c:- g(K, K) 1 - g(k

K 
I K) 

(67) 

x f g(K, r e) g(ke I K) M(ke, K)]"1, ke = kr c' (68) 
e 

Essentially this form in terms of one g function (with 
arguments K, K and K, ke) is given by Lax, Ref. 6(b), in 
(3.19) and (4.10). If we approximate g(k.IK) in (68) by 
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g(r, K) and keep only the leading terms, we have 

[(l- k2 '" - (p/co)[g(K, K) + fcg(K, re)g(re, K) M(ke, K)], 

which reproduces (66) under the same restrictions. 

In the following, we apply (64) to specific situations, 
and obtain more complete results for 1) than given above. 
We consider first cylindrical scatterers (which show the 
full structure of the development in a relatively simple 
context), then completely bounded obstacles, and then 
slabs (for which an abbreviated development suffices). 

5. DISTRIBUTIONS OF CYLINDERS 

Initially we consider radially symmetric pair statis
tics, such that b = bR corresponds to a circle, and feR) 
is the radial distribution function for identical disks of 
radius b. The scatterers with surface a(R), lak b/2 
are not necessarily radially symmetric; we consider 
both circular, and aligned noncircular scatterers. Then 
we consider anisotropic statistics such that b(R) corre
sponds to aligned elliptic disks. 

A. Radially symmetric statistics 

We expand F(kr,kRIK) of (62), with r=k(i1), R=k.(e) 
and K=KK=Kk(fl), as a Fourier series in e, 

n=-oo 

Bn = (1/27T) f2r F exp(- ine) de. 
o 

The corresponding series for the radiative function 

(69) 

(61) is U = ~BnH~1)(kR) exp(ine) in, which we use together 
with exp(- iK 0 R) = l; i-nJn(KR) exp(in({3 - e» in (63) to 
obtain 

F{kr, KIK}={exp(- iK oR), uh =~Bn exp(in{3) Wn, 

27T[ () (1)() (1) ] Wn= i4 I n Kb obHn kb -Hn 0nJn b 

=1)lnl + ([(l- k2)fb In(KR)H~1)(kR) R dR, (70) 

o 

where wn would equal the Wronskian (normalized to 
unity) were K equal to k. In illustration of the statement 
after (64), we expressed wn as the contribution (1)lnl) 
for b - 0 plus the corresponding volume integral. 

Thus, from (60) or (64), 

g(~IK) =-~ Bn(B, {3) exp(in{3) Tn, 

Tn=T_n=1)lnl/A-~n' A=(1)2_1)/C, C=ip4/k2, 

~n = 27TP .r [feR) - 1] In(KR)H~1)(kR)R dR, (71) 

which we reduce to a Fourier series in B. From (69) 
in terms of 

g(kR I K) =~ a!({3) exp(ine), g(r, it) =~ an(a) exp(inB), 

an(e) =~manm exp(- ime), 

we have 

and using this series and g(kr 1 K) = ~ a!({3) exp(inB) in 
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(71), we obtain 

a~({3) = - ~ amla~+1 exp(in{3) T. 
nl 

= -~ amla~ exp(i(v - Z){3) Tv_I' 
vI 

(72) 

The roots of the determinantal equation of this homo
geneous system specify 1). 

Corresponding to H =J + iN within the integrand in 
(71), we write .pn =Sn + i'in n• For small k, 

SO"'27TP !U-1)RdR=-W-1, 

'in '" -1)n27TP ! U _ 1)R dR = _1)n( W - 1) (73) 
n n7T n7T ' 

where the next terms of Sn are O(k2n+2) and those of'inn 
are O(k2). We consider situations where the role of 1) 
in ~n is minor and do not discuss it explicitly; we iso
late major contributions in forms 1)(~) which may then 
be refined by iteration. 

The system of equations (72) plus an additional rela
tion determine the set a!. From (29) we have 

1)2 - 1 = - cg[KI K], 

g[KI K] = [exp(- iK' r'), l)!!] =-~ a~({3) exp{in{3), 
(74) 

where the relation of a~ to a! is as for the correspond
ing isolated scatterer coefficients obtained by replacing 
l)!i, u! by l)!, u in the volume, surface integral forms. 
To determine the consistency of the interface approxi
mation (41), we use 

1)2 - 1 = - [(r + y)g(kl K) - (r - y)g(k'i K)] c/2y 

=- - (rg_ +yg_ +yg+) c/2y, 

~ 

g±= L; a~[exp(ina)± exp(in(7T - a))] (75) 
-~ 

Radially symmetric cylinders 

If the cylinders are intrinsically radially symmetric, 
or have been symmetrized by averaging over orienta
tion, we write the isolated scattering amplitude as 
g(r, k) =g(8 - 0'), 

'" 
g(e - (\I) = ~ an cosn(8 - a), 

.=0 

such that for lossless scatterers Rea~ = 0, - ~n Rean 
= 1 an 12. Using anm = alnl 0nm/~n and a~ =An exp(- in{3)/En 
in (72), we obtain 

~ '" 
-An/an= ~ AvTv_n/~n=AoTn+~~ (AvTv_n+A-vTv .. ), 

v ... oo v:::1 

(76) 

which decomposes into separate systems for 
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Alnl ±A~lnl =A~: 

- A~/an=AoTn + rt A~(Tv_n + Tv+n), 
1 

~ 

-A~/an= i6 A;,(Tv_n - Tv•n)· 
1 

(77) 

We make the dependence on (1)2 _1)-1 = (C.c,.)-l explicit by 

~(T v=n - T v+n) == - ~v,n , 

n-l 
.pn,v =.pv,n = MC1)v-n 6 1)2m +-Pv_n +-Pv+nJ. 

m=O 

(78) 

where we take n < !I for the sum over m. Except for 
very special eigenvalues, which we discount, the sec
ond system in (77) requires A~ = O. Thus A_n =An, and 
(76) simplifies to 

This homogeneous system may be converted directly to 
an inhomogeneous system whose solution determines .c,.; 
however, we reserve this step to facilitate comparison 
with generalizations. 

The multiple scattering amplitudes corresponding to 
g(e - 0) may be written as 

~ 

g(kr !K) = 6 An cosn(e - {3) =l, 
n=O 

(80) 

-.c,.=g[K!K]=I; An=6Andn=gl, 
o 

where dn = ani an is the ratio of isolated scatterer coef
ficients specified by 

g[kr,kK ] = [exp(- ikr 'r'), ~(K)]=6 ancosn(e - (3), 

g[~, kK ] = [exp(- iKr • r'),~] =6an cosn(e - (3). 

The explicit dependence of g(kr IK) =gi on angles is 
the same as g(r, K) =g(e - (3), and since Tn does not in
volve angles, it follows from (79) that An is independent 
of (3; thus g i has the same symmetry property as g. 

If only the monopole coefficient ao is significant, then 
from Ao = - aoAoT 0, 

2 _ _ ao _ a6 
1) - 1- - c~o, ~o - 1 _ ao-Po - 1 _ a6(1 +-Po) (81) 

and g 1=:40 = ~o:= Po. For lossless scatterers, - ReAo 
= 1~012Re(1+-Po)= 12Io12Wo or equivalently -Repo 
= IpOl2Wo with Wo= W+O(k2) in terms of Wof (67) and 
(73). If only the dipole al is significant, then from 
Al = - alAl~(To + T2), 

1)2 - 1 cal 
1)2 + 1 = - 1- al~(-PO +-P2) ; (82) 

if k - 0 for circular cylinders (58= lTa2) specified by 
1),2 =B,-l, then the right side equals p58(1),2 -1 )/(1),2 + 1) 
and (82) reduces to the two-dimensional version of the 
Maxwell (and Clausius, Mossotti, Lorenz, Lorentz) 
form. From (82), we obtain 

1)-2 = 1 + c~l' ~ - al _ at 
1 - 1- ~.pl,l - 1- aH(c + 1 +-Po +.p2) , 
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(83) 

and consequently -.c,. =gl =:41 =~11)2 =Pl =~1/(1 + C~l)' 
For lossless scatterers, -2 Re~l= 12I1 12Re(1+-Po+-P2) 
:= 1 2I 1 12 Ww from which - 2 ReP1 = 1 Pl l2 Wll with 
Wll = W + O(k2 ). More generally, if we retain only the 
n2 pole (of interest if an has a resonant response), then 

n_l 
2-Pn,n = C F.o 1)2m +.po +-P2n =.po +-P~,n , (84) 

and gi =An = Pn' For lossless scatterers, - 2 Re2In 
= 12In 12 Wnn, with Wnn =Re(l +-Po+-P~). 

If both ao and al are significant, then, from (79), 

(1 + aoTo) Ao + aoT1Al = 0, al T1AO + [1 + a1 (T 0 + T2)/2]A1 = O. 

Equivalently, in terms of the self-coupling coefficients 
Po=~o of (81) and Pl =~11)2 of (83), 

(.c,. + Po) Ao + Po(l - h01 .c,.) A 11) = 0, 

Pl (1 - h 01.c,.)Ao + (A + Pl)A11) = 0, hOl :=-Pl/1). 
(85) 

Discounting the root .c,. = 0, the determinantal equation 
gives 

-.c,. = _ 1)2 -1 = Po + Pl + 2PoflhOl =gi (86) 
C 1 - PoPlhOl 

If we neglect hOl' then 1)2", 1- C (Po + Pl) = (1- cAo)1 
(1 + CAl) =1)t1)i with 1)t, 1)i as in (81), (83). An alternative 
development for fine circular cylinders is given by 
Bose and Mal. 13 

To interpret (86), we write 

gi=PO+P1, Po=ao(l+Pohoo+Plhol), 

P1 = al1)2 (1 + POhOl + P1hu ), hnv =-Pn,vi1)n+v, 
(87) 

where Po is the net monopole response with dipoles 
present and similarly P 1 is the net dipole response in
cluding coupling with monopoles; the wave hOl =-Po,t!1) 
is the monopole-dipole coupling factor. Consequently, 

Po = Po(l + P1hOl)/D, P1 = P1 (1 + POh 01 )/D, 

D = 1 - POP1ht1' Pn = an1)2n 1(1 - an1)2nhnn) 

such that Po + P1 =gi = -.c,. as in (86). 

(88) 

We generalize the development by rewriting (79) as 
the inhomogeneous system 

Pn = an1)2n (1 + to hnvPv) = Pn(l + 6~ hnvPvl, 

P = - An1)n.c,. " 
n 2; Av1)v , L.Jpn=-.c,., 

where 2:~ = 2:v.n' If we retain up to quadrupole terms, 
then 

Po = Po[l + Plh 01 + P2h02 + PtP2h12 (h 01 + h02 - h12 )J/D, 

D = 1 - POPlhtl - POP2ht2 - P1P2hi2 - 2POPl P2h01h12h02 
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with PI and P2 following by cyclic permutations of 0, 
1, 2. We have Pn = ~n1)2n = an1)2n /(1 - an.t'n n) with .t'o 0 = .po, 
.t'1,1 = ~(C +.po +.t'2), and .t'2,2 = if c(1)2 + l)'+.po +.p4) j; the 
l:oupling factors are hOI =.pl/1) , h02 =.t>2/1)2, and.p12 
= (C1) +.pl +.t>3)/21)3. Thus, the index of refraction is 
determined by 

-~D=(PO+Pl+P2)D 

=Po+Pt +P2+ 2(POPl hOI +POP2h02 +P1P2hd 
+ POPI P2 (2h olh02 + 2holh12 + 2h02h12 - h~1 - h~2 - hi2)' 

(91) 

Equation (89) determines Pn(an) as well as 2;An' i. e. , 

1)2 - 1 _I [I] "" - "" - ~ =- -c- =g =g K K =L.J An =L.J Pn, (92) 

but An*Pn (except when Pn reduces to Pn for the cases 
of a single multipole), Equation (89) also determines 
all but one of the coefficients An of g(kr I K) of (80), 

An1)n _ 2;Av1)v _ & 
Pn - 2;Pm - Po' 

g(krl K) = &p ~ P: cosn(O - (3), 
o 1) 

(93) 

which together with 2; An = 2; Andn of (80) deter mines the 
remaining coefficient Ao. Thus from - ~ = 2; Pn and 

- ~ =~ An dn =Ao~ Pn dJ1)np 0 = - (1)2 - 1)/C (94) 

we express Ao in terms of the known Pn and ratio of 
single scattered coefficients dn: 

_ PoL; Pm d = [In(Kr') exp(- in9'), IP(r')] 
A O-2;Pn dn/1)n, n [In(kr')exp(-inO'),IP] 

For circular cylinders, 

dn = Vn(K, K')/Vn(k, K'), 

Vn(K, K') = - (C' - 1) In(K, K') + (B' - 1) Ln(K, K'), 

C'=B'1),2, 

where Vn(k, K'), corresponding to Vn(K, K') with K,1) 
replaced by k, 1 may be written more simply as 

(95) 

In(k, K') B' - In(K', k). For one-parameter scatterers, 
(92) also determines the corresponding bulk parameter; 
if C'=l, thendn=Ln(K,K')/Ln(k,K') in (94), and (92) 
corresponds to 1)2 = l/B(P); if B' = 1, then dn =In(K, K')/ 
In(k, K'), and 1)2 =C(P). Similarly the impenetrable cases 
are specified by one parameter, 1)2 of (92); if 0 aIP(a) = 0 
as in (33), then 

dn = oa In(Ka)/oa In(ka) (97) 

in (94), and if IP(a) = 0 as in (34), 

dn=Jn(Ka)/Jn(ka). (98) 

The scattering amplitudes g in terms of an =dnan are 
analogs of the two- space amplitudes considered in 
Ref. 2, 
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For two-parameter (B' * 1, C' *1) cylinders, from 
(54) and (55) we write the corresponding bulk param
eters as 

(99) 

dB = (B' _ 1) Ln(K, K') 
n Vn(k,K') , 

(100) 

such that - d; +d~=dn of (96); using (94), we eliminate 
Ao/Po• If we retain up to quadrupoles, then, for the 
usual isolated scattering problems, (91) determines K 
to order x4 = (ka)4. The corresponding results for the 
parameters are 

(C - 1)/ c = - Po - (x2/8)[Po1),2 r (1 - cpo) - 2P/rJ + O(x6), 

r=(B'-I)/(C'-I), (101) 

1)2(B -l)/c =P1 - (x2/8)[Po1),2 r (1)2 + cP1) - 2P1/r] 

+P2 + O(x6), (102) 

To the indicated accuracy, we may replace 1)2 + cP1 
by 1 - cPo within the brackets; if we subtract (101) from 
(102) we obtain - ~ =Po + PI + P2 + O(x6), as required, 

The values of B obtained from the above correspond 
to unbounded distributions; their use with Z = Br h, 
Q1 = Q2 to construct the average field (38) for the slab 
distribution may introduce discrepancies for boundary 
effects. We now compare with results based on the 
interface approximation in the form (75) and show that 
both developments give the same leading terms of the 
real and imaginary parts of the bulk parameters. 

The leading terms of g= of (75) in terms of a~ 
=A In I exp(- in(3)/En are given by 

g./2 =Ao + AI sin{3 sinO' + A2 cos2{3 cos20' 

=Ao+Al1) sin2{3 +A2[1)2 cos2 2i3 - (1)2 -1) cos2{3], 

rgj2y =r(A1 cos{3 cosu + A2 sin2j3 sin20')h 

(103) 

where we used Snell's law 1) sini3 = sinO'. If we retain 
only monopoles and dipoles, then from (75) we have 
-~"'Ao+Al1), and by comparison with (86) and (93) in 
the form -~=PO+Pl=PO+(Po/Ao)AI1) we see that the 
interface approximation corresponds to 

Ao"'Po, AI "'P1/1), 1)2-1"'-c(Ao+A I1) (104) 

with Po and PI as in (88). From (41) in the form 
(Zy/r) -1 =B -1 = cg .k2/ry2, we thus have 

B-1 '" ~ "'?i _ ~1(1 +~O.pl{1) = 2l1(1-.t>1~/1) 
C 1) 1) - 1 - ~O~I.pl 1 + ~1.t>11) 

(105) 

with ~o, ~1 as in (81), (83). We construct the second 
parameter C = B1)2 from C - 1 = (1)2 - 1) + 1)2 (B - 1) in 
terms of (104) and (105): 

C - 1", _ Po = _ ~o(1 + ~1.p1p) = - ~o(l-.p1 ~/1) • (106) 
c 1-~o~~ 1 + ~o.ptl1] 
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The final forms in (106) and (105) correspond to 
C(~lo,.Cl.) and B{~1' .Cl.). 

If we retain A2 of (103), then 

-.Cl."'Ao+A11)+A2[1+~{1)2-1)Sin2a] , 

B-1 '" ~ + 4A2 sin2a 
C 1) 1)2' 

_ C~l "'Ao+A2 [1- ~ (1)2+ 1)sin2a] 
(107) 

Thus there are discrepancies for the quadrupole (and 
higher) moments. For the usual scattering problems, 
af = O(k4), the two procedures give the same leading 
terms, i. e., to order kO for ReC and ReB and to order 
k2 for ImC, 1mB. 

Aligned noncircular cylinders 

To simplify application of (69)- (72) to noncircular 
cylinders, we henceforth use eo, 0 0, u o, and {30 for 
angles measured from Z. For aligned elliptic cylinders 
(or for other scatterers having the same reflection 
and inversion symmetries) with major diameter 2a 
along t =1({15), the isolated scattering amplitude in 
terms of angles 1', a measured from t is 

g(r, k) =t anm exp(ine - ima), I' = eo - 15, a = a o - 15, 
-"' 

where n and m range from - 00 to 00 and n - m is even. 
Equivalently, 

g(r, k) =~ [a~m cosne cosma + a;m sinne sinma], 
(lOB) 

with a~m = (anm ± ~-m) €n€m/2. Similarly, 

g(kR I K) =~ (A~ cosn€> + A~ sinnO), 

A~ = { : } (a~ ± a~n) €/2. 
(109) 

Thus, we reduce (72) to 

- 2A;' =~ a;'I{A~[T"_1 COS{II- 1) (3± T"., COS(II + 1) (3] 

+ A:[± T,,_, sin(lI- Z) (3 + T"., sin(1I + Z) i3]}, 

(110) 

which, in distinction to (79), involves two coupled sets 
of coefficients. We introduce 

bt =at m., {co.s} m(.). {co.s} 1(.). BE =AE m {co.s} m(.). ml m,1) Sln I-' sIn 1-', m m1) SIn 1-', 

~:~ = ho,,,., + h;, [1 ± {~~~} 1113 tanli3 ] , 

~~ = ho,,,., + h;, [1 ± U:!} 1113 COtli3] , 

where ho,n =~n/1)" and h~, =~;,!1)n+1 with ~;, as in (7B). 
From (110), 

- B~ =~ b~,[B~(.Cl.-1 -~~i) + B:{.Cl. -1 -~~j)], 

and proceeding essentially as for (B9), we obtain 
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p;. =~, b;'l[l + ~,,(P~~ti+ p:~~m, 

-.Cl. =gl =~ (p;, +P;;') 

with p;. = - B~.Cl.~ (B: + B;). 

(111) 

If we retain only the monopole and dipole contribu
tions, then, from (111), 

Po = Po = boo[l + Po~o + (Pi + Pi) h01 ], 

Pi = bi1 [1 + POh01 + (Pi + Pi) h02 + Pi hit! {~~~~} 13] ' 
(112) 

U · b+ + d bE 2 E Icoa2} (.). • t d smg 00 = aoo = aoo an 11 = 1) a111..!n2 tJ, we m ro uce 

(113) 

where ~o is the same form as in (Bl), but ~t differs 
from the form in (B3) by the sign of ~2' Thus (112) 
reduces to 

Po = Po[l + (Pi + Pi) h01 ], 

Pt=pt[l + POh01 + (Pi + Pi) h02 ], -.Cl. =Po +Pi +Pi, 

(114) 

which may also be derived from the appropriate special 
case of (110), 

Ao(l/ aoo + To) + (Ai cosi3 + Ai sin,B) T1 = 0, 

AoT12 {c~s} 13 + At<2/ at1 + To ± T2 cos2j3) sm 

+ A1'T2 sin2i3 = O. 

Introducing the definitions of (113), we have 

Ao (;0 + i) + (Ai cosi3 + Ai sin,B) 1) (i -h01) = 0, 

(115) 

Ao (i -h01) 1){ ~~~ } 13 + Af1J2 {~~~:} 13 (;i + i -h02) 

+A1~2sin2i3(i-h02) =0, (116) 

and (114) follows by substituting B(j=Ao, Bt=1)Arf:l':}i3, 
P~ = - B~ .Cl./{Bo +Bi + Bi). 

We rewrite (114) as 

Po=Po(l +Fh01 ), F=j[l +Poh01 + Fh 02 ], 

j=pi+Pi, F=Pi+Pi, -.Cl.=Po+F 

and obtain 

1=---L-
1- fh02 

with corresponding dispersion equation 

(117) 

(l1B) 

2 --_.Cl.=_1) -1 =Po+/+2Pojho1 =Po+j+po!(2h o1 -h02 ) 
C 1-POTh-01 1- fh02 - jPoh~1 

=gl. (119) 

Victor Twersky 2477 



                                                                                                                                    

If only aoo is significant, then -~==PO==gl and (119) 
reduces to the form (81) for 1)2 ==1)~ in terms of ~o=Po of 
(113). On the other hand, if we retain only the dipoles 
ail, then - ~ =1 =gl and the analog of (83) is 

1/1)2 = 1 + cP(l- h02~) = 1 + cP/(1--P2P), 

P =/ /1)2 =~; cos2{3 + ~i sin2{3= K 0 \jJ 0 K, 
(120) 

where 1j3=~itt+~tH, and t=k(O), E=k(0+7T/2). 
Equation (120) determines 1)2 = 1)2(/3) with j3 = j30 - 0, and 
Snell's law 1) sinj30 = sinO' 0 serves to eliminate j30. We 
decompose the dyadic il3 with respect to Z, x and con
struct P=P(j3o): 

\/3==L;ll,ljJz,Zj, Zt=z, 22=51:, 

P = K • ~ 0 K = 11311 cos2 j30 + 21j3t2 cosj3o sinj30 + 11322 sin2j30, 

\/3u =~i cos20 +~i sin20, 11312 =11321 = (~i - ~i) sino coso, 

(121) 

If ait = ait, then ~i = ~i and (120) simplifies to 1)-2 - 1 
=c~i/(1--P2~V=c~lasin(83). IfO'o=j3o=O, we re
place P in (120) by lj3u to obtain 1)2(0) as a function of the 
scatterers' orientation. If one of the principal axes is 
along Z (i, e., 0 = ° or 0 = 7T /2), then the distribution is 
symmetrical to reflection in z = 0, e. g., for 0 = ° and 
0'0 arbitrary, we replace P in (120) by ~i cos2j30 
+ ~i sin2j30. For these special cases, the parameters in 
(24) satisfy r 2 = - r 1, 1)2 = 171' 

For small spaced scatterers, we drop -P2 and use 
.\)0'" W-l, as well as ann'" a~n + a~~/En'" a~/(l- a~n/En)' 
a:n=a~n/(l- a~W/En)' ann=aoo,art. Thus 

~ - a~o = ao"o, 
0- 1- a~o W 

(122) 
~±", a{j _ ail 

1 1 - a{i( C + W)4 - 1 - a{l±ci ' 

where we retain only the leading term in k of a~~; the 
coefficients a~~± differ from the isolated scattering coef
ficients in that their radiative loss terms take into 
account the influence of the distribution. The corre
sponding approximation of (120) is 

1)-2 = 1 + cp = K' B oK, 13=L; B1jZIZj , Blj = 0ij + clj3lJ. 

(123) 

Equivalently, 

1)-2 =Bt cos2j3 + B2 sin2j3, Bl = 1 + c~i, B2 = 1 + C~i. 

Multiplying (123) through by K2 = k21)2, we isolate 
r =Kcosj3o in terms of Bij and T=ksinoo, 

r2 Bu + 2r Bt2 T + B22 r - k2 = 0, 

r =± (k2Bu-I131 r)1/2/Ba- B12 T/Bu =r1,2' 

where I B I = BU B22 - Bi2 = B1B2• Having determined 
r 1, r 2, we obtain 1)1,1)2 from 171 = (r l /k)2 + sin2o o. If 
0=0, then 

1 =1)2(Bl cos2j30 + B2 sin2j30), 

(124) 

(125) 

17 2 = [1 + (B1 - B2) sin20'0JlB1' r2 =k2(1- B2 sin20'0)/B1 

(126) 
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Although r 2 = - r 1 for such cases of symmetry in z = 0, 
the results differ significantly from those for circular 
cylinders in that 1) =1)(0'0)' 

More generally we retain both monopoles and dipoles, 
and use (119) for 1)2. If B ' =l [or for 1/J(I6) =0], then 
1)2 = C is the sole bulk parameter; if C ' = 1 [or for 
0n1/J(I6)=OJ, the sole parameter is specified by KOB'K 
= 1)-2. For small spaced scatters, we drop -Pl and.t>2 
to obtain 

2", 1- cPo =-A~ - cpo~ 
17 1 + cp K' a +C~) • K . 

(127) 

To this approximation, we have 1)2 '" 1)~1)i with 1)0 as the 
result for monopoles and 1)1 that for dipoles. For two 
parameter (C ' , B') scatterers, 17~ = 1 - cPo'" C and 
1)i'" 1 + cp'" K • 13 oK provide leading term approximations 
for the real and imaginary parts of the corresponding 
two bulk parameters; now C = 1- cPo =1)2(1 + cP) 
= 1)2K 013 0 K and the generalization of (125) has the k 2 

term multiplied by C (or, equivalently, B lj replaced 
by Blj/C). Thus 

Bar = - B12 T± (k2CBu - I B I T2)1/ 2 

C = 1- cPo, 8=1+ c~. 
(128) 

Similarly, if 0 = 0, the generalization of (126) is 
1)2 = [c + (B1 - B2) sin20' J/B1• 

To lowest order in k for the real and imaginary parts, 

g(k,.1 K) = Po + r 0 ~ 0 ~ = Po + kr 0 \jJ. K/k2, 

g[KI K] =Po + K' ~ o~2 =Po + K' ~·K/k2. 
Because the scatterers have inversion symmetry, 

(129) 

B12 = B21 and consequently Z1 - Z2 = (B12 - B 21 ) tanO' 0 = ° 
as discussed for (47). Thus Qt = Q2 = (Z -l)/(Z + 1) in 
(37) and (38), with Z of (43) specified by 

Z cosO' = (Bur + B12 T)/k = (CBu - I B I sin2
0 0)1/ 2 

= [(1- cPo)(l + clj311) - II + c~ I sin2o o]l/2. 

B. Elliptically symmetrical distribution 

We consider identical cylindrical scatterers as if 
centered within aligned identical transparent coatings 
whose outer surface (an ellipse with major diameter 
btb (6), Z 0 t b = cosB, and minor diameter tb~b] corre
sponds to an exclusion ellipse b(R) with axes (semi
diameters) btb, tb~b. The scatters may be circular 
cylinders, or elliptic cylinders with axes at(o), t' at 
aligned or averaged over o. If the scatterers are aligned 
ellipses, their axes are not in general parallel to those 
of the envelope (0 t- B) and even if 0 = B, the scatterer 
and envelope need not be confocal or similar. In the co
ordinate system t + i"[ = b (1 - t2)1/2 cosh(1l + ie), we 
specify b(R) by Jl = Ilb' tanhll b = to We assume that the 
correlation factor p[j(R) - 1] of (60) has the form 
jJ(Il)/~, where ~ = b2 (1 - f){cosh2 Jl - cos2e) is the 
Jacobian in dt d"f =~dJl de; the resulting low frequency 
forms of 1) then reduce directly to those for radial 
symmetry as t-1. 

We decompose (60) in terms of Mathieu functions 
appropriate to the exclusion ellipse; in abbreviated 
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notation14,15 

~ 

6 Jim = 6 {fem + Jom), 
',m moo 

with 

Sim(e)=Sem(djCOse), d=kb(1_t2)112 
o 

for the periodic Mathieu functions, 16 and Him(/l) 
=H~ll(djcosh/l) for the outgoing functions. 16 Similarly 

om 

- -
{3={3o-o={3+w, w=o-o, 

in terms of 

Sin(~) = SSn(T/ djcosh 

Sin (e) = S,n(T/ djcos€», J;n(/l) = J,n(T/ djcosh/l). 

Substituting into (60), we write the analog of (71) as 

g(k,.i K) = - 6 Bim SJn(~) T~m' J,nm 

T~m=M,.m[(T/n/.l) w!m -~!m]' .l = (712 -l)/e, 

.1Wnm = (i-n+
m/21LWin) 102

• SinSim dE>, (130) 

w~m = (11" /2iT/n)(J;n(/lb) a"b Him(llb) - Him a"b .1';n], 

~!m=211" f.,~ ij(I-L)J;nHimd/l=3~m+m!m' 
b 

where n - m is even. The factorization of T facilitates 
using existing results. The functions ~m are discussed 
by Burke,15 whose low frequency values (15 : 27) show 
~m = O(k 1n-ml ) j corresponding expressions for w!m 
= o (kn-m) and for JinHim follow from Ref. 14, (28)-(31). 
The normalization is such that if 71 -1, then ~m - 0nm 
and w~n-1. 

For aligned elliptic cylinders with axes af(o), t'aE(o) 
we use14 ,15 

g(r,k)=6 ainmS[n(9)Slm(a), 

g(k,.i K) =6 Ain()3) S[n(9), 9 = 90 - 0 = e - w, 
(131) 

where w = 0 - 6, and S;n(9) = Sin(d'jcos9), d' = ka(l- t'2)112. 
We determine Bin by 

(132) 

Slr(e - w) S~v(e - w) = 6 Ckl (ir, j) Ski (e), k =e, 0, 
k,l 

where to a given order in k, we may construct the 
coefficients C im (in terms of w, d, d ' ) from the Fourier 
series for Sin and the Mathieu series for the cosine 
and sine. Thus, from (130)-(132), 

Aiv(t3) = - 6 aivrA kl({3) 6 Cim(ir, k l ) S'n({3 + w) T~m' 
k, IT J,nm 

(133) 
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We consider only monopole and dipole terms to ob
tain the analog of (115). The leading terms in k of R6T/, 
ImT/ etc., follow from14,15 

Meo'" 2Min '" 1, Mol =~0=~2 = 0, 

M~n"'l, w~n"'l, n=0,1,2, 

~2 '" - Mio'" (kb)2(T/ 2 - 1)(1- t2)/16, 

w~2 '" 16/(kb)2(1 + t)2, w~0=O(k2b2)j 

the next terms in the approximations are two orders 
higher in kb. Similarly, of the correlation integrals, 
we keep only M~m 3~m - 0nOom0211" J ij(/l) dl-L. Thus, except 
for 3 00 - W -1, we retain only terms of order k-2 to 
obtain 

c- ip4 . 
-IT' 

1- t 
~2"'C l+t =CE=C(q2-ql), 

1 t 
q2 = 1 + t' ql = 1 + t ' 

where T nn with n = 0, 1, 2 is the low frequency form of 
Tn of (71), and the depolarization factors qi satisfy 
ql +q2=1. We use Sin(j3)"'~~}nj3 to n=2, and similarly 
for the S's in (132). Substituting into (133), we obtain 
in terms of ain = ainn, i = {~}, j = {~}, 

Aeo(l/ a.o + Too) + (A.l cos{3 + Aol sin{3) Tu = 0, 

Ae02 Tu { sin} {3 + Au (2/ au + Too ± T~2 cos2w ± T22 cos2{3) cos 

(134) 

which differs from the system in (115) by the terms in 
T~2 = C(q2 - ql) = CEj the additional terms vanish for a 
circular exclusion region ql =q2 = i. 

The corresponding approximations for the scattering 
amplitudes are 

g(r, k) = a.o + a.l cos9 cosu + aol sin9 sinO', 

g(k,.i K) =A.o + A.1 cos9 + Aol sin9, 

with ain equivalent to a~n of (108). For elliptic cylinders 
specifiedbyC', B/='2;Bltit;, andq/='2;q;tit i, 
tl = t, t2 = t to lowest order in k for Imain and Reain, 
we have 

ain '" aln + (aln)2/En '" a~/(l- aln/En), 

a;0"'hk2~(CI-1), ~=1I"a2t', 

a;l'" - tik2 ~(B: - 1)/[1 + (B[ - 1) q[], 

q~ = ('/(1 + [I), qf = 1/(1 + (I). 

We introduce 

~.o = a;o/(l- a;o W) = a:o = Po, 

~i1 =a[t/[1- a;li(W+ c)] =a['t/(l- artie), 

Pu = T/2~gl { ~~:~} {3 
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within (134) to obtain the analog of (116) 

A.o (;0 + ~) + (A.t cos{3 + Aot sin(3) t == 0, 

(136) 

{ c~s} {3 + Ail [1)2 {c~s~} {3 (J:... +~) ± icE cos2w] 
sm sm PH '"" 

+ AJti [:. sin2{3 - cE sin2w] == O. 

The terms in ware new, and the present low frequency 
form lacks the h's of (116). Proceeding essentially as 
before in terms of B.o ==A.o, BI1 == 1)A u {;r:} (3, Pin 
= - Bin t:./'Z B~m' we use i(l ± E cos2w) =qt~~~} w 
+ fcos 2} fOoo} 'E . 2 ( ). q2t..ln2 w=1.oe.' 2: SIn W= q2 -qt SlnWCOSW=q.o=qo. 
to construct 

(137) 

- t:. =p.O + Pet + Pot, 

where i = t} llnd j = t} are compliments. Thus 

p_ Pel + Pol 
- 1)2 

_ ~. COS2 {3 + ~o sin2 {3 + 2 Cq.o ~o~e cos{3 sinf3 
- 1- ~.~Oc2q!o 

(138) 
" ~I _ ail 

- 1- al; cqli 

From (137) and (138) we obtain the same forms as in 
(127) and (128) in terms of the present p = K· $. K 
and 1 + cP = K .:6 • It Substituting {3 = f3 0 - 6, we rewrite 
P as ~11 cos2 f30 + ~22 sin2 (30 + ~t2 sin2{30 with 1) sin{3o = sinO' 0, 
and proceed essentially as for (128) to determine rand 
Z for the synthetic slab. 

In ter ms of an isolated scatterer dyadic ~ = L; aft fl fl 
modified to include the radiation losses within the dis
tribution, andq=L;q/t~tL i.e., 

(139) 

witht=fe=L ~=tO=f2' and q/j as in (137), were
write (138) as 

(140) 

iii -Cii =a:la~'lqlq2· 
To facilitate generalization, we rederive (140) directly 
from the dyadic equivalent of the system for PH 11)2 in 
(137), i. e., from 

$=p-(l+cCi-\l3), (141) 

where ~ represents the anisotropy of ,!he scatterer 
(anisotropic shape q', or parameter B', or both), and 
q the anisotropy of the statistics. Thus (l - eli-q) -\l3 = Ii, 
and consequently 

(142) 
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which reduces to (140) since (l -c P 'q)-l = [I - c I p'q I 
x (Ii 'q)-t], (P .q)-l =q-l .p-l. . 

If ql =q2 = i, then the exclusion region is a circle 
and ~ = L; ~11 tlfl with ~i1 = afl/(l - ica['t) = ~r equal to 
the form in (122) for a radially symmetric distribution 
of elliptic scatterers (or of circles with tensor B'). On 
the other hand, if afl = a~' (corresponding.!.o a radially 
symmetric scatterer), then ill = L; ~I t~ tL ~i = a~' 1 
(1- afqi) shows only the anisotropy arising from the 
exclusion region. An additional special case corresponds 
to the axes of the scatterer parameter and shape (:8' 
and q') and exclusion region (q) all along f l ; then P 
=L; aft tJ i l(l- ca['lql) such that the depolarization fac
tors (qi) for the exclusion ellipse are not necessarily 
the same as those for the scatterer (qO. 

From (141) we have $' (! + cq • ~)-1 = Ii, and, in terms 
of B=I+ C$, 

(:8-I)'[I+q'(B-t)]-l=c\i, (143) 

where we may interpret the left side as proportional to 
the low frequency response of one scatterer with shape 
dyadic q (corresponding_to the exclusion region) and 
anisotropic parameter B whose imaginary part includes 
both absorption and radiation losses by the distribution 
of scatterers. If k - 0, or if scattering losses are 
negligible, we replace p(a[;) of (143) by \i'=p(a[l); then, 
for noncoincident B' and q' axes, 

(:6 - I) • [I + q . (B - 1)]-1 = w(B' - I) . [I + q' • (l3' - t)]-1 = c\i', 

w=pfB=NfB/v (144) 

is the tensor version T = w T' of our earlier generaliza
tion17 of Maxwell's result for spheres. The analogous 
interpretation of VT =NfBT' relates the potentials of an 
anisotropic scatterer with volume V, shape q, and 
equivalent parameter B, to that of N aligned scatterers 
(each with fB, q', B') within V. If we diagonalize ~' as 
L; p[/ E[f[, then if E~ = E:, we get :8 - 1 = C L; P[I t[tl/ 
(1- Cpilqi); in particular for B' diagonal in f l, 

B; -1 _ B[ -1 
1 +q/(B/ -1) -w 1 +qf(Bi -1) , 

(145) 
w(B[ -1) 

B/ - 1 = 1 (' 1)(' ) , + B I - ql-wqi 

which reduces to (17 : 4) if q i = q[, i. e., if the exclusion 
volume is similar to the scatterer's. Whereas (1- W)qi 
is positive, the generalization q[ - wq/ in (145), may be 
positive or negative; thus B/ - 1 may be greater, as well 
as less, than w(B[ - 1). To include radiation losses in 
(144), we replace p' by Ii"'p" (!+ ~\i'W)"'p" ~- i 1i'W)-1, 
which we also use in (142) for noncoincident B' and q' 
axes. 

6. BOUNDED SCATTERERS 
A. Radially symmetric distributions 

For radially symmetric pair statistics in three 
dimensions, the analog of (69) is the expansion in 
spherical harmonics: 
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y;;'(r) =P;:'(cosO) exp(imcp), p~m =D':P;:', 

D;:' = (- l)m(n - m) I /(n + m)!, (146) 

with r = r(O, cp) = z cosO + (x coscp + y sincp) sinO, 
and R=r(e,q,). Using 

U =6 B;:'h~1) (kR) in y;;'(R) , 

exp(- iK· R) =6 (2n + 1) rn(_ l)mjn (KR) y;;'(K) y~m(R), 

K= r()3, 0), 

in (63) yields the three-dimensional version of (70), 

F(k,., K I K) = {exp(- iK 'R), Uh =6 B;:'y;;'(K:) Wn, 

y;;' = P;:' (cosj3) , 

Wn = (41Tk/i41T)[jn(Kb) ilbh~1)(kb) - h~1) objn] b2 

=1)n + (K" - k2) fob jn(KR) h~1) (kR) R2 dR. 

(147) 

Substituting (146) and (147) into (64), we obtain the 
analog of (71), 

g(kT I K) = - 6 B;:'(r, K) y;;'(K) Tn, Tn =1)n/ t:. - ~n' 
t:. = (1)2 -l)/c, C=i41Tp/k3, (148) 

~n = 41TP fo~ [j(R) - l]jn(KR) h~1) (kR) R2 dR = 3'n + i'lnn. 

For small k we have 

3'0'" 41TP f [j(R) _1]R2 dR = W -1, 

3'n'" 41T1)n[kn/(2n + 1) I !]2 P f (j - 1) R2n+2 dR, 

lnn"'- [41T1)np/k(2n+l)] f (j-l)RdR, 

(2n + I)! ! = l' 3' 5' .. (2n + 1), 

where the next terms of Sn are O(k2n+2) and those of 
lnn are O(k) 

(149) 

To reduce (148), we write the scattering amplitudes 
as 

g(kR I K) =6 A;:'(K) y;;'(R), g(r, It) =6 y;;'(r) a;:' (R), 

a;:'(R) =6 a;:': Yv-I' (R) 

with a;:': independent of direction. We determine B;:' of 
(146) by the expansion 

y-qyt =6 d (- q . t) yt-. 
p 5 I I p' S I' 

where p + s + 1 is even, 1 changes by steps of 2 from 
Ip - s I (or from It - q I if it is the larger) to p + s, and 
the coefficients d 1 are known. 18 Thus the analog of (72) 
is 

=-6 6 a;:':A:(-Il\t) • 
v I' 5t /I S 

(150) 

We introduce the symbol (-;;'1;)=(;1-;;') for brevity, es
sentially as before. 19 For the analog of (74) we use 
g[K IK] = 2; A;:' P;:'(cosj3), and for (75), g± 
=2:A;:'[l± (-l)n-m]p;:'(cosa). 
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Radially symmetric scatterers 

For radially symmetric scatterers (or, e. g. , 
soids averaged over orientation) we have a:: 

ellip-

= an(- l)m 6nv 6ml" and (150) reduces to 

Am=_(_l)ma 6 (-mit) At 
n n st n s 5' 

(151) 

( - m \ t) = 6 d (- m . t) yt-m(K) T 
n sIn's I " 

where (except for very special eigenvalues, which we 
discount) A;:' =An(- l)my~m(K). The corresponding iso
lated scattering amplitude is 

g(r, k) = 6 an(- l)my;;'(r) y~m(k) =6 anPn(r 'k), 
nm n 

a' 
an= 1- a~/(2n+ 1) 

such that, for lossless scatterers, Rea~ = 0, 
(2n + 1) Rean = - I an 12. The multiple scattered func
tions are 

(152) 

g(k,.IK) =6 AnPn(r oK), g[KIK] =gl =6An=6Andn 

(153) 

with dn = an/an, essentially as discussed after (80). 

If we take the axis of the spherical harmonics along 
K, then y;;'(K) =P;:'(l) = 0mO' and (151) simplifies to 

this differ from (79) in that, in general, each term in
volves more than a pair of T's. The leading terms are 
given by 

(~\~) =Tn, (~In =%(To+2T2), (~\~) =t(2T1+3T3), 

(~\~) = 315 (7To + 10T2 + 18T4), 
(155) 

(~\~) =t(3T2+4T4), (~I~) =1~(27T1+28T3+50T5)' 

(~\~) = -rlr (33To + 44T2 + 54T4 + 100T6); 

these suffice through octupole-octupole effects. 

For pure monopoles, from 1 + ao(~ I~) = 1 + aoTo = 0, 
we obtain the same form 1)2 - 1 = c~o as (81) in terms 
of the present ~o = ao/(1- ~~o) =Po =gl. For pure di
poles, from 1 + ~ (f If) = 0, the analog of (82) is 

1)2 -1 _ a1 C 

1 + 21)2 - - 3[1- ia1 (~o + 2~2)] , (156) 

which, with 1) ,-2 = B', yields Maxwell's result20 for 
spheres and k - 0, i. e., (B -1)/(B + 2) - p'i13(B' - 1)/ 
(B' + 2), 'i13 = t1Ta3. The analog of (83) is 

1)-2=1+c211, ~1=1 ~~ '~1,1=%(C+~0+2~2) 
- a1 1,1 

(157) 

withgl =2111)2 =P1' Similarly, for pure quadrupoles, 
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from 1 + a2(~ I~) = 0, 

1)2 - 1 = - C'n21)4 = - CP2' 'n _ a2 
2 - 1- a2~2,2 

oP2,2 = }5 [c (7 +171)2) + 7oPo+ lOoP2 + 18oP4] • 
(158) 

From (19: 138), we have do(~;~) = 0nm/(2n + 1); thus, as 
illustrated in the above, in all cases, ~n n includes the 
terms (e +oPo)/(2n + 1). Similarly for pu;e 2n-poles, we 
write 

1)2 - 1 = - c'H-n1)2n = - cPm 

an a' 
'nn = 1- an-Pn,n = 1- a~(oPo + 1 ~~~,n)I(2n + 1)' (159) 

-P - -Po +~~,n 
n,n - 2n + 1 ' 

which shows the essential aspects of energy conserva
tion discussed for cylinders, i. e., for lossless scatter
ers we have - (2n + 1) Re'nn = 1 'nn 12 Wnn, Wnn = 1 
+ Re(oPo +oP~,n)' For pure octupoles 

7-P33 =~o +~h = C (33 + 771)2 + 1311)4)/33 

+ (33oPo + 44-P2 + 54~4 + l00oP6)/33. 

Proceeding as in (78)ff, we write 

(0 10) =1)n+m A-1_&- =1)n+m(A-1_ h ) n 111 &--n,m nm , 

(160) 

where we added and subtracted L; d 1 (~ ;~) = 1, a result 
that follows from Pn(x)Pm(x)=L;dl(~;~)Pl(X) for x=1. 
The form (IJn+m _1]1)/(1)2 -1) =1)' +1]1+2 + coo + 11n+m-2, a 
set of even or odd powers of 11, is nonsingular for 
1)2 - 1. In particular, 

h12 = (2 c1) + 2.51 + 3H3) /51]3, 

h13 = (3 C1]2 + 3-P2 + 4~4)/71)\ (161) 

1123 = [c(27 + 551)2) + 27.51 + 28&)3 + 50-P5]/1 051)5 0 

Substituting (160) into (154) and using the definition 
Pn ='nn1]2n of (159) to suppress self-coupling terms, we 
obtain the same form as (89), Pn=Pn(l +L;'hn"P). Thus, 
for monopoles plus dipoles, we have 1)2 as in (88), and 
if we include quadrupoles, we obtain 1)2 as in (91) in 
terms of the present functions hn" and coefficients an' 
We have (92) and (94), and the forms in (96)-(100) 
(for dn, d;, ri,;, and the bulk parameters B and C), with 
I n replaced by jn. We also obtain the forms (104)-(106) 
for the interface approximations of 1), B, C, so that both 
procedures give the same leading terms in k for the 
real and imaginary parts. An alternative development 
for small spheres is given by Fikioris and Waterman. 20 

Aligned nonspherical scatterers 

For aligned triaxial ellipsoids (or for other scatterers 
having the same reflection and inversion symmetries) 
;yit~ major axis a1 along ~ = kSo) ~ tj and axes ~2' a3 along 
t z, t3 (in an orthogonal basis t 1, '2, t 3) we take t1 as the 
axis of the spherical harmonics r,;'. From symmetry 
and reciprocity the isolated scattering coefficients 
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satisfy 

a:: = a;~-m == a;~-m Dr;: In:, 
a~;=a~":,"D'::D~, D':; =(-l)m(n - m)!/(n+ m)!, 

where 1] - II and m - JJ. are even. Thus, with X::m 
=p:;, cosmrp, X~m =P'; sinmrp, 

110 n <10 v 

L; = L; L; L; L;, a:;''; ± = (a;:'~ D'; ± a:;'v-" ) ErnE" /2. 
n.O m.O ".0 ,,=0 

Similarly, analogous to (109), 

g(k,.1 K) = L; [A:;'+~m(r) + A:;'-~rn(r)], 

A:;'± = {i r (A:;'±A;mD:;'hm/2. 

(162) 

(163) 

We may therefore rewrite (150) in terms of ~,t±" (1<:) 
with i = e, a as 

(-III t) DIl. - J'. d (- Ii . t) Xl T 
lJ S i "- '-J I lJ' S I, t-Il. I, (164) 

which shows essentially the same structure as (110)0 

We retain only monopoles and dipoles to obtain the 
analog of (115); 

_Ao/aoo=Ao (010) +Ao (OIO)+A1+(011) +A1-(011) 
o 00 ° ° 0 1 ° 1 1 0 1. 1 ° 1 a 

=A~Xil Tl + A~ iX~1 T2 + Ai" ~(To - P2 T2 ± ~X~2 T2) 

+APixQ2T2, i={;}. 

(165) 

In terms of direction cosines (1j = K' 'I and briefer nota
tion ao = a~~, al = a~~, a2 = ag+, a3 = ag- (and similarly 
for A), we reduce (165) to 

Ao(;o + To) +T1L;A j Q I=0, 

(
1 To - T2) . '" AoQ,T1+A, ~+ 3 +T2 Q IU A JQJ=Oo 

(166) 

Introduc ing 'no = ao/ (1 - ao-Po) , 'nf = a/ (1 - ajoP11)' 
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'\)il = t( C +.\:>O - .\:>2), we obtain 

Ao(~o + !) + (! -h01)6 A ,Q,17=0, 

AoQ,17 (! -hOI) + i: + (~ - h02)Q'17:B A,Q,17 = 0, 

(167) 

Proceeding as before for (116) in terms of Po = ~o, 
p,=U,Q/172

, and Po=-Ao~/D, P , =-A/Q/1)/Dwith 
D=Ao +~A/Q/1), we construct the three-dimensional 
generalization of (114), 

Po =Po(1 + h016 P,), PJ = p,(1 + POhOI + h026 P,), 

- A=Po +6 P"~ (168) 

Writing/=2:PI and F=~P" we obtain the same forms 
as in (117)ff in terms of the present coefficients and 
functions. 

For the development of (120)ff, we now use 
~ - ~ '" 2 -" A~ P=K'IV-K=u 21,Q/o W=LI U/',t/ (169) 

and to consider the slab distribution as in (121), we 
revert from K=K2; n,t/ to the original form K 
=K(z cos{3o + isin{3o). If tl and t2 are in the zx plane, 
the previous results apply with ~i, ~i replaced by the 
present ~j, ~2' More generally, we use 

III 11 =:B21/(z' ',)2, 11112 =1ll21 =621,(1. -t,)(x -t/), 
III 22 =0 2l,(x' t,)2. (170) 

For small spaced scatterers, we proceed as in (122)
(129) and obtain the earlier forms in terms of the 
present: 

(171) 
a a' a" 

21, '" 1 I '" 1 I '" / 1 - 3" a, (c + 3'0) 1 - 3" al( c + VII) 1 - 3" a7 c 

where we retain only the leading term in k of a~. For 
ellipsoids specified by :§'=2:B~ ',t" C' we have 

a'o = ik
3

5E (C' -1) 
47T ' 

(172) 

here the depolarization factors q~ are the elliptic inte
grals as in (17: 3) with special cases as discussed 
before. 17 

B. Anisotropic distributions 

We could parallel the development of Sec. 5 C B for 
the three-dimensional case of ellipsoids centered within 
nonconfocal, nonsimilar ellipsoidal envelopes. For 
spheroids, we would use the detailed special function 
forms obtained by Burke, 21 and for triaxial ellipSOids, 
the low-frequency converging series derived by 
Dassios. 22 However, for Simplicity, we generalize the 
low frequency case specified by g I of (129), ~ of (127), 
and the dyadic equation (141) for ~. 
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The scattering amplitudes are apprOXimated by 

g(r,k)=ao+E a,r·t,f,-k, g(k,.IK)=po+r-~-K1); 

g[KIK]=po+ a-~-K1)2. (173) 

We obtain the form 1)2 as in (127), with the monopole 
Po = 210 as in (171), and the dipole speCified by 

~=p-(f+cll'$), iJ=0a·r·~I'" 
- '\' AbAb'" . /3 q=u q, t,t

" 
LJ q,=l, C=Z47TP k (174) 

in terms of a7 == nil (1 - t 11' W). The development of 
(141)ff carries through as ~efore, except that the ex
plicit form of the inverse (1- c\l-Il)"! after (142) does 
not apply in general. The generalizations of (144) and 
(145) to include scattering losses have ~' replaced by 
jj' '" p' - (1- t p'VII)-I, and we also use this form for p in 
(142) to obtain c~=B-ffor non-coincident B' and q' 
axes, The elliptic cylindrical case corresponds to 
q3 = q~ = 0 (as appropriate for infinite diameter along y), 
and the symmetrical case of the sphere to q, = t. 

If the scatterer (shape and parameter) and exclusion 
region both have a principal diameter along y then the 
development for the slab distribution with K=K(z cos{3o 
+ X sini3o) is as before for (138) based on (128). 

7. PARALLEL SLABS 

For the essentially one-dimensional problem of iden
tical parallel slabs, corresponding to (61) and (62), we 
write 

F(k,.,k,.1 K) = g(r, k,,) g(k,.1 K) == F", 

~ ~ {k} k,.,=±zcosa+xsina= k' • 

where r:=k=k. or r=k'=k_, We evalute (65) as the 
sum of the values at t= band t= - b, 

F{k,., KI K}={exp(- iK' R), U}b 

= (1/2y)[(r+ y) F.exp(i(y- r) b) 

- (r- y)F.exp(i(y+r)b)] 

= (1/2y)( (r + y) F. - (r - y) FJ + [(r2 _ y2)/i2y] 

x fob [F. exp(i(y-rn + F_ exp(i(y + r)t)] dt, 

where the last form separates the value at b = 0 from 
the remainder rewritten as an integral. Similarly, the 
volume integral in (60) reduces to 

pF. r (f-1) exp(i (y - r) ?;) dt + pF_Lb(f-1) 

xexp(- i(y+ r) t;)d!; 

= p f (f-l)[F. exp(i(y- r) 1;) + F. exp(i(y + r) ~)] db 

with/=/(t) = 0 for t<b. Thus, the essentially one
dimenSional version of (60) is 

g(k,.! K) = [ - ip/ (~ - k 2
)][ (r + y) F. - (r - y) FJ 

+ p f~ (/- 1)[F. exp(i(y - r) t;) 
o 
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Equivalently, corresponding to (71), 

- g(k,.1 K):::: Bo To + B j Tb Bo = t(F+± FJ, 
j 

T _ C(r h)n "" _ i2py _ i2p cosO! 
n- T/2-1 -Wn, C-7- k ' 

.\)0 = 2p r (f - l)(cosr~) exp(iy~) d~, 

~j = - i2p r (f -1) (sinn) exp(iy~) d~, 

(177) 

(The correspondence of cosx, sinx, exp(ix), - i exp(ix) 
with Jo, J b H~ll, HP) was discussed earlier, 23) We 
determine Bn in terms of g(r, k) from the forms in (38) 
for a uniform slab with appropriate parameters, L e, , 
from g(k, k) =W, g(k, k) =T - 10 

For an isotropic slab, g(r, k) consists essentially of 
two terms, one symmetrical and one antisymmetrical 
to reflection in z = 0. We write 

g(k,., k • .) = ao + aj, g(k.,~) = ao - ab a l = al/(l- all, 

(178) 

(such that for lossless scatterers, - Rea~= 0, and 
- Rean = I an 12) and Similarly for g(k,.1 K) in terms of 
AO,A j , From these forms we construct F. of (175) and 
Bn> and, from (177), 

- (Ao ± Aj) = t(To + Tj)(ao ± aj)(Ao + Aj) 

+ t(To - Tt)(ao 'Faj) (Ao - Aj) 

= To(aoAo± ajAj) + Tj(aOA j ± ajAo), 

Thus the analog of (79) is 

- Ao = ao(ToAo + TjAj), - Aj = aj (TjAO + TOAj), (179) 

Consequently, 

(aO'j + To)(aj
j + To) - Ti = 0, 

K
2 _ k2 _ r2 _ 2 _ - i2p[ Y(~o + ~j) + ~0~1 (- i2p + 2r.\)1)] 

- I' - 1 - ~o~l.\)i ' 
(180) 

and the one-dimensional version of (86) is 

_ ~ _ !i...=..!. _ 210 + ~I + 22l0~lhj [I] 
-- c - l-~o~jh~ =gKK, 

i2y ~ c=v p, h j = r+y -.\)j. 

At low frequencies, we drop .\)j and replace ~o by 
30 '" W - 1 to obtain 

From (38), to lowest order in k, we have23 

(181) 

(182) 

(
B'r,2 ) 

aG=iya y--l =ikaseca[(C'-1)-(B'-1)sin20!] 

= secO!(bG + b~j sin20!), 
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(B'-l) [B'-l ] 
a1 = - iyO' -~ = - ika secO' ~ COS2

Q 

= secO!(b~j cos20!), (183) 

where b6 and blj are the leading terms of the corre
sponding multipole coefficients, We rewrite (182) as 

7)2 = sin2
Q + (C - B2 sin2a)/Bj = [C + (Bl - B 2) sin2aJlBb 

C = 1 - ~ bo B2 = 1 + ~ b~1 (184) 
k 1 - a6 W ' k 1 - a6 W ' 

1-- 1 - i2p b~1 
B j - k 1- afW 

to stress that ry=ry(a), as in the generalization of (126) 
given after (128) for scatterers symmetrical to reflec
tion in z = 0. To lowest order in k for Rery and Imry we 
have 

(ry2 _ 1 )(k2 / - i2p) = y(a6 + an - i2pa6at' 

+ w[ I' (a62 + a12) - i2pa6af(a6 + aD], (185) 

For anisotropic slabs with tensor parameter B' 
=B(H+Bfii=L:B~,!,!, the forms in (38) lead to 

g(k", k,.) = aoo + al1 ± 2a01> g(i., k.,) = aoo - al1, 

a= (1- al )-1 • i' == 'B all z,z,' all:::: (ai, - I a'l)/ I 1- a' I , 
a OI = ala = a1o/ 11- i' I, I a'i = aOOa11 - a6L 

(186) 

and Similarly for g(k,.1 K) in terms of A oo , A l1 , 2A01 ' 
For lossless scatterers, Rea~,:::: 0, and - Rea,,:::: I a,,1 2 

+ I a0112, - Rea61 (1 + aoo + al1) = 0, Ima61 (aoo - al1):::: 0, The 
coefficients ai, correspond to the radiationless ampli
tude g' (r, k) = g(r, k) - 9Jlg(r, H) g' (H, k); the expressions 
for Rea" (for lossless scatterers with inversion sym
metry) follow from -Rei==a'i*, -Reg(r,K) 
==IDlg(R,r)g*(R,k), Using (186) and (175) in (177), we 
obtain 

g+[l +t(To+ T1)(aoO+au +2a01 )] 

+g-~(To- T 1)(aoO-al1) ==0, 

g+t(To - T1)(aoo - al1) + g-[l + ~(To + T 1) 

x (aoo + al1 - 2aOl)]:::: 0, 

(187) 

g'" =g(k.1 K), 1 + To(aoo + al1) + T12aOI + I a I (T6 - Ti) = 0. 

Consequently, 

r2 _ y _ y(apo + al1) + 2raoj - I al (i2p + 2Y~~ - 2r.\)1) 
- i2p - 1- (aoo + al1)~O - 2aol~t + I al (~o - ~n 

If we drop ~1 and replace.\)o by W - 1, then 

r2 - y '" y(aop + ail) + 2rapl - I a'l (i2p + 2t!!2 
-i2p It-a'WI ' 

(188) 

(189) 

where we used ai' = (a" + lal )/1 1+ ai, aOI ::::aoJ I 1+ ii, 
Introducing 

/I aft - I i' I W /I _ aOI 
all= If-a'WI ' a Ol- If-a'WI' 

as modified coefficients that account for the radiation 
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losses in the distribution, we obtain 

r2 _ y2 = _ i2p[ y(a~o + af'l) + 2raffll + (i2p )21 a" 1 , 

(r + i2pa~I)2 = (y - i2paffo)(Y - i2pa{I)' 
(190) 

Thus, essentially as in the form (128) for the anisotropic 
distribution, we have 

r = - i2paffl ± [(Y- i2pa~o)(Y - i2paf'I)]1 /2. (191) 

To construct the corresponding 13 and C, by inspection 
we rewrite the a~m as 

affo = seca (b~ + b~o sin2a), afl = seco (b~. cos2a:), 

affl = seca:(b:ocoso sino) 

and substitute in (191) to obtain (128) in terms of the 
bulk parameters: 

C-l- i2p b" _1_ =1- ~ b" 
- k 0, Bu k'" 

B (i2P b")B B -1+~b"+~ 12 = k'o It. 22 - k 00 Bu 

where the last expression corresponds to 1131 /Bu 
= 1 + (i2p/k) b~o. 

(192) 

To obtain the isolated scattering coefficients for the 
above, from (38) we write the amplitudes of a uniform 
anisotropic slab (of thickness 2a) having inversion 
symmetry as 

g~,~)=E.-E., 

g(k., k.) = (exp(- i2ya) + E. + E.) exp(± i26a) -1, 

2E = _ (1- exp(iro2a))(1 ± ~') exp(- i2ya) 
• 1'f Q' exp(z2roa) , 

(193) 
Z'-1 B' r 

Q'= Z'+1' Z'=~' 

r o=(k2C'Bft-IB'lr)I/2/Bfb 6=-Bh T/ B £t 
suc h that r ~ = 6 :!: r 0 are the solutions of the quadratic 
analogous to (47). Thus, 

2 {aoo } = (E. + E. + exp(- i2ya)) cos26 - 1 ± (E. - E.), au 

2aOI = (E. + E. + exp(- i2ya») i sin26. 
(194) 

The leading terms for low frequencies correspond to 

g'(r, k) "'ika seca {(C' - 1) - r' S' k}, S =6 S"Z,Zi> 
Su=(Bfl- 1)/Bfl, SI2=S21=Bh/B fb (195) 

S22 = (I B'I- Bfl)/ Bfl' 

The relation for S in terms of 13' is the limiting case 
for an anis~tro2ic ellir:soi~, i._e., from the forms in 
(144), S= (B'- I) 'r!+ ~z' (~'- !)l.I._SiA~i1ar!y, if::,e use 
(142) in the form B - t= c ~ = [I - ell' ZZ]·1 'II c, c II 
= c (seca:) 6" = (i2p/k) b", we again obtain :a as in (192). 

We rewrite (195) as 

g(r, It) I cosa: I 

= b6 + b~o sine sino + b~. (sine coso + cos e sinal 
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+ b;,cosecosa, 

b6=ika(C'-1), O'=ikaS, 

from which 

= _ika '~C' -1) _ 1 B'I - Bft sin2a] 
cosO! L Bfl 

B' -1 
afl =seca(b;.cos2o) = - ika -~ coso, 

11 

a61 = seca (b~ sinO' cos 0) = - ika ~ sina. 
11 

(196) 

(197) 

The terms in ali to order (ka)2 follow from the relations 
in (186), and Similarly for the coefficients all required 
for (191). To lowest order in k for Rery and Imry, we 
have 

(ry2 _ 1) ~22 = y(a~o + ah)+ 2ra61 - i2p la' I - z p 

+ W(y(a6~ + afi + 2aG~) 

+ (aGo + afl) 2 (r a61 - ip I i' I)]. (198) 

The present results for slabs, and the results in Sec. 
5 for cylinders infinite along y, apply equally to the 
corresponding electromagnetic problems with it, y = 0 
(for which scalar developments suffice). In a subsequent 
paper we generalize the three-dimensional development 
of Sec. 6 for bounded obstacles to the corresponding 
vector electromagnetic problems. 
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The well-known difficulties with the relativistic localization in quantum theory of one particle are 
revisited. Among them the noncausal propagation is shown to be connected with the positivity of the time 
translations generator. A proposal for solving this problem is presented, namely searching for an operator 
probability density current being the 4-vector quantity. The operator of multiplication by the argument of 
the Dirac wavefunction is an example of a causal position operator. 

INTRODUCTION 

The problem of defining position operators and their 
eigenstates in the framework of relativistic quantum 
mechanics was generally solved by Newton and Wigner, 1 

These authors showed that for elementary systems 
(L e" irreducible representations of the Poincare 
group) three commuting components of position opera
tor exist together with the continuous spectrum of their 
eigenvalues, 2 

This Newton-Wigner solution has, however, some 
disadvantages: 

(I) The three components of the position operator are 
not a part of any four-vector quantity, Therefore, it is 
difficult to imagine any simple Lorentz covariance, 

(II) A state which is localized in the origin (that 
means that it is an eigenstate of the three position 
operators to the eigenvalue zero) in one coordinate sys
tem is not localized in a moving coordinate system even 
when the origins coincide at t = 0, 

(ill) The localized states have noncausal propagation
this property may be also called instantaneous spread
ing out of the wavepacket. This means that the scalar 
product of two localized states (1jJa,1jJb), where a and b 
are pOints in the Minkowski space, is different from 
zero also for (a - b)2 < 0, L e., for spacelike separa
tions. This implies that the probability of propagation 
faster than light is nonzero, 

A solution of the problem I has been given by 
Fleming3,4 who ascertained that a position operator 
should depend on a spacelike hyperplane on which the 
particle is to be localized, The Lorentz transformation 
changes the hyperplane of localization, therefore one 
should expect that it also changes the position operator. 

Let us briefly sketch the Fleming hyperplane formal
ism. Each hyperplane L may be uniquely characterized 
by a four-dimensional vector 7J orthogonal to it and by 
its "distance" '1' from the origin, These two quantities 
enter into the equation of the hyperplane, 

71· X =T. 

The quantity '1' is a scalar-it is the proper time in a 
frame of the hyperplane, Since the hyperplane is space
like, 712> 0, we choose 712 = 1, 1'/0> 0, The dependence of 
the hyperplane on 71, '1' will be denoted L = L(71, '1'). 

In the Heisenberg picture we have a family of pOSition 
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operators X" (71, '1') fulfilling the operator equation 

71"X,,(71,T)=T,l, 

This formula says that the four components X" (71, '1') are 
linearly dependent, so only three of them are indepen
dent

o 
In particular, for purely space hyperplanes [i. e, , 

for 1'/= (1,0)1 the above formula gives 
o 

X o(71, '1')= '1" 1, 

that is, the zeroth component of position is merely the 
time parameter. 

Now the Lorentz covariance has the form 

U(A)X" (1'/, T)U(At1 = (A-1).,"Xv (A71, '1'), 

In this way problem I is solved, 

Problem II remains unsolved since an eigenstate of 
X(71,O), localized in the origin goes into an eigenstate 
of X(A71, 0) under Lorentz transformation U(A), but 
physically one expects that it should remain the eigen
state of X(1'/, 0), In Fleming's case one may generally 
have a family of eigenstates at the same space-time 
point, indexed by hyperplanes, It may, however, happen 
that the set of eigenstates of X(71, 0) localized in one 
space-time point is not one-dimensional and the 
Lorentz transformations do not lead out from this set, 
This situation is already acceptable from the physical 
point of view and it occurs in our example of Sec, 3. 

Our note gives a proposal of seeking for a solution of 
the third problem, It is based on a useful tool which is 
an operator probability density distribution p(x, t) and an 
operator probability density current j(x, t) which 
together form a four-vector probability density current 
j" (x), This notion has been used for instance in the 
paper of Barut and Malin5 where it was assumed that 
the expectation values of these operators (1jJ, p(x, t)1jJ) and 
(1jJ, j(x, t)1jJ) give the ordinary probability density distribu
tion and probability density current of quantum me
chanics, respectively. Petzold and coworkers6,7 also 
investigated four-vector operator density currents in 
the specific case of scalar particles and showed that 
for positive energies it cannot have causal propagation, 

1. SIGN OF THE TIME TRANSLATION GENERATOR 

There are some indications that the positivity of en
ergy causes difficulty III, Let us present a quite elegant 
argument concerning this question which is due to 
Jadczyk (private communication). 
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Suppose we have a localization on spacelike regions 
L1 of three-dimensional volumes, Suppose also that it is 
given by projection operators E(L1) associated with all 
such regions. Assume that the localization propagates 
causally, which means that for two spacelike regions L11 

and L12 the projections E(L11) and E(~2) are orthogonal, 
i. e" E(~dE(~2)=0. We shall show that this cannot be 
reconciled with the positivity of the Hamiltonian, For 
this purpose we need a theorem by Borchers: 

Theorem: There exists a one- parameter group U(t) 
= exp(- iHt) where the generator H?:- c> - 00, Denote 
F t = U(t)FU(t)"1 for any operator F. If there exists a 
pair of projectors E,F such that for It I <e, EFt=O 
then for any tER, EFt=O, 

The proof is based on analyticity properties of spec
tral measures and can be found in Ref, 8, We shall use 
this theorem for different one-parameter groups U,,(T) 
of time translations in different frames, namely U,,(T) 
= exp[ - i(P, 1)T] where P'" is the four-vector transla
tion generator, The operator (P, 1) is the Hamiltonian 
in the proper frame of 1), According we shall consider 
expressions F"T= U"(T)FU"(T)"1, 

Now we proceed to the argument of Jadczyk, We start 
from two parallel regions ~1 and ~2 of the Same size, 
spacelike separated as shown in Fig, 1. We have 
E(~1)E(~2) = 0, We also have E(~1)E(~2)"T= 0 for T 

small such that ~2 + 1']T has no intersection with the 
causal shadow of 6.1, Then by virtue of the Borchers 
theorem we have 

E (6.1)E(6.2)"T= 0 

for arbitrary T, Hence we may write 

where 6.3 is as shown in Fig. L In the same way we 
can show that E(6.1)E(6.2)"'T= 0 for sufficiently small T 
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and then E (6.1)E (6.5) = O. Thus we are allowed to move 
L13 in the pure time direction without destroying the 
orthogonality relation, 

E(6.1)E(6.3)t = 0 for I t\ <Eo 

Now, using the Borchers theorem we may write down 

E(L11)E(6.3)t=0 for any tER. 

If we translate 6.3 back in time far enough to cover it 
with 6.1 we obtain in this way 

E(6.1)2 = 0, 

which implies 

Thus our family of projectors contains only zero opera
tors, Therefore, we have to agree that such projectors 
cannot describe any localization, In this way the posi
tivity of time translation generator and the causality of 
localization cannot be reconciled, 

There are also other arguments leading to the same 
conclusion, see Refs, 9 and 10, 

Now we understand why the Newton-Wigner solution 
of the localization problem has to propagate noncausal
ly: This is so since these authors work with irreducible 
representations of the Poincare group which of course 
have the time translation generator bounded from below, 
If one wishes to secure the causal propagation one has 
to give up the positivity of this operator, 

In our opinion the relativistic localization problem 
ought to be stated in the following form: 

Find a general form of the Fleming position opera
tors with the following spectral decomposition, 

X"'(1),T)=j( dE,,(x)x"', (1) r:: n.1') 

and of the Poincare group representation under which 
they are covariant. The spectral meaSures should 
satisfy the condition of causal propagation, 

(2) 

The most interesting part of the problem is to find the 
Poincare group representation and especially its Hamil
tonian. Now we are convinced that these representations 
cannot be irreducible and should contain negative as 
well as positive Hamiltonian parts, Therefore, it is 
understandable why Petzold6 obtained noncausal prop
agation for positive energy pions, 

If one wants to retain the probabilistic interpretation 
for the states of one sign of energy only, one may use 
nonspectral measures, 

E,,(6.) = PE,,(~)P + (1- P)E,,(L1)(l - P), 

called positive operator-valued measures l1•
12 where P 

is a projection operator onto the one sign of Hamiltonian 
vectors, and then use new position operators 

X"'(1'], T)=j ( dE" (x)x "', c 1), T) 

which do not lead out from the space of states of one 
sign of the energy, Jauch and Piron13 proposed using 
positive operator valued- measures for a localization 
of the photons, see also Ref, 14, 
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However in this language it is difficult to consider 
the causality of propagation, since the condition 
E(L'.l.t)E(L'.l.2) = 0 for L'.l.1 X L'.l.2 makes no sense because even 
for equal times E(L'.l.I)E(L'.l.2)"* 0 when i is not a spectral 
measure. Obviously for such nonspectral measures the 
above argument of Jadczyk cannot be applied since they 
do not have the idempotence property. Therefore, we 
must face the following dilemma: what should be given 
up-pOSitivity of the Hamiltonian or "projectivity" of 
the localization in finite regions-to ensure the causali
ty of propagation of the localization? In this paper we 
choose the first possibility. 

In this connection a very puzzling question arises: 
How is it possible that the energy of an elementary 
system has both positive and negative signs? In our 
opinion it is Worthwhile to discuss the following answer: 
The time translation generator H is not merely the 
energy operator but a product of energy E = (P2 + m2)1 /2 

and some other quantity:=:, 

(3) 

These two quantities commute, hence they can be simul
taneously determined. The nature of quantity:=: is not 
yet clear. Anyway 

_ Po 
.::. = (P2 + m 2)1/2 

is Lorentz invariant, which can be easily checked by 
virtue of the Poincare group Lie algebra. It has an 
obvious property:=:2 = 1 for the one-particle systems, 
i. e., for Po - p2 = m 2• 

In order to maintain the Lorentz covariance of (3) one 
should also change the interpretation of the linear 
momentum, namely:=:. P = P should be viewed as 
momentum operator instead of P which may be called 
only space translation generators, From the point of 
view of the conservation laws both P and p are equally 
physical since both commute with the Hamiltonian. 

In the case of the massless Dirac particle, i. eo, for 
the neutrino,:=: is just the product of helicity and 
chirality (see Sec. 4). Thus the necessity of using both 
signs of the Hamiltonian may be expressed in the follow
ing way: In order to have causal relativistic covariant 
localization of the neutrino one has to work with both 
signs of helicity and/or chirality. 

There is a paper by Bertrandl5 in which the hyper
plane formalism of Fleming is applied to a special 
limiting case of null planes appropriate for massless 
particles and specifically to the photon. Bertrand has 
been led to use both signs of the Hamiltonian only be
cause of the very existence of the position operators 
for the photon and without adducing the causal propaga
tion. This is understandable since there are difficul
ties with the existence of any (causal or not) localiza
tion of the photon, see Refs. 13 and 14. 

2. OPERATOR PROBABILITY DENSITY CURRENT 

In the light of the previous section it is natural that 
the localization problem needs a new approach for solv
ing it. Our goal is to present a useful tool for this aim. 
Namely, an operator-valued probability density distri
bution p(x) together with an operator-valued probability 
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density current j(x) which together form a probability 
density current 4-vector, 

jl-'(x) = (p(x), j(x»). 

Mathematically it is an operator-valued distribution of 
class OM in space like directions, 16 which means that 
after smearing out over space like hyperplanes with 
smooth functions growing polynomiallyl7 it yields an 
(unbounded) operator in a Hilbert space. Let us denote 
such a class of distributions O~,., where s stands for 
"spacelike. " The expectation values of this operator 
quantity (I/J,jl-'(x)cp) are the ordinary probability currents 
of quantum mechanics, see Ref. 5. We may summarize 
Our proposal in the following assumption: 

There exists an operator-valued 4-vector distribution 
r(· ) E O~,s such that the Radon-Nikodym derivative of 
the spectral measure E~(L'.l.) occurring in (1) with respect 
to the three-dimensional volume V in the proper frame 
of T/ can be expressed by the formula 

The current is assumed to be conserved, 

al-'jlL(x)=O • 

This property assures that the integral 

ir;(~,,)I-'(X) da I-' (T/,x), 

where da(17,x)=17"dV(x), does not depend on 1] nor 7. 18 

From the physical interpretation we demand 

f ( jl-'(x)da,,(T/,x) =1 (4) 
C 'J, T) 

as an operator identity. We assume also that the cur
rent is Poincare covariant, 

U(A, a)j"(x)U(A, arl = (A -I)" vf(Ax + a), 

Having this we define the position operatort9 

XI-'(T/, 7) = 1.e (~, T)y I-'f(y) dav(T/, y). 

Let us check the Fleming condition X ,,(T/, 7)T/" = 7'1, 

T/"X ,..(T/, 7) = ir;(", T) (T/' y)Y(y) dav(T/,Y). 

Since T/ 0 y = 7 for Y E "E(1], 7) we have 

17I-'X I-' (1], 7) = 7 ir; (~, T)j"(y) dav(T/, y) = 71 

(5) 

by virtue of (4). Let us also examine the Lorentz trans
formation law of X(17, 7). Toward this purpose we need 
the transformation properties of the integration element 
da '" 

Checking, we have: 

U(A)X,,(T/,7)U(Ar1 

= ir;(q,T)Y I-'U(A)j"(y)U(Arl dav(T/,Y) 

= ir;(q, T) y I-' (A -ltxjX(Ay) da,,(T/,Y) 

= ir;(~, T) Y 1-'/. (Ay)A/ dav(17, y) 

= ir; (ry, T) Y I-'P(Ay) dax (A 1], Ay) 

Bernard Jancewicz 
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changing the variables y' =Ay 

=j (A-Iy') j~(y')da (An y') 
r:;(A". T) ~ ~." 

= (A-I),/Xp(AT), T). QED 

The probability density current has to have one more 
property in order to have expression (5) as a spectral 
decomposition, namely the idempotence property. A 
spectral measure is given by the formula 

(7) 

for A c"Z; (T), T)o In order to have the idempotence E"(A)2 
= E"(A) it is sufficient to postulate 

7)~j"(x)j"(y) = o~(x - y)j"(y) 

for (x_y)2<0 or x=y, (8) 

where 7) is a unit vector orthogonal to (x - y) and the dis
tribution o~, introduced by Fleming in Ref. 20, fulfils 

6(7)x)6~(x) = 64(x). 

This distribution can be also written as 

6~(x) = (27T)-3 J d4k 6(7)/<) exp(ikx) 

or 

(9) 

where x' are the coordinates of x in the proper frame of 
7)0 The 6~ has its support on the axis {x = A7), A E R} and 
has the property 

J~(".T) da ,,(7),x)6~(x - y)f(x) =f(Y)7)" for y "'- "Z;(7), T)o 

(10) 

The proof of sufficiency of (8) for the idempotence may 
be found in Ref. 210 

If one wants to wq,rk with one sign of Hamiltonian 
position operators X(7), T) one may assume a weaker 
condition 

(11) 

for each timelike 7),7)0> 00 This means that in the proper 
frame of 7) the zeroth component of this current 

p' (x) =;0' (x) = 7)"]u (x) 

(which is just the probability density in that frame) has 
the ordinary positive probabilistic interpretationo It 
ensures that the current] put in (7) gives the positive 
operator-valued measure o The inequality (11) also says 
thatj(x) is a timelike vector for each Xo Of course a cur
rent satisfying (8) also satisfies (11)0 

In this way we are sure that the postulating of the ex
istence of a covariant conserved 4-vector probability 
current yields the Fleming position operator by formula 
(5L 

Now we complete our list of postulates by assuming 
the property 

j~(x)ju(Y)=O for (x-:d<o, (12) 

which quarantees that the projectors (7) satisfy condi
tion (2) of causal propagationo It might seem that (12) 
follows from (8) but this is not the case since we have in 
(8) a timelike vector 7) which can not be arbitrary and 
should be absent in (12). 
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Thus we formulate the problem of relativistic local
ization translated into the language of the probability 
current as follows: 

Find a general (not necessarily irreducible) represen
tation of the Poincare group and and operator valued 
distribution j ( , ) E O~. s such that 

(i) a "j" (x) = 0, 

(ii) Jr:;(",T)j"(x)dau(7),x) =1; 

(iii) U(A, a)j"(x) U(A , at! = (A -1)" "j"(Ax + a); 

(iv) 7)uj"(x)j"(y)=6~(x-y)j"(y) for (x-y)2<00rx=y; 

(v) j"(x)j"(y) = 0 for (x - y)2 < O. 

Postulates (i), (ii), and (iii) serve to fit the Fleming's 
solution of the problem I mentioned in the Introduction, 
postulate (iv) ensures that expression (7) gives a spec
tral measure, and postulate (v) solves problem III. Up 
to now we did not touch upon the solution of problem II 
since we do not see how to express it in purely alge
braic language. 

3. DIRAC PARTICLE-AN EXAMPLE SATISFYING 
THE POSTULATES 

Now we proceed in presenting an example which ful
fills postulates (i)- (v), namely the Dirac particleo The 
free relativistic spin- i particle is described by a Hil
bert space H of four-component functions 1JI satisfying 
the Dirac equation: 

(13) 

where ai, a2, 0'3, and f3 are 4x4 Hermitian matrices 
which anticommute with each other and have their 
squares equal to oneo It is useful for our purposes to 
introduce the following representation for them 

f3=(~ ~), 
where ak are 2 x2 Pauli matrices, and / is a 2 x2 unit 
matrixo The a matrices may be completed with the 
unit matrix 1 to form the 4-vectors 

a" = (I, a), a" = (1, - a)o 

'With the help of 2 x 2 matrix 4-vectors a" = (/, a) and a" 
= (I, - (7), we may write 

(
a" 0) 

a
U

= 0 a" , -" _((j~ 0) 
a - 0 a" ' 

These matrices have the property 

aUa" + a"a" = 2g""0 (14) 

Using the matrix 4-vector a" we may rewrite Eq, (13), 
(14) 

i(a·i1)lJI-{3mlJl=O, (15) 

where (a· il) = aua ". 

The scalar product in H is given by 

(4;>, 1JI) = J .. ° 4;>+ (x)lJI(x) d3x o (16) 
x =const 

It is positive definite and does not depend on xo, 

A matrix distribution G(x) satisfying (15) and such 
that 
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G(x, 0) = o3(x)1 (17) 

will be called a propagator for (15). It can be found22 

to have the form 

G{x) = - [(Q'. 0) - imj3]A{x, m 2), (18) 

where A is the well-known Pauli-Jordan invariant func
tion vanishing outside the light cone. Hence the dis
tribution (18) also has its support in the closed light 
cone. It has, moreover, the properties: 

G(x)'=G(-x), (19) 

io"Go:"-mGj3=O. (20) 

If A E SL(2, C) then A - A(A) is the well-known homo
morphism of SL(2, C) onto L:-the proper orthochronous 
Lorentz group, given by the formulas 

(21) 

where A = (A +>-1.23 We introduce the four-dimensional 
representations of SL(2, C) by the formula 

B(A)= (~ 1), B(A)=(~ ~). 
Then we have, by virtue of (21), 

B+(A) 0: "B(A) =A" val' and ihA) a" B(A) =A" val'. 

It follows from (22) that 

B(A)Q'''B(A)'= (A -1) "val' 

and 

Moreover it is easy to verify that 

B (A)'J3B(A) =!3 for each A E SL(2, C). 

(22) 

(23) 

(24) 

Using the above formulas it is straightforward to see 
that G has the following covariance property: 

B(A)G(x)B+(A) = G(Ax). (25) 

The term "propagator" has been used for G because it 
yields the relation 

>I!(x)=f~o=co""td3yG(x-y)>I!(y) (26) 

for any solution of Eq. (15) and for arbitrary yO. 

In the Hilbert space H the following unitary represen
tation of SL(2, C) is given, >I! - U(A)>I!, where 

(U(A) >I!) (x) = B (A) >I! (A -Ix). 

Using the unitarily of these operators and the formulas 
(22), one may show that the scalar product (16) can be 
written 

(>I!, if}) = Ic (ry. T) >I!+{x)a "1> (x) du" (1], x). (27) 

Similarly relation (26) after employing (25) may be 
generalized to the arbitrary spacelike hyperplane, 

>I! (x) = Ic('I. T) du ,,(1],y)G(x - y)a">I!(y). (28) 

In particular, since G is also the solution of (15), we 
have 

G{x - z) = f c (", T) dUn (1], y)G{x - y)a "G(y - z). 
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The boundary condition (17) may be also generalized 
onto a spacelike hyperplane passing through the origin. 
To this purpose one may use a Lorentz transforma
tion A such that A1] =~. The explicit form of it is 

Aoo=1]o, AOk=1]k, A/=-1]J' 

A k - .!Lt!.lL + 0 k (29) 
J - 1]0 + 1 J • 

Denote Ax =x', of course x'o = 0 when x E 2: (1],0). Due to 
(25) we have 

G(x) = G(A -IX') =B(A-l)G{x')B(A-I)' 

for A corresponding to A given by (29). We take 
xE2:(1],O), thenx'o=O, and by virtue of (17) we have 

G{x) = B(A -1)03(X' )B(A -1)+ 

= o3(x')B(A-I)aOB(A-I),. 

We use (23) and (9), 

G (x) = o~(x)A 0 val'. 

Therefore, by virtue of (29) we have 

G(x) = o~(x)(1]' a) for x E 2:(1], 0) 

and this is the needed generalization of (17). 

(30) 

Now we are prepared to introduce our operator
valued density current. For any >I! of class 5 as a func
tion of x (the set D of such elements from H constitutes 
the domain of definition of j), 

(j "(x)>I!)(y) = G(y - x)a ">I! (x). (31) 

First of all we check the hermicity of this operator. We 
have 

(>I! ,j" (x) 1> ) = J>=const >I!+(y )(j" (x)1»(y) d3y 

= I >I!+(y)G(y -x)a"1>(x)d3y 

= [j G (y - X)'>I!(y) d3y ra "1> (x) 

which using (19), 

= [j G{x - y)>I!(y) d 3y ]+0: "1> (x) 

and using (26), 

We also have 

(j" (x) >I! ,q,) = I~o=const (j "(x)>I!t(y)q, (y) d 3y 

= I [G(y - x)a ">I! (x) ]+q,(y) d 3y 

= I >I!+(x)a"G(y -x)+q,(y)d3y 

=>I!+(x)a/l J G{x-y)q,(y)d3y 

= >I! (x)'a"q, (x). 

Hence we have 

(>I! ,j"(x)1» = (j "(x)>I!, 1» = >I! (x)'o: "1> (x) 

and the hermicity is checked. We also see in this 
formula that the expectation value of the operator j"(x) 
is indeed an ordinary c-number probability current of 
quantum mechanics. 

The wavefunctions belonging to the Hilbert space H 
are functions of four space-time coordinates. These 
functions are determined uniquely by their values on an 
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arbitrary spacelike hyperplane24 since they satisfy the 
wave equation (15) and the scalar product (27) is inde
pendent on the hyperplane. Therefore, when consider
ing an (improper) element P'(x)'lr of H we may confine 
ourselves for the function (p' (x)'lr)( y), only to y belong
ing to some specific hyperplane ~(1), T). By virtue of 
(30), definition (31) then gives 

(j1'(x)'lr)(y)=o~(y-x)(1).&)al''lr(x) for X,YE~(1),r), 

(32) 
Now we integrate this with a test function f over the 
hyperplane ~ (1), r), 

1= [flJ (~, T)j" (x)f(x) do I' (1), x)'lr ](y) 

= flJ(~, T) o~(y - x)(11' &')al' do 1'(1),x)f(x)'lr(x), 

If we change the variables x' =Ax for A given in (29) and 
use (9) we obtain 

1= f,!J.~ 03(y' - x')(1)' &')(1). a)f(A-1x')'lr(A-1x')d3x'. 

If we employ the identity 

(1)' 5)(1). a) = (1),1) = 1 

following from (14), we obtain 

1= f ,!J.yIJ 03(y' - x')f(A -lx ')'lr (A -Ix,) d 3x' 

= f(A -ly ')'lr(A -ly ') 

= f(y)'lr(y), 

Thus we have proven the identity 

[flJ (~, T)j I'(x)f(x) do I' (1), x)'lr ](y) = fry )'lr(y) 

for y E ~ (1), r), 

(33) 

(34) 

We see from it that the smeared current operators j (j) 
leave our domain D invariant when f is of class 0 M,.' 
In this way we have shown thatj"(x) is the operator
valued distribution of class 0':',. on the domain D of 
vectors which have Schwartz type 5 behavior on space
like hyperplanes, 

Now we verify the postulates of Sec. 2, 

(i) The current conservation: 

[o!"j"(x)'lr }y) 

= a!I'[G(y-x)al''lr(x)] 

=- (a"G)(y -x)a"'lr(x) + G(y -x)al' 01' 'lr(x) 

= [- a I'G(y - x)al' - imG(y - x)!3]'lr(x) 

+ G (y - x)(a I' a I' + im,'J)'lr(x), 

Both terms vanish by virtue of (20) and (15), therefore 
we have 

0l'j"=O. 

(ii) Normalization: It is sufficient to use (34) for f(x) 

= 1, 

flJ (~, T) do I' (1), x)j" (x)'lr = 'lr. 

Hence 

fe (~, T) do" (1),x)j" (x) = 10 

(iii) Lorentz covariance: 
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[U(A)j I' (x)U(A)"1'lr] (y) 

=B(A)[j"(x)U(A)"1'lr ](A -1y) 

=B(A)G(A -1y - x)a"[U(A)"1'lr](x) 

=B(A)G(A -1(y _ Ax»B (A)+B (A-1,-a "B (A-1)'lr (Ax) 

using (22) and (25), 

= G(y - Ax)(A -1) ""a"'lr(Ax) 

= (A-1)""[j"(Ax)'lrj(y). 

Hence 

U(A)j"(x)U(A)-1 = (A -I)" "j"(Ax). 

The translation covariance is easy to check, 

(iv) The projection property: Let x, y be such that 
(x - y)2 < 0, Then there exists a unit positive timelike 
vector 1) such that 1)' (x - y) = 0 and a hyperplane ~ (1), r) 
such that x ,y E ~(1), T). Let us assume that z E ~(1), r) 
and consider the following expression 

K = [j"(x)j"(y)'lr Hz) = G(z - x)a"G(x - y)a"'lr(y). (35) 

We have z - x E ~ (1),0) and x - y E ~ (1),0), therefore we 
can use (30), 

K = o~(z - x)(1)' Q)a"o~(x - Y)(1)' 5)av'it(y) 

= o~(x - y)(1)' Q)Ctl'o~(z - Y)(1)' 5)av'lr(y) 

= 0; (x - ,V)(1) , (1)a"G(z - y)av'lr(y) 

= o~(x - y)(77' &')aI'U"(y)'lr1(z). 

If we multiply both sides by 77" and use (33) we get 

[77l'j"(XW(y)'lrl(z) = o~(x - y)[f(y)'lr](z) 

and since 'lr is arbitrary from D, 

1)"j I' (x)j" (y) = o~(x _ y )jV(y). 

(v) Causality: We know from (18) that G(x - y) = 0 for 
(x - y)2 < 0, Therefore, the equality (35) gives 

U I'(x)j"(y)'it 1 (z) = 0 

for arbitrary 'lr E D, hence 

j"(x)j"(y)=O for (X-y)2<0. QED 

Now we find the pOSition operator corresponding to 
the current (31), We calculate the action of expression 
(5) on a function 'lr E D, 

[X" (77, r)'lr liz) = [je(~, T) y "jl/(y) dOv(77, y)'lr )(z), 

By virtue of (34) we have 

[X"(7), r)'lrj(z) =z"'lr(z) for z E ~(7), T), (36) 

Thus X"(1), r) is the operator of multiplication by the 
argument of the wavefunction when this function is 
taken on the hyperplane ~ (7), r). Therefore, for a k we 
have the usual interpretation as the velocity operators 
together with the well-known difficulties of the 
Zitterbewegung. 

This velocity seems to be disconnected with the 
translation generators, since the equality 

P=Ca, 
where C might be some operator coefficient, is not 
satisfied. Instead of this we have a connection between 
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velocity and spin, 

Sd'2a, (37) 
where in the representation chosen for this paper 

n=~(~ _0/). 
It is easy to check that n = h's = tia 1a 2 a 3

• In this way 
the velocity becomes an internal variable of the particle 
since it does not affect the space-time variables x of 
its wavefunction. Note that the quantity n commutes 
with spin and velocity. We propose to call it velocity 
helicity in distinction to the ordinary helicity which 
relates spin with the momentum. The quantity Ys is 
commonly called chirality. 

Let us now find the (generalized, since from the con
tinuous spectrum) eigenvectors of the operator 
XII-(1), r)j 

X"(1), r)wa,t =a"Wa,t. 
We use two indices, the first refers to the position 
eigenvalue, the second refers to some other quantities 
(for example spin and velocity helicity). After using 
(36) the above equation takes the form 

Z "w .. t(z) = a"wa, t(z) for z E: ~ (1), r). 

A solution of this equation can only have the form 

Wa,t(z) = Ii~(z - alb: for z E: ~(1), r), 

where b: is an arbitrary column. In order to calculate 
the function Wa,t in other space-time pOints we use the 
formula (28), 

wa.t(y) = Jr;(n,T) da,,(1),z)G(y - z)Q"Ii~(z - alb:. 

Due to (10), 

Wa,t(Y) = G(y - a)(1)' alb;. 

Since b: is arbitrary and (1). a) is a reversible matrix 
we may argue that bt = (1)' alb; is arbitrary and write 

(38) 

We see that the set of all vectors localized at one 
space-time point a is a four-dimensional manifold25-

this is natural since the Dirac particle has internal 
degrees of freedom. The different states localized at 
the same point differ for instance by velocities. 

Now we look at the Lorentz transform of the vector 
(37), 

[U(A)Wa,t](Y) = B(A) Wa,/(A-1y) 

=B(A)G(A-1y - a)b t 

=B(A)G(A -ly _ a)B(A)+ B(A-1)+b/ 

using (25), 
= G(y - Aa)B(A)b/. 

If we denote bt =B(A)b/ we obtain 

[U(A)>Ir a, t ](y) = G(y - Aa)bt, 

i. e., again a vector of the form (38). We see from this 
that the eigenvector of X II- (1),0) localized at the origin 
(that is a = 0) after a Lorentz transformation is again 
an eigenvector of X" (1),0) localized at the same point. 
It is the velocity (and also the spin) which is the trans
formed quantity in this case. Therefore, the Dirac par-
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ticle is an example in which disadvantage II of the In
troduction is absent. 

4. CONCLUDING REMARKS 

The notion of the operator-valued probability den
sity current may be very useful in finding admissible 
relativistic Hamiltonians. Borowiec and Jadczyk26 have 
shown, for instance, that for the current j and density 
p linked by the relation 

j = t(vp + pV), 

where v = X is the velocity, the Hamiltonian ensuring 
the covariance (iii) under time translations should be 
linear in the momentum operators. Therefore, for 
example, the scalar Klein- Gordon particle in the usual 
formulation is not such a solution since for it H 
= (± p2 + m2)1/2 and this function evidently is not linear 
in the P operators. The Duffin- Kemmer equation 
seems to be more appropriate for our purposes. 

There is a hope to localize also the photons on the 
spacelike hyperplanes (not on null planes as in Ref. 15) 
since Dirac-like equations have been proposed for the 
photons. 27 

Barut and Malin maintained5 that the operator prob
ability density p for the scalar particle is not the zeroth 
component of any 4-vector quantity. We have seen in 
Sec. 3 that for the Dirac particle the density p and the 
current j form a covariant 4-vector. 

From the example elaborated in Sec. 3 we also 
learned another lesson: The linear manifold of eigen
vectors of X(7), r) for fixed 1) and r, localized in one 
space-time point should be Lorentz invariant in order 
to not have disadvantage II of the Introduction. On the 
other hand, this manifold cannot be one-dimensional 
since otherwise this would imply that it consists of 
eigenvectors of Lorentz transformations and thus the 
Lorentz transformations would commute with X(1), r). 
Thus the particle should have internal degrees of 
freedom. In our example the velocity yields such in
ternal degrees of freedom. 

For the massless Dirac particle the Hamiltonian has 
the form H == a . P. Using the relation a == 2ysS following 
from (37), we get H==2y5S·P. Introducing the helicity 
h = 2S . P / I PI == 2S . P / E, we obtain H == Y5hE. Hence the 
quantity introduced in (3) is E == Y5h. Note that the three 
quantities appearing in this relation commute with each 
other. 

There is a paper by Durand28 in which a quantized 
field version of pOSition operators is introduced for the 
spin- t field. This "Dirac pOSition operator" is ex
pressible as a "weighted average of x over the charge 
density." The charge denSity obviously is not positive 
definite and therefore when restricted to the one-parti
cle subspace it cannot be identified with our density 
P == l. The density of Durand's paper when integrated 
with x gives dipole moment rather than "position of the 
center of charge. " Durand discusses a commutativity of 
the density at spacelike separated pOints and calls it a 
condition for a causal theory, but does not intend to 
show that the product itself vanishes at such points. 
Therefore she does not touch the question of the causal 
propagation in our sense. 
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An application of the nonstandard Trotter product formula 
Alan Sioana) 
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The nonstandard Trotter product formula is used to extend the Feynman integral interpretation of 
solutions to the Schrodinger equation in the presence of a highly singular potential. 

We seek an answer to the question of when a quantum 
mechanical Hamiltonian H determines a system which 
evolves according to a Feynman path integral. t Speci
fically, we want to know when there is a potential V so 
that, upon setting Ii = 1, and fixing t > 0 

where Tn, v(u) is defined as the integral 

and 

and 

Xu(xn)dxdxn, 

Cn = (2rrit/mn)-3n/2, m > 0, 

X=(Xt,X2,··· ,Xn_t), 

~(m(Xj-Xj_l)2 ~t 
S(Xo,X,Xnin,t,V)=~ 2(t/n)2 -V(Xj)r:n' 

An explicit computation2 shows that 

Tn, V = (exp(- itHoln) exp(- itV In) ]n, 

where 

Ho = - D./2m on L2(IR3), 

(1) 

(2) 

(3) 

(4) 

(5) 

for V any real measurable function. Consequently, 
Nelson2 was able to employ the Trotter product form
ula3 to verify (1) in case H is the closure of the operator 
sum, Ho + V, and V is chosen so that Ho + V is essential
ly self-adjoint. Nelson2 and Faris4 extended this type 
of formula to more singular potentials by including an 
additional limiting operation after analytic continuation 
in the mass parameter Ill. Although there has been 
progress in extending Trotter's formula for exp[- t(Ho 
+ V)], 5-7 when V is singular relative to H o, analogous 
results are not known for the unitary groups exp[it(Ho 
+ V)]. Through the use of elementary nonstandard tech
niques we shall find a formula of the type (1) valid for 
singular potentials. 

For details on nonstandard analysis and notation we 
refer the reader to Refs. 4 and 8-10. Here we adopt 
the convention that Xc * X for any set X. If X is a topo
logical space, a in X, bin *X, we write a""b if and only 
if b is in the monad of a. If a"" b we say a is the stand
ard part of b and that a and b are infinitely close. We 
use the Euclidean topology on IRn and the norm topology 
on L 2(JR3), 

alSupported in part by NSF MeS 76-97543. 
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Suppose H is a self-adjoint operator on L2(IR3) which 
can be approximated in the generalized strong sense by 
bounded perturbations of Hoi i. e., there is a sequence 
V K of bounded self-adjoint operators on L 2(JR3) such that 
the resolvents of Ho + V K converge strongly to those of 
H. Then, (Ref. 11, 502), providing {Ho + V K} is uniform
ly bounded below, it follows that exp(- itH) is the strong 
limit of exp[it(H + V K)]' Thus, for all K in * IN' - IN', 
where IN' ={1, 2, ••• }, and for all u in L2 we have 

exp(- itH)u"" exp[ - it(H + V K)] u. (6) 

By the Trotter product formula and the transfer prin
ciple, for each K in *IN 

n- ~ 
n in * IN (7) 

Combining (6) and (7) we find 

exp(- itH)u""lim [exp(- itHoln) exp(- itVKln)] n. (8) 
n- 00 

n in *IN 

For all finite nand K, (4) shows that 

Tn, V K = [exp(- itHoln) exp(- itV Kin)]", 

so by the transfer principle (9) holds for all n, K in 
*IN'. Thus, for each fixed infinite K, (8) yields 

exp(-itH)u'" lim Tn,VK(U), 
n- ~ 

n in *N 

(9) 

(10) 

For each n, K in IN', (2) shows that Tn, V K(U) is given 
by an action integral. The transfer principle then im
plies that for all n, K in *IN' formulas (2) and (3) remain 
valid with V K replacing V. Consequently, we may con
clude that 

exp(- itH)u( • ) '" lim 
n- ~ 

n in *N 

XU(X n) dx dx n• 

Lemma: Let X be a separable normed linear space. 
Let fn : X - * X be bounded linear operators which are 
uniformly bounded in the sense that there is an M in IN 
such that Ilfnll ~M for all n in *IN'U {Or. Ufn-fo point
wise on X as n - 00 in * IN' , there is an N in *IN such that 
n > N implies fn(x):::: f o(x) for all x in X. 

Proof: Let C be a countable dense subset of X. Let 
>t be a positive infinitesimal. Choose N c in *IN so that n 
>Nc implies IIfn(c)-fo(c)1I <>t. LetN be an upper bound 
for {Nc : C in C}i N exists by Ref. 5, p. 59. Let x in X 
be arbitrary. Fix Ii> 0 in JR. There is a c in C so that 
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lie - xII < B. Then for n > N 

Ilfn(x) - fo(x) II 
"" Ilfn(x)-fn(c)11 + Ilfn(e)-fo(e) II + Ilfo(c)-fo(x) II 
<Mllx-ell +:\+Mlle-xll <3MB. 

Because B is arbitrary we conclude that fn(x):::: fo(x) 
whenever n > N. Q. E. D. 

Combining this lemma with the previous conclusion, 
noting that exp( - itH) and the Tn, V K are uniformly 
bounded by 1, yields the following: 

Theorem: If V K are bounded self-adjoint operators 
such that Ho + V K converge to H in the generalized strong 
sense as n - 00 in IN, then for each fixed positive infinite 
integer K there is an N in *IN such that for all n > Nand 
for all u in L2 

exp(itH)u('):::: en f 3n exp[iS(· ,x, x n; n, t, V K) 1 
It 

(11) 

To compare the types of potentials covered by form
ulas (1) and (11) we note that2 (1) holds if V is in £P 
+ L ~, p > 2, whereas (11) holds whenever H is the gen
eralized strong limit of bounded self-adjoint perturba
tions of Ho. Examples of such H's can be found by de
fining H to be the form sum of Ho and V when either 

(a) V is in £P+L~, p>%; 

(b) V?- 0 is locally in L' outside a closed set of mea
sure zero; 

(c) V is a delta function distribution concentrated on 
the surface of a compact C' hypersurface in IR3. 
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For the necessary approximation theorem in case (b) 
see Ref. 12 where the VK's are defined by truncation. 
In cases (a) and (c) see Ref. 13 where the V K'S are giv
en by regularization of V. See Ref. 13 for additional 
examples. 

Similar techniques apply in dimensions other than 3 
and for other Ho's. 
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One-dimensional, neighbor-pair degeneracies for dumbbells 
with distinguishable ends 
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Expressions are developed which describe exactly the degeneracies for the various kinds of neighbor pairs 
that can arise when dumbbells with distinguishable ends are distributed on a one-dimensional lattice. 
Expectation values and normalization constants are also developed. 

I. INTRODUCTION 

It has been proposed that the role of lateral interac
tions is important in explaining the restructuring of 
surfaces resulting from gas adsorption1- 3 and in under
standing the absorption-desorption of nonhomonuclear 
diatomic molecules. 4-7 

In the latter case it has been postulated that the 
multiplicity of states observed in desorption measure
ments may arise because of the various kinds of lateral 
interactions that can exist among the adsorbed gas 
particles and not because there are various distinct 
binding states involved in the adsorbate-adsorbent 
interaction. 

Accordingly, it is of interest and importance to ex
amine thoroughly the various neighbor-pair degenera
cies that arise when A-B dumbbells, L e., dumbells 
with identifiable ends, are distributed on a one-dimen
sionallattice (see Fig. 1). Here we consider an A-B 
dumbbell to be a particle which occupies two adjacent 
sites on the lattice space. The purpose of the present 
paper is to develop expressions which yield the degen
eracies for the several kinds of neighbor pairs that 
arise due to the proximity of the A portions of dumb
bells, the B portions of dumbbells and/or the lattice 
vacancies. Such degeneracies must reflect the con
straint that the A and B portions of a particular dumb
bell occupy adjacent lattice sites. The A-B dumbbells 
are considered to be identical, although the orientation 
of each dumbbell has a twofold degeneracy. 

The present work represents a generalization of re
search previously reported concerning the occupational 
degeneracy8 and nearest neighbor degeneracy9 for A-bell 
particles distributed on a one-dimensional lattice. 

II. A·s-A PAIR DEGENERACY 

An A-s-A pair (see Fig. 2) is defined to be the con
figuration formed when the A portions of two individual 
dumbbells are separated by s and only s contiguous 

I+I®§I 1+1 1 1+1+1 1 1 
FIG. 1. Five indistinguishable A-B dumbbell particles distri
buted on a one-dimensional lattice consisting of 15 equivalent 
sites (q=5, N=15). 
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vacancies (s ~ 0). For example, s = 0 describes the 
situation in which the A portions of two individual dumb
bells are nearest neighbors; s = 1 describes the con
figuration when the two A portions are separated by a 
single vacancy. The number of A-s-A pairs in a single 
arrangement is designated nAsA and A[ n AsA I q, N] is the 
number of independent arrangements possible when 
q indistinguishable A-B dumbbells are arranged on a 
one-dimensional lattice space of N equivalent sites in 
such a way as to form exactly nAsA A-s-A pairs. 

We shall now show thatA[nAsAlq,N] is given by 

A[nAsA Iq,N] 

[(q-2nASA) /2 ) 

6 
j=O 

(1) 

where [(q - 2n ASA)/2] is the largest integer contained in 
(q - 2nASA)/2. 

To deduce Eq. (1) we note that it has been shown 
previously10 that A[{qJ, N], the occupational degenera
cy arising when the set of particles, {q~}, is distributed 
on a one-dimensional lattice of N equivalent sites, is 
given by the multinomial coefficient 

f} _ [N-4A(A-1)q~]! 
Ahq~ ,N]- n~(q~!)[N-L;~Aq,\]! (2) 

where {q~} means that there are q1 Simple particles 
(each occupying one lattice site), q2 dumbbell particles 
(each occupying two adjacent lattice sites), q3 particles 
that occupy three contiguous lattice sites, etc. 
(A=1,2,3, .•• ). In the development of Eq. (2) it has 
been assumed that all the particles having the same 
value of A are indistinguishable from one another, but 
all such particles are distinguishable from the other 
kinds of particles which have different values of A. 

FIG. 2. Eight indistinguishable A-B dumbbell particles are 
distributed on a one-dimensional lattice consisting of 26 equi
valent sites. In the situation depicted there are two A-I-A pairs 
(enclosed in dashed boxes), one A-3-A pair, one A-O-B pair, 
one A-I-B pair, one B-O-B pair, and one B-2-B pair. 
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FIG. 3. q = 8. nA1.A = 3 (enclosed in dashed boxes). q - 2nA1A = 2. 
Thus there are two remaining dumbbells. 

For purposes of the present calculation we assume 
initially that there are two kinds of particles: one kind 
with A = 2 (the A-B dumbbells) and the other kind, a 
group of "pseudo particles" formed by the A portions 
of two dumbbells which are separated by s and only s 
vacant sites (s = 0,1,2" .. ), (See Fig. 2.) These latter 
"particles" possess a A = s + 4 because the two adjacent 
dumbbells which contribute their A portions are sep
arated by s vacant sites so that the two dumbbells and 
the s vacant sites all occupy s + 4 contiguous sites on 
the lattice, i. e., B-A-s-A-B. We assume that the 
A-B dumbbells are distinguishable from the BA-s-AB 
"particles" and that the AsA "particles" are indis
tinguishable from each other. We call the latter group 
of "particles" AsA pairs. 

To determine A[nASA I q, N] we will proceed as fol
lows: We consider that nAsA indistinguishable A-s-A 
pairs and q - 2nAsA additional A-B dumbbells are ar
ranged in all possible ways on the lattice. The set of 
all such arrangements will contain a subset in which the 
original nAsA A-s-A pairs appear and no others; another 
subset will contain the original nAsA A-s-A pairs and 
one additional A-s-A pair formed from the q - 2nAsA 
A-B dumbbells; another subset will contain the original 
nAsA A-s-A pairs and two additional A-s-A pairs formed 
from the q - 2nAsA A-B dumbbells, In general, there 
will be a subset consisting of those arrangements which 
contain the original nAsA A-s-A pairs and k 
[k = 0, 1, 2, ••• , (q - 2nASA)/2] extraneous A-s-A pairs 
formed from the q - 2nAsA A-B dumbbells, Only those 
arrangements for which nAsA is the prescribed number 
can be counted in A[nAsAlq,N]. Consequently, we must 
subtract those arrangements in which the number of 
A-s-A pairs is greater than nAsA, i. e" those arrange
ments for which k? L ThUS, if there are nAsA AsA 
pairs then there are q - 2nAsA remaining A-B dumbbells 
in each arrangement (see Fig. 3). Then, by means of 
Eq. (2), we determine XO, the number of independent 
arrangements possible when nAsA A-s-A pairs and the 
q - 2nAsA remaining A-B dumbbells are arranged in all 
possible ways on the lattice, to be 

_ 2·-2nAsA[ N - q - (s + 1 )nASA] ! 
Xo - ,[ 2 'N 2 ], ' nAsA' q - nAsA' - q - snAsA . 

(3) 

where the factor 2q-2nAsA arises because the q - 2nAsA 
A-B dumbbells (not associated with the A-s-A pairs) 
have identifiable ends which can be arranged in 2Q-2nAsA 
ways. The A-s-A pairs do not have identifiable ends. 

Equation (3) is not the number of arrangements con
taining exactly nAsA A-s-A pairs because Eq. (3) in
cludes, in addition to A[nAsAlq,N], those arrangements 
which contain nAsA +1, nAsA +2" •• ,nAsA +k, •.• , [q/2] 
A-s-A pairs, [k = 1, 2, ... , (q - 2nASA)/2]. These k 
additional A-s-A pairs are created when the q - 2nAsA 
A-B dumbbells, not associated with the nAsA A-s-A 
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pairs, are arranged with the nAsA A-s-A pairs to form 
all the possible arrangements. Thus it is possible to 
write Eq. (3) as 

[(Q-2n AsA) /21 
Xo= :6 A[nASA>k\q,N], (4) 

where A[nASA, k Iq, N] is the number of independent 
arrangements containing the initial nAsA A-s-A pairs 
and the k additional A-s-A pairs formed from 2k of the 
q-2nAsA remaining A-B dumbbells. 

In accordance with the constraints on distinguishabil
ity related to the development of Eq. (2) we note here 
that the extraneous k A-s-A pairs (created from the 
q - 2nAsA dumbbells) are indistinguishable from one 
another but are distinguishable from the original 
nAsA A-s-A pairs. 

If nAsA is increased by one, then k, the number of 
A-s-A pairs formed from the remaining q - 2nAsA 
dumbbells decreases by one; the change in the number 
of independent arrangements results from the mutual 
distinguishability of the two kinds of A-s-A pairs. Thus 

A[nASA' k \q, N]=[ eAS~ +k)/(nAk~ ~k)] 
xA[nASA + 1, k -l!q, Nl 

= [~AS~ + 1J A[nASA + 1, k -l!q,Nl. 

Solving Eq. (4) forA[nAsA>Olq,Nl=A[nAsAlq,N] we 
obtain 

[(q-2nAsA ) /2} 

(5) 

A[nASA\q,N]=Xo- :6 A[nASMk\q,N]. (6) 
".1 

utilizing Eq. (5), Eq. (6) may be rewritten as 

A[nASA \q, N] 

(Q-2nASA) /21 [ + 1) -x :6 ~A8A __ A[n +lk-1\qNl 
- 0 k.l k AsA, , 

(
nAsA + 1) ( 1) =Xo- 1 XI + nAsA + 

_ X _ (nASA + l)X +(nASA + 2)X _ (nASA + 2) 
-0 1 1 2 2 2 

«Q-2(nAsA+2»/2J k 
x :6 k+2A[nASA+2,k\q,N], (7) 

R.l 
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I I#ili#ICiliiI hlIDl I Iml ICiliiI I I I 
FIG. 4. In this figure there are three A-O-B pairs (marked by 
X's). 

and so forth, where 

[(q-2 (n AsA +J» /2 J 

X J= 0 A[nAsA +j,kiq,N). (8) 
k;D 

The recursion process represented in Eq. (7) can be 
continued with the result that 

(_1)J2q-2(nASA+J)[N - q - (s + 1)(nA$A +fll! .• 

jlnAsA1[q - 2 (nAsA +j»)l [N - 2q- s(nAsA +j»)! 

(9) 

In the special situation when s = 0, i. e., when two ad
jacent sites are occupied by the A portions of two ad
jacent dumbbells, Eq. (9) becomes (see Appendix A) 

A[nAOAiq,Nl 

«q-2~A)/2J (_1)J2Q-2{nAOA+})[N_q_ (nAOA +j)]l 

j;O jlnADA![q- 2(nAOA +j)]![N- 2q)! 

_ [N - 2q + nADA] I 
- nAoAl[N- 2q]1 

x (- 1 )J2Q-2 ("ADA +J)[ N - q - (nAOA + j)] I 
j I [q - 2(nAOA + j)] I [N - 2q + nAOA] I 

= (N - 2q +nAOA\(2N - 3q + 1). 
nAOA ) q - 2nADA 

(10) 

The entire preceding discussion obviously also is 
applicable to the degeneracy of B-s-B pairs so that for 
the degeneracy of such pairs an expression analogous 
to Eq. (10) can also be written in terms of nBOB' 

III. A-s-B PAIR DEGENERACY 

An A-s-B pair (see Fig. 4) is defined to be an ar
rangement in which the A portion of one dumbbell is 
separated from the B portion of another dumbbell by s 
and only s contiguous vacancies. For example, s:=: 0 
represents the situation in which an A-B pair (formed 
by portions of two adjacent dumbbells) is a nearest 
neighbor pair. 

The number of A-s-B pairs on a single lattice is de
noted by nAsB and A[nASB Iq,N] is the degeneracy of those 
arrangements of q indistinguishable A-B dumbbells on a 
lattice which contains exactly nAsB A-s-B pairs. 

We shall presently show thatA[nAsBlq,N] is given by 
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A[nASB iq,N] 

(

q - 1)( a-n4-A.B-t q-n -J) = 2...j (_1)'2 AsB 
nAsB J;O 

x~ -n~SB - ~(N - q - (s ~ 1)(nAsB +j~. 
\ J) q - J - n AsB ) 

(11) 

To derive this relationship we note that if there are 
nAsB A-s-B pairs in an arrangement, then there are 
always q-nAsB "s units" (see Fig. 5). Each "s unit" 
may consist of not more than one A-s-B pair. 

The reason that there are always q-nAsB of these "s 
units" is that the q A-B dumbbells have q - 1 separations 
between them; nAsB of these separations are involved in 
A-s-B pairs and q - nAsB - 1 separations do not involve 
A-s-B pairs, i. e., they involve AsA and BsB pairs, or 
AtB pairs t*s. Thus there are q-nAsB "s units" each 
of which is separate from the other "s units." 

These q - nAsB "s units" may be permuted with the 
vacancies to form independent arrangements. The total 
number of vacancies in each arrangement is N - 2q but 
not all of them are permutable; snAsB are required to 
form the nAsB A-s-B pairs. Consequently, the "s units" 
may be permuted with N - 2q - snAsB vacancies. 

There are a total of N - 2q - snAsB + (q - nAsB) =N - q 
- (s + 1)nAsB objects of which q - nAsB are "s units" and 
N - 2q - snAsB are permutable vacancies. These can be 
arranged in 

(
N - q - (s + l)nAsB\ 

2a-nAsB ) 
q-nAsB 

ways. The factor 2Q-nAsB arises because each of the q 
- nAsB "s units" may be reversed in orientation, be
cause the ends of the "s units" are identifiable, to form 
independent arrangements, 

The "s units" may be constituted in various ways, 
i. e., the nAsB A-s-B pairs may be distributed among the 
"s units" to form "s units" of various lengths. Because 
there are q - 1 separations between the q A-B dumb
bells, and nAsB of these separations involve A-s-B 

Ili~1 6@1 ijlll &Ell 
FIG. 5. q=8, N=23, nA OB=3, q-nA OB=5. Thus, there are 
five "0 units." In addition, nAIB=O and nA2B= 1, so that there 
are seven "1 units" and six "2 units." 

R.B. McQuistan 2499 



                                                                                                                                    

pairs there are (~~~B) ways of arranging the nAsB A-s-B 
pairs among the q - nAsA "s units" to form units of dif
ferent lengths. 

Hence, Yo, the number of independent ways of ar
ranging the nAsB A-s-B pairs and those A-B dumbbells 
not associated with A-s-B pairs, is given by 

_ (q - 1)(N -q - (s + 1) n AS' 
Y o=2

q 
"AsB , 

nAsB q - nAsB 
(12) 

It must be made clear here that Yo is not the number of 
independent arrangements containing exactly nAsB 
A-s-B pairs because there are additional A-s-B pairs 
formed by the permutation of the N - 2q + snAsB vacan
cies with the "s units." Thus Yo represents, in addition 
to the arrangements which contain nAsB A-s-B pairs, 
those arrangements which contain n AsB + 1, n AsB + 2, 
"', nAsB +k, "', q -1 A-s-B pairs (0"; k";q-nAsB 
-1). Thus 

Q-"AsB-1 [ I Yo= 6 A nASB,k q,N], 

k=O 

whereA[nAsB,klq,N] is the number of additional ar
rangements containing the original nAsB A-s-B pairs 

(13) 

and k additional A-s-B pairs formed by the arrangement 
of the "s units" with the permutable vacancies. We con
sider the k additional A-s-B pairs to be distinguishable 
from the nAsB A-s-B pairs but indistinguishable from 
each other, Thus 

x A[nASB + 1, k -llq,N], 

[
n AsA + 1 J [ I] = k A n AsB + 1, k - 1 q, N , (14) 

where 

A[nASB, 0 Iq ,N] =A[nASB Iq ,N] 

(15) 
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or 

which results in the relation expressed in Eq, (11). 

IV. NORMALIZATION 

It has been shown l1 that the number of ways of ar
ranging q indistinguishable dumbbells on a one-dimen
sional lattice consisting of N equivalent sites is (~-Q). In 
the present case, there is a factor of 2Q because of the 
flip degeneracy associated with dumbbells with identi
fiable ends, Thus the occupational degeneracy for A-B 
dumbbells is given by 

(N-q) 
A[q,N]=2\ q • (18) 

Equation (18) could have been obtained by summing 
Eq. (9) over all values of nAsA (see Appendix B) or by 
summing Eq. (11) over all values of nAsB, (See Appendix 
C. ) 

The fundamental normalization of these statistics is 
given by12 

[YJ) 24 (N - q\=M2N+1 + (_l)N]. (19) 

0=0 \. q ) 

(nAOA), the expectation value of A-O-A pairs can be cal
culated in closed form, 

_ ~N - 2q + 2nAOA)(2N - 3q + 1)1/ 
VtAOA)- 6 nAOA 2 

"AM nAOA q - nAOA 

x 6 (N - 2q +2nAoA\ (2N - 3q + 1) 
"AOA \ nAOA ) q - 2nAOA 

~2'-'[N - 2q + ,t-q; Y( 2q N :q) 
2-2q(q - 1) 

N-q 
(20) 

so that the expectation value of nAOA per array becomes 

(21) 

where G= 2q/N, is the coverage of the space. 
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APPENDIX A 

[(a-2nAOAll/2 i a-2n -2i[ 'J' 
_ 2:; (-1) 2 ADA N-q-nAoA - J ., (AI) 

i=O jIlq-2nAoA- 2j1IlN-2q+nAoA1I 

then inspection shows that 

aN(q, nAOA) = aN_3(q - 2, n - 1). 

It follows that 

aN(l, 0) ~(2N ~ 2), 

22(N - 2)1 
=OI2I(N-4)I 

_(2N -5\ 
- 2 j' 

or in general 

aN(q, 0)~(2N -:q +;. 

2°(N - 3)1 
1 101 (N - 4) 

Thus employing (A3) and (A5), we see that 

aN(q, 1)=aN_3(q- 2,0) 

_(2N-3q 
+1) 

- q- 2 • 

Continued utilization of (A2) leads to 

APPENDIX B 

To show the normalization we can take the sum of 
Eq. (9) over all values of nAsA, 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

= [~21 ~ [(a-~/21 (_I)J2a-2(k+Jl[N _ q _ (s + l)(k +j)JI 
bN(q)- k.O kI J=O jI[q - 2(k +j)]l[N - 2q - s(k +j)]1 ' 

(Bl) 

(B2) 

(B3) 
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(B4) 

or in general 

(N-q) 
bN (q)=2\ q • (B5) 

APPENDIX C 
Another way to show the normalization expressed in 

Eq. (18) is to sum Eq. (11) over all values of nAsB, 

cN(q)= ~ (q - l)a"tl (_OJ 2a-(k+J) (q -~ _1) 
k.O k 1=0 \ J 

(

N - q - (s + l)(k + j)\ 
x q _ (k + j) )' (C1) 

so that 

:::::: ::t ~ ? ' (e2) 

cN(2) = t(l)tk (_ l)i 22_(k+il(1 ~ k) 
k=0 k i=O J 

x (N - 2 - (s + l)(k +j») 

\ 2- (k+j) 
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On the Kerr-Tomimatsu-Sato family of spinning mass 
solutions 

Masatoshi Yamazaki 

Department of Physics, Kanazawa University, Kanazawa 920, Japan 
(Received 25 July 1977) 

Some analytic properties of the Kerr-Tomimatsu-Sato family of solutions with arbitrary integer 
deformation parameter 8 for gravitational fields of spinning masses are studied. It is shown that all ring 
singularities are of first order and all ergosurfaces are simple zeros of metric functions A. 

1. PRELIMINARIES 

It was shownl that the Kerr2 and the three 
Tomimatsu-Sato3,4 spinning mass solutions, i. eo, 
stationary axisymmetric, asymptotically flat exact 
solutions to Einstein's vacuum field equations, can be 
written in a concise unified expression with arbitrary 
positive integer distortion parameter 15 0 

The purpose of the present paper is to study the an
alytic properties of ring singularities and ergosurfaces 
of the Kerr-Tomimatsu-Sato family of spinning mass 
solutions with arbitrary integer deformation parameter 
15. It is shown for solutions with arbitrary 15 that all 
ring singularities are of first order and all ergosurfaces 
are simple zeros of metric function A. It is conjectured 
that the number of ring singularities is [15/2] for 1 < x 
[see Eq. (8) for definition of x] and 15 - [15/2] for x < - 1, 
respectively, and that the number of ergosurfaces is 
15 for 1 < x and also 15 for x < - 1, respectively. [Square 
brackets denote the integral part of the number 
enclosed. J 

At first we shall briefly outline the solutions for the 
convenience of subsequent discussions. The solutions 
are of the form 

(1) 
and 

F
0

2 )_ (_1)'-1 15!(15+1)! ... (20-1)! 
( -r -re(r)c(o,r) {2!3! '''(O-l)P 

Xd t(!(s+t-1)) 
e\s+t_1 ' 

8 = 1,2, ... , r - 1, r + 1, ... ,0, t = 2,3, ... ,0, 

r= 1,2,"',15, 

F(f}) o! (15 + 1)! ... (215 - 1)! (!(r+ r' -1)) 
{2!3! ... (15-1)!}3 det r+r'-l' 

r, r' = 1, 2, ... , 15, 

!(r)=p2 ar+ q2br , r=1,2,3,"', 

22r-115(I5+r)! 
c(l5, Y) = (15 + r)(15 _ r)! (2r)!' 

(- 1)'-1(2r_ 2)! 
d(r)={2r-1(r_1)tF ' 

e(r) = - 2d(Y+ 1), 

g(l5, 1', r') 
(_ 1),_122r'-2 

r! (r- 1)! (2r' - 2)! 

6 

X 0 
S=max (1' ,1" ) 

(s +r- 2)! (s+r' - 2)! 
(8 - r)! (s - r')! 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

with 

, (_1)r-1 22r'-2(I5+r_1)!(I5+r'_1)! 
h(l5, r, r) = (r+ 1" -1)(0 _ r)! r! (r-1)! (15 _ r')! (2r' - 1)!' 

!=A/B, 

w=- 2mqbC/A, 

e2Y =A/p26(a_ b)6
2

, 
6 

A=F(152) =0e(r)c(I5, r)!(r)F(152 - r) 
r=l 

6 6 

=6 0 (p2arb1-r' +q2brd-r')h(l5, r, r')F(152 - r), 
r=1 1" =1 

6 6 

B=F(02) + 2px 6 d(r)ar -16 C(O, r')F(152 - r') 
'1':::1 r' =r 

6 

+ 2 B C(o, r)F(152 - r), 
r=l 

6 6 

(2) 

(3) 

(4) 

(5) 

(6) 

C=60 d-r'br-1{_pxg(0,r,r')_h(0,r,r')}F(152 _r), 

2502 

1'=1 r' =1 

p = (mp/l5)(x2 _ 1)1/2(1 _ y2)1 /2, Z = (mp/l5)xy, 

a=x2_1, b=i-1, p2+q2=1, 

(7) 

(8) 

(9) 

Journal of Mathematical Physics, Vol. 18, No. 12, December 1977 

(17) 

The mass is M = m c2 / G and the angular momentum is 

GM m 2c 3 mc3 

J =-c- q =----c- q =c a. 

Another form of the solutions is 

ds2 = ~ dr + i:}de2 + Bt. ~in2 e d¢2 

_~(dt- 2aC;in
2
e d¢) 2 

with 

Y= (mp/l5)x + m, cose=y, 

p = t.1 /2 sine, Z = (r - m) cose, 

t.= (r_m)2 _ (mp/I5)2 = (mp/I5)2 a , 
2 

2 Bm26 ( 152t. . 2 ) 1-6 
L: = 2 (2 2)5:1 2 :1 + s me, 15m-a m-a 

Copyright © 1977 American I nstitute of Physics 

(18) 

(19) 

(20) 

(21) 

(22) 
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(23) 

and 

(24) 

When q = 0 and p = 1, the solutions reduce to the Weyl 
solutions5 ,6 with integer distortion parameter 6. 

2. RING SINGULARITIES AND ERGOSURFACES 

The solution ~ to Ernst's equation7 

with 

N =~t (_1)r-1d{r) t c{6, r'){F{62 - r'»y=o 
U r =1 r'=r 

=- :qGto =-:q G~) y=o' (35) 

Equation (34) is a relation for polynomials J, K, N, and 
C. Therefore, polynomial C must be of the form 

C = (J(x,p) - L(x,p»K(x,p). (36) 

(25) We then obtain 

are 

~ L~=l d(r) (pXc{-l - iqybr-1) L~'=rc(6, r')F(62 - r') 
= L~=lc(6,r)F(62-r) 

H+iI k+j 
=-G-=k-j' (26) 

where G, Hand 1 are real functions and j and k are com
plex functions of x, y, p, and q. Metric functions A and 
B are written in the form 

A = (jk* + j*k)/2 (27) 

and 

(28) 

We see from Eq. (26) that on the equatorial plane where 
y = 0 complex functions j and k become real J and K. 
Then from Eqs. (5) and (6) we have the metric func
tions A =Ay=o and B = By=o on the equatorial plane which 
are of the form 

and 

- 61(6+1)! '''(26-1)1 (p2 x2(r+r'_1)_1) 
A={213! ... (6_1)1}3 det r+r'-l 

det«p2x2 (r+r'-l) _ l)/(r+ r' - 1» 
det(l/(r + r' - 1» 

=J(x,p)K(x,p), r,r'=l, 2, ..• , 6, 

with 

() ( 
(r + r' - 2) 1 {p r+r'-1 )r'}) 

Jx,p =det (r-1)I(r'-1)1 x +(-1 , 

r, r' = 1, 2, ... , 6, 

and 

() ( 
(r + r' - 2) 1 {p r+r' -1 ( )r' -1}) 

Kx,p =det (r-1)I(r'-1)! x + -1 , 

(29) 

(30) 

(31) 

r, r' = 1, 2, ... , 6. (32) 

Next we consider the third metric function C = Cy=o on 
the equatorial plane. From 

ow = 2b !!!:p (B 01 -I aB) (33) 
ax AT 6 oy oy 

and Eq. (3) we obtain 

(34) 
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LdJ_JdL=N L=J{-f~dx+1} 
dx dx' .r 

(37) 

and 

(38) 

The metric functions A, B, and C on the equatorial 
plane have the common factor polynomial K(x, pl. Poly
nomials K and J have the following properties: 

and 

K(x,p)=(-1)5J{_x,p), 

K(x,p) = (_1)6 J (x, -p), 
2 

K(x, p) = (_ 1)[6/2]x6 p6K{x-1, p-1), 
2 J(x,p) =(_1)0-[6/2]x6 p6J(X-1,p-1), 

K(x,p) _ (x + 1)6(6+1)/2(X _1)6(0-1>/2, 

p=l 
K(x,p) _ (p + 1)[(6+1)/2](p _1)(6/2], 

x=l 

K(x,p) - (_1)6(X+1)6(6-1)/2(X_1)6(6+1) /2, 
p=_l 

K(x,p) - (_ 1)6(P + 1)(6/21(P _ 1)[(0+1)/2]. 
x=_1 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

The polynomials K and J are both of degree 62 in x and 
degree 6 in p. From the relation 

~ +[2 = (A + G)G andI=O 
we get 

and 

A = (j{l- iJ2)/G ={(.H _ G)/(G)1/2}{(H + G)/(G)1/2} =JK, 

(47) 

(48) 

K= (1i + G)/(G)l12 , (49) 

where G=Gy=o, H=Hy=o, and I=ly=oo From the relation 
B=A+2H+2G we get 

B=(H+G)2/G=~. (50) 

The position of ring Singularities is determined by 
the vanishing of polynomials K, i. e. , 

K(x,p) =0. (51) 

On the equatorial plane the surface of the ergosphere 
is located where 

J(x,p)K(x,p) = 0 0 (52) 
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From Eq, (25) we obtain 

K2{J!!...-(X2 -1) dJ _ (x2 _1l(dJ)Z} 
dx dx dx 

Tl{ d 2 dK (2 (dK)2} -.r K-(x -1)-- x -1)-
dx dx dx. 

4qoN { qoN l 
=-p(K-J) KJM+(K+J)T} =-T 

with 

M=2i(ak _ aj ) 
ay ay y=o 

(53) 

(54) 

and N given in Eq. (35). The polynomials M(x,p) are 
real for 15 2: 2 and null for 0 = 1. The polynomials N(x, p)/ 
p are of degree 02 - 1 and 0 - 1 in x2 and p2, respectively. 
When K(XK, p) = 0 with real XK and 1> P > 0, we get from 
Eq. (53) 

(55) 

Equation (55) shows that xK > 1 or xK < - 1 [N(± 1, p) > 0 
when 1> P > 0]. In other words there are no zero of 
polynomials K(x, p) in the domain - 1 :S X :S 1. The same 
statement holds for the polynomials J(x, p) on account 
of Eq. (39). 

Next, if we could have simultaneously K(xK,p)=O 
and (dK/dx)(XK' p) = 0 (1) P > 0) at some real xK (lxK I 
> 1), then we could get from Eq. (53) 

N(xK,p)=O. (56) 

However, the polynomials N(x, p) of degree 02 - 1 in x 2 

are positive definite and never vanish [see Eq. (35») 
when Ix I ? 1 and 1 >p > O. Thus, Eq, (56) is impossible, 
and the polynomials K and dK/dx never simultaneously 
vanish at real x. Therefore, the polynomials K(x,p) 
have no multiple zero. The same statement holds for 
the polynomials J(x,p) on account of Eq, (39). 

By using the relations 

2KJM + (K +J)(2ql5/p)N(x, p) + (J - K)(2ql5/p) 
2 

XN(X-l,p-l)p26-1X25 -l =0, 

T = (2qo/p)N{(2KJM + (K + J)(2ql5/p)N)/(K - J)} 

= (2qolP )N(x, P )(2q6/p )N(x-1, p_1)p26-1X25?-1, 

(2ql5/p)N(x, p) = (T/(x, p)K(x, p) + !;(x, p)J(x, p»/2, 

and 

(2qo/p )N(x-1, p-1 )p26_1X26~_1 

= (T/(x, p)K(x, p) - !;(x,p)J(x,p)/2, 

we get from Eq. (53) 

K :X<x2 
- 1): - (x 2 -1)(~~r + ~ - 6

2
K2 = 0 

where 

T/=2qK(1,1) and !;=- 2qJ(1, 1). 
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(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

Here the polynomials K(1, 1) and J(1, 1) are the cofactors 
of polynomials K and J [see Eqs. (31) and (32)] with re
spect to the element, the row r= 1 and column r' = 1. 
When x=1 

7) = 20q(p _ 1)[5/ 2 ](P + W (5-1) /2] (64) 

and 

(65) 

From 

and 

2a {a a} ap 
A2 H-B- B-H =A ax ax ay 

(66) 

2qy 5 6 
P =- 6 6:0 p2 ar b1

-
r 'g(0, r, r')F{62 - r) (67) 

pqA r=1r'=l 

we get 

K dJ JdK _ 215p ~ ~ r( 1)1-r' (6 ')F-(62 ) -- ---0~ a - g ,r,r -r 
dx dx a r=l r'=l 

(68) 

with F(02 - r) = (F(15 2 - r»y=o. The polynomials on the 
right-hand side of Eq. (68) are positive definite and 
never vanish when Ix I -> 1 or a> O. So the Wronskians 
K dJ/dx - J dK/dx never vanish in the domain Ix I > 1. 

From Eq. (41) we obtain the number of positive zeros 
Nf, of the polynomials K; 

Nf, =[0/21 + even number, (69) 

From Eqs. (42) and (39) we obtain the number of nega
tive zeros 11;, of the polynomials K; 

11;, = 15 - [0/2J + even number. (70) 

From A'(a, p2/l) = (_ 1)5(P2 /q2)6 a5?A'(1/ a, q2/p2) with 
A' =A/q25 we obtain the number of positive zeros Nt of 
the polynomials A =JK; 

N: = 0 + even numbeL (71) 

From Eq. (5) we get the number of positive zeros N: of 
the polynomials A with nonvanishing y; 

N:= 0 + even number, (71,) 

From experiences with Sturm's chain calculations for 
several solutions with smaller 0 we conjecture that the 
number of ring singularities is [0/2) for 1 < x and 0 
- [0/2J for x < - 1 and that the number of ergosurface is 
o for 1 < x and also 6 for x < - 1. 

3. OTHER DISCUSSIONS 

1. Event horizon: Two independent Killing vectors ~t 

and ~<I> satisfy on the surface x = 1 or a = 0 

~; = _ q2 6 b52 
/ B(x = 1) = (- 1)5

2
+1 x positive quantities 

(72) 

and 

",2 __ {2qmbC(x = 1l}2 = (_ 1)5
2

+1 x positive quantities 
'-,<1> - q25 bfi2 B(x = 1) 

on account of Eqs, (11), (28), and b = - (1 - :v2). Both 
Killing vectors ~t and ~<I> become on the surface x = 1 

(73) 
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space like or timelike for odd or even 6 solutions, re
spectively. The surface x = 1 (a = 0) is not the event 
horizon for the even 6 solutions, as it contains timelike 
Killing vectors. 8,9 

II. q - 1 with finite xp: When the angular momentum 
parameter q approaches one (p approaches null) under 
the constraint the quantity xp is finite, we have 

III. q> 1: The solutions, Eqs. (1)-(17), can be ex
tended to the case when q exceeds one. When q> 1, pro
late spheroidal coordinate variables x and y in Eq. (8) 
and rotation parameters p and q in Eq. (9) are modified 
to oblate spheroidal coordinates x' and y I and param
eters p I and q' connected by the relations 

x=ix' , y=y', p=-ip', andq=q'. 
K - (- 1)[0 /2l(6xp + 1), (74) 

J - (- 1)[ (0_1) /2l(6xp _ 1), (75) 

(76) 

and 
~ - (px / 6)- iqy 0 (77) 

We have no event horizon for the solutions with any 6 
because of the nonvanishing ~ =(r- m)2 + (mp '/6)2 [see 
Eq. (21)]0 When q > 1 we have no ring singularity at all 
for x'>O, because the polynomials (_1)[6/ 2lK (x l ,p') 
are positive definite and never vanish when x' > O. 
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APPENDIX 

1. Metric functions A, B, and C 

6 = 1 (Kerr solution): A =F(l), B=F(I) + 2pxF(0) + 2F(0), C = - [px + I]F(O). 

6 =2 (T-S solution): A =F(4), B=F(4) + 2px[(4F(3) + 4F(2» - a(2F(2»] + 2[4F(3) + 4F(2)], 

C = - [(2px + 4) + a-1(4px + 4)]F(3) + b[(px + 3) + a-1 (4px + 4) ]F(2). 

6 = 3 (T - S solution): A = F(9), B= F(9) + 2px[(9F(8) + 24F(7) + 16F(6» - a(12F(7) + 8F(6» + a2(6F(6»] 

+ 2[9F(8) + 24F(7) + 16F(6)], 

C= - [(3px + 9) +a-1(16px +24) +a-2(16px + 16)]F(8) +b[(4px + 18) + a-1 (40px + 64) +a-2(48px + 48)]F(7) 

- b2[(2px + 10) + a-1(24px + 40) + a-2(32px + 32) ]F(6)0 

6 =4 (T-S solution): 

A=F(16), 

B= F(16) + 2px[(16F(15) + 80F(14) + 128F(13) + 64F(12» - a(40F(14) + 64F(13) + 32F(12» + a2(48F(13) + 24F(12» 

- a3(20F(12»] + 2[16F(15) + 80F(14) + 128F(13) + 64F(12)], 

c = - [(4px + 16) + a-1 (40px + 80) + a-2(96px + 128) + a-3(64px + 64) ]F(15) + b[(lOpx + 60) + a-1(184px + 400) 

+ a-2(528px + 720) + a-3(384px + 384) ]F(14) - b2[(12px + 80) + a-1(264px + 600) + a-2(832px + 1152) 

+ a-3(640px + 640) ]F(13) + b3
[ (5px + 35) + a-1(12Opx + 280) + a-2(40Opx + 560) + a-3(32Opx + 320) ]F(12). 

0=5: 

A=F(25), 

B = F(25) + 2px(25F(24) + 200F(23) + 560F(22) + 640F(21) + 256F(20» - a(100F(23) + 280F(22) + 320F(21) + 128F(20» 

+ a2(210F(22) + 240F(21) + 96F(20» - a3(200F(21) + 80F(20» + a4(70F(20»] 

+ 2[25F(24) + 200F(23) + 560F(22) + 640F(21) + 256F(20)], 

C = - [(5px + 25) + a-1(80px + 200) + a-2(336px + 560) + a-3(512px + 640) + a-4(256px + 256)]F(24) 

2505 

+ b[(2Opx + 150) + a-1(584px + 1600) + a-2(2928px + 5040) + a-3(4864px + 6144) + a-4(2560px + 2560) ]F(23) 

- b2(42px + 350) + a-1(1464px + 4200) + a-2(8032px + 14112) + a-3(14080px + 17920) + a-4(7680px + 7680) ]F(22) 

+ b3[(40px + 350) + a-1(1520px + 4480) + a-2(880Opx + 15680) + a-3(16000px + 20480) 

+ a-4(8960px + 8960)] F(21) - b4[(14px + 126) + a-1(560px + 1680) + a-2(336Opx + 6048) 

+ a-3(6272px + 8064) + a-4(3584px + 3584) ]F(20). 
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2. Polynomials F (8 2 -r) and F (8 2 ) 

6=1: F(O)=l, F(1)=p2a + q2b. 

6 = 2: F(2) =p2a2 + q2b2• F(3) =p2d + q2b3, F(4) =p4a4 + p2q2(4db _ 6a2b2 + 4ab3) + q4b4. 

0=3: 

F(6) =p4a6 + p2q2 (9a4b2 _ 16db3 + 9a2b4) + q4b6, 

F(7) =p4a7 + p2q?(6a5b2 _ 5a4b3 _ 5db4 + 6a2b5) + q4b7, 

F(8) =p4aB + p2 q2(16a5b3 _ 30a4b4 + 16db5) + q4bB, 

F(9) =p6a9+ p4q2(9aBb_ 36a7b2 + 84a6 b3 - 90a5b4+36a4b5)~p2q4(36aSb4_ 90a4b5 + 84dbs - 36a2b7 + 9abB) +q6b9 • 

0=4: 

F(12) =p6d 2 + p4q2(36dOb2 _ 160a9 b3 + 315aBb4 _ 288a7b5 + 100aSb6) 

+ p2q4(100a6b6 _ 288a5b7 + 315a4bB _ 160db9 + 36a2b10) + qSb12 , 

F(13) =p6d 3 + p4q2(30d1b2 _ 114a10b3 + 170a9b4 _ 63aBb5 _ 70a7b6 + 50a6b7) 

+ p2l(50a7 b6 _ 70a6b7 _ 63asbB + 170a4b9 _ 114d blO + 30a2bll ) + q6b13 , 

F(14) =p6d 4 +p4q2(20d2 b2 _ 40d1b3 _ 54dob4 + 272a9b5 _ 315aBb6 + 120a7b7) 

+ p2q4(120a7b7 _ 315a6bB + 272a5b9 _ 54a4blO _ 40dbll + 20a2b12 ) + q6b14, 

F(15) =p6d 5 + p4l(100a12 b3 _ 450all b4 + 828al Ob5 _ 700a9b6 + 225aBb7) 

+ p2q4(225a7bB _ 700a6b9 + 828a5blO _ 450a4bll + 100db12) + q6blS , 

F(16) =pBd 6 +p6q2(16d5b _ 120d4b2 + 560d3b3 _ 1420al2 b4 + 1968d1bs -1400dob6 + 400a9b7) 

+ p4q4(400d2 b4 _ 2400all b5 + 6608dob6 _ 11 040a9b7 + 12 870aBbB _ 11 040a? b9 + 6608a6blO _ 2400a5bll 

+ 400a4b12 ) + p2 q6(400a7b9 _1400a6bIO + 1968a5bll _ 1420a4bl2 + 560dbl3 _ 120a2b14 + 16ab15 ) + qBb16 . 

6=5: 

F(20) = p Ba20 + p6q2(100a1Bb2 _ 800d7b3 + 3075a16b4 _ 6496a1S b5 + 7700d4b6 _ 480od3b7 + 1225d2bB) 

+ p4l(2500d4b6 _ 16 800d3b7 + 51275d2bB - 93 600d1b9 + 113 256dob10 - 93 600a9bll + 51275aBb12 

_ 16 800a7b13 + 2500aBb14 ) + p2q6(1225aBb12 _ 4800a7b13 + 7700a6b14 _ 6496a5b15 

+ 3075a4b16 _ 800dbl7 + 100a2b1B) + qBb20 , 

F(21) =pBa21 + p6q2(90d9b2 _ 670d Bb3 + 2340d7b4 _ 4257d 6b5 + 3766a15b6 _ 810d 4b7 _ 945d3bB + 490d2b9) 

+ p4q4(1750d5b6 _ 10 170d4b7 + 24 885a13 bB _ 30 970d2b9 + 14 508d1b1 ° + 14 508dobll - 30 970a9bl2 

+ 24 885aBb13 _ 10 170a7b14 + 1750a6b15 ) + p2q6(490a9b12 _ 945aBb13 _ 810a7b14 + 3766a6b15 

_ 4257a5b16 + 2340a4b17 _ 670dbiB + 90a2b19) +q 8b21 , 

F(22) =pBa22 +p6q2(75a20b2 _ 480a19b3 + 1295d Bb4 _1152d7b5 _ 1570al6b6 + 4496d 5b7 _ 3780d4bB + 1120d3b9) 

+ p4q4(875a16b6 _ 2800a15 b7 _ 2610d4bB + 28 640d 3b9 _ 67 782d 2b10 + 87 360d1bll _ 67 782a10b12 

+ 28 640a9b13 _ 2610aBb14 _ 2800a7bl5 + 875a6b1S) +p2l(1120a9b13 _ 3780aBb14 + 4496a7b1S 

_ 1570asb16 _ 1152asb17 + 1295a4b1B _ 480db19 + 75a2b20) + qBb22 , 

F(23) =pBa23 + p6q2 (50a21 b2 _ 175a2ob3 _ 315d9b4 + 3458a1Bb5 _ 9240d7 b6 + 11 910a16b7 _ 7644d 5bB + 1960d4b9) 

+ p4q4(3675dSb7 _ 22 o50d 5 bB + 55 520d4 b9 - 70 812d3 b10 + 33 670d2bll + 33 670d1b12 -70 812dob13 

+ 55 520a9b14 _ 22 050a 8b15 + 3675a7b16) + p2 q6(1960a9b14 _ 7644aBb15 + 11910a7b1S - 9240a6b
17 + 3458a5b

1B 

_ 315a4bl9 _ 175db20 + 50a2b21) + qBb23 , 

F(24) =pBa24 + p6q2(400a21 b3 _ 3150a20b4 + 11 088d 9b5 - 21280dBb6 + 23 040d7b7 _ 13 230d6bB + 3136d5b9 ) 

+ p4l(11 025d6bB - 78 400d sb9 + 250 848d 4b10 _ 473 760d3bll + 580 580d2b12 _ 473 760d1b13 

+ 250 848dob14 - 78 400a9b15 + 11 025aBb16 ) + p2qS(3136a9b15 _ 13 230aBbiS + 23 040a7 b17 

_ 21 280asblB + 11 088asb19 _ 3150a4b20 + 400db21 ) + qBb2\ 
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F(25) =plOa25 + pSq2(25a24 b _ 300a23 b2 + 2300a22 b3 -10 150a21 b4 + 26 880a20b5 - 43 400d 9b6 + 41800d sb7 

_ 22 050a17 bs + 4900a16b9) + p6q4(2500a21 b4 _ 26 250a20b5 + 133 700a19b6 - 438 900d sb7 + 1059 525d7bs 

- 2007 450d6b9 + 3 023 760d5b10 - 3 553 200d4bll + 3158 400d3b12 - 2041 900d 2b13 

+ 904 200all b14 _ 245 000a1ob15 + 30 625a9b16 ) + p4l(30 625d6b9 _ 245 000a15 b1 ° + 904 200a14bll 

- 2 041900a13 b12 + 3158 400d2b13 _ 3 553 200all b14 + 3023 760dob15 
- 2 007 450a9b16 + 1 059 525asb17 

_ 438 900a7b1S + 133 700a6b19 _ 26 250a5b20 + 2500a4b21 ) + p2l(4900a9b16 _ 22 050asb17 + 41800a7b1S 

_ 43 400a6b19 + 26 880a5 b2 0 _ 10 150a4b21 + 2300a3 b22 _ 300a2 b23 + 25ab24) + ql °b25 • 

3. Coefficienf db, r) 

The letter r numbers the column. 

6=1 1 

6=2 4 4 

6=3 9 24 

6=4 16 80 

6=5 25 200 

4. Coefficient d ( r ) 

1 - 1/2 3/8 - 5/16 35/128 

5. Coefficient e ( r ) 

1 - 3/4 5/8 - 35/64 63/128 

6. Coefficientg(b, r, r') 

The letters rand r' number the row and column, respectively. 

1 

2 4 

-1 -4 

3 16 

-4 - 40 

2 24 

4 40 

- 10 - 184 

12 264 

-5 -120 

5 80 

- 20 - 584 

42 1464 

- 40 -1520 

14 560 

7. Coefficient h(b, r, r') 

The letters rand r' number the row and column, respectively. 

1 

4 

-3 

4 

-4 

16 

128 

560 

16 

- 48 

32 

96 

- 528 

832 

- 400 

336 

- 2928 

8032 

- 8800 

3360 

64 

640 

64 

- 384 

640 

- 320 

512 

- 4864 

14080 

-16000 

6272 

256 

256 

- 2560 

7680 

- 8960 

3584 
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6=3 9 24 

-18 - 64 

10 40 

6=4 16 80 

- 60 - 400 

80 600 

- 35 - 280 

6=5 25 200 

-150 -1600 

350 4200 

- 350 - 4480 

126 1680 

1M. Yamazaki, Prog. Theor. Phys. 67, 1951 (1977). 
2R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963). 
3A. Tomimatsu and H. Sato, Phys. Rev. Lett. 29, 1344 (1972). 
4A. Tomimatsu and H. Sato, Prog. Theor. Phys. 50, 95 
(1973). 

5B. H. Vorhees, in Methods of Local and Global Differential 
Geometry in General Relativity, edited by D. Farnsworth, 
J. Fink, J. Porter, and A. Thomson (Springer-Verlag, 
Berlin, 1972). 

6H. Weyl, Ann. Physik (Leipzig) 64, 117 (1917). 

2508 J. Math. Phys., Vol. 18, No. 12, December 1977 

16 

- 48 

32 

128 64 

-720 - 384 

1152 640 

- 560 - 320 

560 640 256 

- 5040 - 6144 - 2560 

14112 17920 7680 

- 15680 - 20480 - 8960 

6048 8064 3584 

7F.J. Ernst, Phys. Rev. 167, 1175 (1968). 
BG. W. Gibbons and R. A. Russell-Clark, Phys. Rev. Lett. 
30, 398 (1973). 

9A. Tomimatsu and H. Sato, Lett. Nuovo Cimento 8, 740 
(1973) • 

lOJ. M. Bardeen and R. V. Wagoner, Astrophys. J. 167, 359 
(1971) • 

llJ.B. Hartle and K.S. Thorne, Astrophys. J. 163,807 (1968). 
12W. Kinnersley and E. F. Kelley, J. Math. Phys. 16, 2121 

(1974). 

Masatoshi Yamazaki 2508 



                                                                                                                                    

On an exceptional case concerning plasma oscillations 
C. E. Siewert 

Department of Nuclear Engineering. North Carolina State University. Raleigh, North Carolina 27607 
(Received 2 February 1977) 

The method of elementary solutions is used to analyze the situation in plasma oscillations when there 
exists a real discrete eigenvalue. 

I. INTRODUCTION 

In two recent papers l
,2 it was argued that the original 

van Kampen-Case method of elementary solutions 3
,4 

was incomplete for a particular situation concerning the 
solution of the linearized Vlasov equation for a colli
sionless plasma. Here we show that the method of 
elementary solutions does, in fact, yield the correct 
result for the considered exceptional case. To establish 
the required notation, we review the development of the 
solutions to 

Here F,,(v, t) is the Fourier transform of the perturbed 
distribution function, v is the speed, k is the transform 
variable, and 

(2) 

In Eq. (2), fo(v) represents the equilibrium distribution 
and wI> is the plasma frequency, 

(3) 

where e and m are respectively the charge and mass of 
the electron and N is the charge density. 

On substituting solutions of the form 

F ,,(v, t) = cp(v, v) exp( - ivkt) 

into Eq. (1), we find 

(v - v) rt>(v, v) = 17(V) 1.: cp(v, v') dv'. 

The solutions can be normalized by taking 

1.: cp(v,v')dv'=I, 

and thus the continuum solutions corresponding to 
v E (- 00, 00) can be written as 

p 
cp(v, v) =17(V) -- + ;\.(v)6(v - v), 

v-v 

where 

;\.(v) = 1 +p 17(8)--, f 
~ ds 

_~ 8 -v 

(4) 

(5) 

(6) 

(7) 

(8) 

If we allow v to be complex, then the discrete solutions 
are 

1 
cp(v", , v) =---17(V), 0!=I,2,3,,,., K, 

V",-1! 

where v", is used to denote a zero of 

f
~ d 

A(z) = 1 + 17(V)_v-. 
v-z 

-~ 

(9) 

(10) 
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If we write a general solution of Eq. (1) as 

• 
F ,,(v, t) = '6 A", cp(v", , 11) exp( - iv",kt) 

'" -I 

+ r:A(v)cp(v,v)exp(-ivkt)dv, (11) 

then the expansion coefficients A", and A(v) must satisfy 
the initial condition 

F(v)=tA",cp(v""v) + jOCA(v)q,(v,v)dv, 1iE(-OO,oo), 
Q;;l .. ceo 

(12) 

where F(v)=F,,(v,O). Case has shown4 that Eq. (12) can 
be solved when F(v) and A(v) are Holder continuous 
functions and the discrete eigenvalues are not real. 
However, as Simon and Rosenbluth have pOinted out, 1 

there is a problem with Case's original solution for the 
exceptional case when any of the discrete eigenvalues 
becomes real and thus becomes embedded in the 
continuum. 

In a recent elegant paper2 Arthur, Greenberg, and 
Zweifel have used methods of functional analysis to 
develop the solution for this elusive case. We show here 
how the use of singular-integral equations yields the 
correct result. 

II. ANALYSIS 

For the sake of brevity, we consider that there is 
only one discrete eigenvalue that is embedded in the 
continuum and that it is a simple zero of A(z). To illus
trate concisely the pOints of principal interest here, we 
consider further that there are no other discrete eigen
values. Thus we investigate 

F(v)=Acp(v1,v) +17(V)P A(v)-- +;\.(v)A(v), f oc dv 

v-v 
-oe 

v E (- 00,00), (13) 

where F(v) is an arbitrary, though specified, Holder 
continuous function. 5 Here since 

(14) 

where the + and - are used to denote limiting values as 
the real axis is approached from above and below, we 
see that 

(15 ) 

We conSider ;\.(v) and 17(v) to be differentiable and thus 
write 

(16) 

If we consider that A(v) is a Holder continuous function, 
then we can follow Muskhelishvili, 5 introduce 
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1 foo d N(z) = -2. A(v) _v_, 
m v-z 

-00 

(17) 

and thus rewrite Eq. (13) as 

F(v) -A<t>(vu v) =W(v)A +(v) -Jr(v)A -(v), 

l' E (- 00, 00), (18) 

which can be solved to yield 

1 foo dv 
N(z)= 2 ·A( ) [F(v) -A<t>(vuv)]--. m z v-z 

(19) 
_00 

However, it is clear that N(z) will have a "pole" on the 
real axis unless we impose the conditions 

(20) 

which clearly cannot be satisfied for F(v) arbitrary. We 
thus conclude that, in general, Eq. (13) has no solution 
with A(v) restricted to be Holder continuous. 

Having decided that Eq. (11) does not represent a 
sufficiently general solution of Eq. (1), we wish to con
side r, for this exceptional case, 

Ek(v, t) =Brri sgn(k)<t>(vH v) exp(- ivlkt) 

+ _B_ [_ rri sgn(k)7)(v) + A(V)] exp(- ivkt), (21) 
Vl -1) 

where B is an arbitrary constant. By direct substitution 
we can readily verify that Eq. (21) satisfies Eq. (1). 
For this special case, we now replace Eq. (11) with 

F k(I', t) =A <t>(vl , 11) exp( - ikvlt) 

+ r: A(v )<t>(v, 1') exp( - ikvt) dv + E k(I', I), (22) 

where A(v) is a Holder function. To show that the initial 
condition can be satisfied, we proceed to establish the 
solution to 

F(n)=A<;b(Vl>1i) +foo A(v)<t>(v,1I)dv +_B_-A(v), 
_00 Vl - V 

VE(-OO,oo). (23) 

Again, we introduce 

N(z)=_I_. foo A(v)~ 
2m v-z 

(24) 
~ 

and find 

1 foo - ds 
N(z) = 2 ·A( ) F(s)--, rrl z s-z 

(25) 

where 

(26) 

Now to remove the "poles" from N(z), we must impose 
the conditions 

f OO - ds 
P F(s)--=O 

5 -Vl 
(27) 

-00 
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and 

(28) 

If we substitute Eq. (26) into Eqs. (27) and (28), then 
we can evaluate two of the integrals to obtain 

(29) 

and 

(30) 

Clearly we can eliminate between Eqs. (29) and (30) to 
obtain 

A = [A,2(Vl) + rr"7),2(vl)rl [A'(Vl ) 

x P [ F(s) vld~ 5 - rr27) '(Vl)F(Vl )] (31) 

and 

B= -[A,2(Vl ) +rr"7)'2(Vl )]-l[7)'(Vl ) 

xpJoo F(S)~ +A'(vl)F(v), 
_00 Vl - 5 J (32) 

With A and B as given by Eqs, (31) and (32), we can use 
Eq. (25) to find 

A(v)A +(v)A-(v)= f~oo [7)(v) v ~s +A(V)O(V -s)]i(S)dS, 

(33) 

and upon entering Eq. (26) into Eq. (33), we obtain 

A(v)= A+~~)~-(v) f~ [<t>t(v,s)-l(v)<t>t(vl>s)]F(s)ds, 

(34) 

where 

t P A(V) 
<t> (v,s)=-- +-(-) o(v-s) 

v - S 7) v 
(35 ) 

and 

(36) 

We note that A(v) has a removable singularity at v = vl • 

Finally, we conclude that A as given by Eq. (31), B 
as given by Eq. (32), and A(v) as given by Eq. (34) con
stitute the desired solution of Eq. (23). 
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Within the spinorial version of the Cartan structure formulas with the built-in (complex) Einstein vacuum 
equations some closed semi-Einsteinian substructures are isolated and discussed. Then the idea of 
semigraviton is introduced, and its relationship to Penrose's nonlinear graviton is described. 

I. INTRODUCTION 

The formal structure of "complex relativity" (see Ref. 
1) was compactly described in Sec. 1 of Ref. 2, which 
has been a starting point of a series of papers of our 
group,2-6 dedicated to the study of "heavens" [this ter
minology was introduced by Newman at the GR-7 con
ference (see Ref. 7 and also 8 and 9)]. 

In the pure spinorial notation, this structure can be 
recapitulated as follows: A complex four-dimensional 
Riemannian space V 4 is a pair consisting of a four
dimensional analytic differential manifold M (which car
riers the tangent structure of A = EB!.oN') and the metric 

(1.1) 

where gAB with A = 1, 2 and..4.= i, 2 form a base of the 
cotangent space AI ; the spinorial indices are to be 
manipulated by the spinorial Levi-Civita symbols, 

( ) ( .. ) (0 + 1) ( AB) ( AB) EAB : = EAB : = _ 1 0 =: E =: E , 

according to the standard rules 

<pA = <PBEBA, <PA=EAB<PB. 

(1. 2) 

(1. 3) 

Describing the Riemannian structure, first we shall 
list the relation . . 

gAB IIgCD =: EAC SBD +SACEBD, (1.4) 

which defines in A2 the symmetric objects SAB=5(AB) 
and SAB =5(A.8), which under the Hodge star operation 
are respectively self-dual and anti-self-dual, i. e. , 
*SAB=.+SAB, *SAB=-SAB [for the definition of * see 
Ref. 2, (1.12)]. The objects SAB and SAB form a base of 
A2 which can thus be interpreted as decomposed into a 
direct sum A2 =D(A2) ffiD(A2) (D standard for "dual," D 
for "anti-dual"). 

Then, we list the first structure equations . . . . 
dgAB =gAS II rB S +gSB II r A s, (1. 5) 

where rAB=r(AB) and rAB=r(AB) are connection 1-
forms. 

Next, we list a set of relations which involve objects 
with the pure undotted spinorial indices: These are 

(a) f<.AB: =drA
B +rAslI r S

B 

=- %CABCDSCD +,fIRSAB +tCABCDS CDc A2, 

alOn leave of absence from the University of Warsaw, Warsaw, 
Poland. 
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(1. 6) 

Equations (1. 6a) constitute three (out of six) Cartan 
second structure formulas; CABCD=C(ABCD) is the spin
orial image of the self-dual part of the conformal 
curvature; CABCD=C(AB)CD=CAB(CD) describes the trace
less part of the Ricci tensor and R is the scalar curva
ture. Equations (1. 6b) are easily deduced from (1. 5) by 
applying the definition of SAB implicit in (1. 4); from the 
last equation, one also easily deduces the validity of 
(1. 6c). We introduced 5

H 
as the symbol for the whole 

set of relations (1. 6). 

A simple practical manner of investigating the alge
braic relations involving S objects consists in using a 
null tetrad e4 (a = 1,2, 3, 4) introduced by 

(1. 7) 

in the terms of which 

S1I = 2e 4 11 e2, S12 = el
l1 e2 + e3 II e\ 522 = 2e 3 II e l , (1. 8) 

and 

SII =2e4 I1et, SI2=_ e l 11e 2 +e3 I1e4, S22 =2e3 I1e2• (1. 9) 

By using these explicit forms of S objects one easily de
duces the algebraic relations which hold in A4: 

[: (a) SRS IISRS + 5RS II 5RS = 0, (b) SAB II SeD = O. 

(1.10) 

(We introduced [ as the symbol for this set of 
relations. ) 

Particularly important is (1. lOb) which shows that 
from the point of view of A4, the spaces D(A2) and D(A2) 
are wedge orthogonal, 

D(A2) II D(A2) = O. (1.11) 

This property, and the fact that 

dim{D(A2)} = 3 = dim{D(A2)}, (1. 12) 

can be interpreted in the sense that the decomposition 
of A2 into a direct sum 

(1. 13) 

can be defined even in the absence of the metrical struc
ture, when the concept of * is not defined. [It is, how
ever, worthwhile to observe that within the metrical 
structure, with ** = id on A, we have the usual step 
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product a.J {3: = *(a II * (3). The natural inner product in 
A2 is then : A 2 X A 2 - <r, and it is endowed with the 
property *(\,j {3=aj *{3. Hence, with *SAB=+SAB and 
*SA';=-SA';, necessarily SAB SCD=O, which proves 
thatD(A2)JD(A2)=0, the last equation being equivalent 
to (1. 11). ] 

As the final set of relations describing the Riemannian 
structure, we shall list the set S H of equations, which 
involve objects with the pure dotted spinorial indices. 
These are . . . . 

(a)I\A';=drA
n +rAslI r Sn 

_ l.cA". SeD + 1 RsA• +l.SCDc A. c A2 
- - 2 BCD N B 2 CD Be, 

SiI: (b) dS AB = - 3S(AB.1I r~) C 
(c) 3SABIISeD=6A(e6BD)SRSIISR~ (;to) 

E A3, 

E A4. 

(1. 14) 

The equations (1. 14a) are the remaining three Cartan 
(second structure) formulas. Beside the curvature ob
jects described above (C ABeD and R), there enters here 
the spinorial image of the anti-self-dual part of the con
formal curvature, CABcD=C(ABeD)' Equations (1. 14b) 
can be deduced easily from (1. 4) and (10 5). The rela
tions (1. 14c) are a direct consequence of the definition 
of S AB through (1. 4). 

The integrability conditions of (1. 5) are automatically 
satisfied with the curvature objects possessing sym
metries described above, i. e., d applied on (1. 5) by 
using (1. 6a) and (1. 14a) reduces them to 0 = O. The in
tegrability conditions of (1. 6a) and (1. 14a) consist of the 
Bianchi identities. With the base of the tangent space 
spanned by GAB (i.e., dT=-~gA!JGABT, for every T 
E AO), which generalizes in the standard manner to the 
spinorial covariant differential operation V AE (which in
volves both types of connection, rAB and r:.tB), the 
Bianchi identities can be shown to be equivalent to 

and 

{ RSC .. 1""'R 0 SB: V ARBS +SvAB = 

{
(a) VS ~C ABCS + V (A Sc BC)DS = 0, 

GB: (b) ...,DSC.... ..., 'CDS"-O 
v ABCS - v S(A BC) - • 

(1. 15) 

(1. 16) 

(SB stands for special Bianchi identities, GB for the 
general ones. ) 

In complex relativity, the gauge group of the theory is 
taken to be 

g: =SL(2, <r) XSL(2, <C), (1. 17) 

and consists of the two copies of the independent 8L(2, <r) 
transformations of the dotted and undotted spinorial in
dices, which is emphasized by the symbolism of (1.17). 
(See Ref. 10 for the most general gauge group.) With 
respect to these transformations described, say, by the 
matrices (lA' A) and (lA' A), the objects R, gAB, CABeD' 
CAB CD, and CAn CD all transform tensorially, while the 
connection forms transform according to: 

(a) rA' B' : = lA' Ar1B B' rAB + lA's drtS B', . .... . (1.18) 
(b) rA' B' : = lA' ArlB B' rAE + lA's dr tS B" 

We should like to state that the structure of a real 
Riemannian space emerges in a sense as the special 
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case of the complex structure defined above; we obtain 
a real space-time of the signature (+ + +-), if we take 
for M a real four-dimensional differential manifold and 
we postulate thatgAB are Hermitian objects, (gAB)* 
=gBA with * denoting complex conjugation. Then the 
SL(2, <r) transformations become reduced to the (sim
ultaneous) complex conjugates of SL(2, <C) transforma
tions, lA' A = (lA' A)*, and all "dotted" relations become 
the complex conjugated copies of the undotted relations. 
[Notice that (C ABCD )* =C AECD' (C ABeD )* =CCDAB, R* 
=R. ] The gauge group of the theory is then 

gR = SL(2, <r)(2 - 1) 80'(3, 1, IR), (1. 19) 

i. e., is isomorphic to the special, arrow of time con
serving (rea!), Lorentz group. 

In complex relativity, however, it is essential to con
sider SL(2, <r) and SL(2, <C) transformations as entirely 
independent. The prize for doing so is that we can con
veniently use the properties which are the consequences 
of the direct product structure of the gauge group g. 

Now, in Ref. 2 following (in a sense) Newman's 
terminology and needing to introduce some nomenclature 
for the obj ects with pure undotted or dotted indices, it 
was proposed to call the geometric obj ects with respect 
to SL(2, <r) and scalars with respect to SL(2, <r) (e. g. , 
SAB, r AB, and C ABCD), the "heavenly" obj ects. Corre
sponding the geometric objects with respect to SL(2, <C) 
and scalars with respect to SL(2, <r) (e. g. , SAB, rAE, 
and CAneD) would be called "hellish" (the printers can 
appreciate the motivation for this!). The mixed objects 

(e. g., R, gAB, and CAB CD) are then "ear.thly"; it is also 
convenient to refer to the SL(2, <C) and SL(2, <C) factors of 
g as the "heavenly" and "hellish" factors 
correspondingly. 

The survey of the complex Riemannian structure given 
above indicates that the "heavenly" and "hellish" objects 
mix in this structure because of (i) the presence of the 
traceless part of the Ricci tensor, C ABcD, and (ii) the 
"earthly" nature of the first structure equations, which 
serves as the definition of the connection forms in the 
terms of g's. On the other hand, the objects SAB and 
SAB are purely "heavenly" and "hellish" from their 
nature, and the equations (1. 6b) and (1. 14b) do not in
volve any mixing of the "heavenly" and "hellish" 
objects. 

In particular, if the Einstein equations are assumed, 
i. e., C ABCD= 0 which implies via SB that R = - 4A 
= const, we have the Einsteinian structure V~ into 
which enter as the unknown objects 

gAB-4'4=16 functions, 

r AB and r AB -3·4+3·4=24 functions, 

C ABCD and C AEeD - 5 + 5 = 10 functions, 

(1. 20) 

i. e., altogether 50 functions to be determined, The 
equations which must be fulfilled by these functions are 
the first structure equations 

• <> • • 

dgAB =gAS II rB S + gSB II rA S - 4·6 = 24 equations 

(1. 21) 
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and the (second) Cartan structure equations with the 
built in Einstein equations, i. e. , 

( ) d A rA r S lCA SCD 1 'SA a r B+ S/\ B=-2 BCD -'6"- B-3-6 

C: equations, 
. .. . 

(b) drAB+rAS/\ rSB=-tcABCVSCD_iSAB-3'6 

equations. (1. 22) 

We have thus 60 equations for 50 unknown functions. In 
this structure, V f, only the relations (1. 21) imply the 
necessity of mixing the "heavenly" and the "hellish' 
objects. 

All this leads in a natural manner to the though of 
searching for natural conditions which, assuming that 
the objects SAB and SAB are given which fulfill (1. 6b) and 
(1. I4b), permit us to reconstruct the I-forms gAB 
which will obey (1. 21). Having such conditions, one can 
hope that it will be possible to isolate within the studied 
structure the self-contained closed "heavenly" and 
"hellish" substructures and the "earthly" conditions, 
hopefully algebraic, which cause the interference of 
these substructures within the whole Riemannian 
structure. 

Plausibly enough, we will see that such natural condi
tions consist in the already stated algebraic equations 
(1. 6c), (1. 14c), and (1. 10), 

II. AN EQUIVALENT FORM OF THE RIEMANNIAN 
STRUCTURE 

Assume now that, ignoring gAB'S, we postulate over 
M the sets of .relations 5H , C, and 5H' which involve 
some rAB' rABEAl and8AB , SABEA2. A so defined 
structure does not possess a priori a metric. Instead 
of the 4' 4 = 16 functions gAB of thp standard Riemannian 
structure, we have here given as the fundamental 8 
objects 2· 3 • 6 = 36 functions; these are, however, alge
braically restricted by the conditions (1. 6b), i. e. , 
6 - 1 = 5 conditions, (1. 10), i. e., 1 + 9 = 10 conditions, 
and 6 - 1 = 5 of the conditions (1. 14c).1l With the number 
of functions minus the number of conditions still being 
16=36 - 20, we can guess that the structure considered 
still contains gAB's (the metric) in the disguise of S's. 
The aim of this section consists in providing a proof of 
this guess. 

Consider first prirn.a faciae the relations (1. 6c). 
Specializing AB to 11 and 22, CD correspondingly to 22 
and 11 we have 

(2.1) 

and consequently, there exist I-forms e' a such that 

(2.2) 

Then, taking AB = 11 = CD (equivalently, AB = 22 = CD), 
we have 35 11 /\8 22 =SRS /\8RS '" 0, so that 

(2.3) 

and e,a form a base of AI. Then, takingAB=l1, CD 
=12 andAB=22, CD=12 we obtain 

(2.4) 

and finally, AB = 12 = CD yields 
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(2.5) 

But from the simultaneous (2.4), remembering that e,a 
form a base, it easily follows that 

5 12 = ((lief! + {3e,3)/\e'2 + (ye,1 + Be'3)/\e,4 

= e,j /\ ((lI e,2 + ye '4) + e,3 /\ ({3e,2 + Be,4), (2. 6) 

where (lI, (3, y, and B are numbers; this fed into (2.5) 
gives 

(liB - (3y= 1. 

We can now define a tetrad 

ea ("celestial") 

given by 

el : = (lied + (3e,3, e2 : = e,2 

e3 :=ye'I+Be,3, e4 :=e,4 

Because, however, according to (2.7) 

e3 /\e l =e'3/\e d , 

we deduce from (1. 6c) the existence of a base of 

AI, ea , 

such that 

511 = 2e4 II e2, 8 12 = el /\ e2 + e3/1 e4, 8 22 = 2e3/\ el • 

By defining now 

. (C4 CAB e 
(g ): =.f2 c2 

e , 

we can gather the same more compactly 

SAB 1. •• CAR /\ CBS = 2ERSg g. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

This form makes manifest that, given 8 AB obeying 
(1. 6c), the corresponding base gAB is given only modulo 
the (arbitrary) "hellish" gauge 

(2.12) 

Knowing gAB with this precision, we can, however, 
define the "celestial" ("left") metric in A1Q') AI, 

s 

C 1 C. cAB 
g : = - 2 gAB Q') g , 

S 
(2.13) 

which, of course, does not depend on any choice for 
either gauge. Thus, the equations 5

H
, (1. 6) do imply the 

unique existence of a metric, g. The catch is, however, 
that 5H , understood as '\ substructure on M, does not 
contain the concept of rA B! Consequently, the covariant 
derivative of g remains yet undefined and 5H is not 
equivalent to a Riemannian structure. 

It is now quite clear that by applying a parallel proof 
we can claim that, given 8AB submitted to the condition 
(1. 14c), there exists an "infernal" base of AI, lAB, 
such that 

(2.14) 

this base being defined by 8 AB with the precision only up 
to the (arbitrary) "heavenly" gauge, 

lAB _ZA siSB , det(ZA B) = 1. (2.15) 
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This base defines now (uniquely!) the "infernal" ("right") 
metric, 

(2.16) 

We would now like to explore, assuming (1. 6c) and 
(1. 14c), the consequences of the set of relations [, 
(1. 10). Let 

c· • 
SAB : ::::: iERS<~RA !\~SB (2.17) 

c 

It is clear that the pair (5 AB, S ~~) : (i) is a base of At, 
(ii) fulfills all algebraic relations involving 

c 

SAB and S~~, with SA~ - 5 A~' 

From this, and the orthogonaHty conditipn (1. 1Q,b) we 
infer that there must exist,UAB

ciJ=M(AB)ciJ=;1,l AB(cl» 

E: A 0 such that 

S AB _ 'lAB SC c; 
_lV CD • 

This fed into (1. 14c) easily gives the condition 

3M AB RS }VI C;RS = (jA(C(jB;) MRS u~ MRs UV. 

(2.18) 

(2.19) 

On the other hand, (2.18) substituted into (1. lOa) yields 

(2.20) 

Therefore, i.equations are fulfilled by (2.18) if the co
efficients AI B c; satisfy the relations . . 

}\1AB RsM C;RS = (jA(C(jB ;)' (2.21) 

This means, however, that yAB =lHAB c;XCD , understood 
as transformations of a three-dimensional space of 
spinors with a symmetric pair of indices, conserve the 
natural scalar product in that space, ARSBRS ' There
fore, as such, these transformations must overlap with 
the (irreducible) D(O, 1) transformations which possess 
the general form of .. . 

AIABcv=I(A(cZB;), det(lA~)=1. (2.22) 

Therefore, we infer as the consequence of [ equations, 
with (1. 6c) and (1. 14c) assumed, that there exists a 
matrix (l.A~) E: SL(2, <I:) such that 

(2.23) 

It is now quite obvious that by a parallel deductive pro
cess, with the roles of the dotted and undotted objects 
inversed, we can also demonstrate the existence of a 
SL(2,<r) matrix, (lAB) such that 

(2.24) 

The equations (2.23) and (2.24) imply that by using the 
remaining freedom of the "hellish" gauge for gA~ and 
the "heavenly" gauge for iL~ [i. e., (2.12) and (2.15) 
transformations], we can arrive at such a choice for 
k A~ and tf A~ that 

i •• c 
SAB =SAB , SAB =SAB, (2.25) 

in the self-evident notation. From this already it follows 
that in these particular gauges 

c. j. 
gAB=±gAB; 

the minus sign can be still absorbed by a transformation 
(lAB) = (- (jAB) which does not affect anything in (2.25). 
Therefore, we arrive at the conclusion that with [ equa-

2514 J. Math. Phys., Vol. 18, No. 12, December 1977 

tions assumed, one can always so select 
C .' i. 

gAB and gAB, 

such that they are so synchronized that 
c. i. • c i 

gAB =gAB = :gAB- g=g= :g. (2.26) 

The concept of the common metric, g, does not depend 
then upon the choice for the corresponding gauges, and 
its existence is a direct consequence of the [ 
equations. 

We can summarize the result derived as follows: 
Postulating that there are given objects SAB and SA.a 
which fulfill the "heavenly" algebraic condition (1. 6c), 
the "hellish" algebraic conditions (1. 14c), and the 
mixed "earthly" conditions (1. 10), there exists then a 
bas e of A I

, g A~' such that 

(2.27) 

The 5 objects define then, via this base, the metric g 
in a unique manner. 

After reconstruction from the relations contained in 
the structure SH U [U SI!' the relation (2.27), and the 
concept of the metric, consider now the ob.iect . .. 

A2 3XAB : =dgAB _gAS l\rB S _gSB;\ r A
s , (2.28) 

Executing now the external diffeJ;'~ntial of (2.27), using 
fordgA.B (2.28), fordS AB anddSAB , (1.6b) and (1. 14b), 
respectively, and applying for the external products of 
two g's again (2.27), one obtains after cancellations the 
condition . . . 

gAB I\X CD _ gCD I\XAB= O. (2.29) 

Investigating this condition, we can use an elementary 
lemma (a simple pr90f is omitted for brevity): a E: AP, 
P = 1, 2, 3 and a II gAB =0 -.0' =0,. if gAt is a base of AI. 
Because (2.29) implies gAB 1\ gCD I, XC = 0 (witl: no s}lm
mati on over C and D), applying the lemma, gAB ;\XAB 

= 0, and consequently, there are such a, (3, y, (j E: AI
, 

that . . 
Xl! = a/gIl, X22 = (3 II g22 , 

(2.30) 
X I2 =y/\ g12, X21 = 6/1 g21. 

This substituted into six independent conditions (2.29) 
gives: . . . . 

(a) (a + (3) ;\g111\g22 = 0, (d) ({3 + y) (\ g22 1\ g!2 = 0, . . 
(b) (a +y);\gll l1g12=0, (e) «(3+6) i\g?2;\g21 =0, . . . . 
(c) (a+6);\gll;\g21=0, (f) (y+6)l\ g I2/lg21=0. 

(2.31) 

Four of these equations, e. g., (a), (b), (d) and (e), can 
be solved for a, {3, Y, and (j given as linear combina
tions of g's with some coefficients. This solution fed 
into the remaining two equations, e. g., (c) aI}d (f)., • 
forces a, (3, Y, and 6 to be proportional to gIl, g22, g12, 

and g2i, so that all quantitites (2.30) vanish. Therefore, 
we .have a useful lemma; if gA~ forms a base of AI and 
XAB E: A 2 , then 

• • • 0 0 

XAB II gCD _XCD 1\ gAB =0 - XAB =0. (2.32) 

Applying this lemma, we see from (2,28) that the struc-
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ture 5H U [u Sit implies the relation (1. 5). Therefore 
all crucial relations of the Riemannian structure V4 
which are missing in 5H U [u 51! can be deductively 
derived from the last structure. Thus, both structures 
are equivalent, V 4 :; 5H U [u 511 , This equivalence (1) 
exhibits the symmetric role of 5H and 5/i in V 4 and (2) 
emphasises the importance of the algebraic mixing con
ditions [. For clarity of the interpretation of this re
sult, it is worthwhile to remember, however, that 
postulated 5

H 
structure; there exists (an obvious) "can

onical" manner of completing it to the whole V 4• 

Simply, given gAB (modulo the hellish gauge), one de
fines 

S •• .1- 5!.R. Cs. 
AB=' 2 ERSl5 Af\g B, 

and the connectipn r A~ one '-lnderstands as read off from 
the relation dSAB + 3S( B f\ r C

) C = O. Then, manifestly, 
all [ relations and 5; structure equations became iden
tities. In particular, it is of course obvious that the 
metric g obtained in the result of solving the 5: struc
ture with C ABC~ = 0, R = - 4X is then a solution of Ein
stein equations with X. (A discussion of this point with 
Robinson is appreciated.) Behind this particular impli
cation of the "canonical" extension of the 5H structure, 
there is of course hidden the fact that the unique, tor- 0 

sionless L~vi-Givita'~ connection, such that TAB =dg
AB 

+ r A 
S f\ gSB + rB 5 f\ gAS = 0, forces the functions Rand 

C ABC; which appear in 51; and 5 H' structures to be the 
same objects. 

Although 5H U (TAB = 0) - V4, in this paper we precise
ly explore the consequences of not assuming TAB = 0 
(i. e., first structure equations) as a dires:t indep.e.ndent 
postulate. In particular, one sees that dSAB + 3S(AB 
f\ rc> C = - gS(~ f\ T SB):; "right semitorsion, " cap remain 
arbitrary' when dS AB + 3S(AB f\ r C ) C =g(A S f\ TB)s:; "left
semitorsion, " is assumed to vanish. This is precisely 
the situation within the 5H structure without any other 
additional postulates. 

Our equivalence V4 :; 5
H 

U [U 5 H' thus rederives T A~ 
= 0 from the vanishing of "semitorsions" from both 
sides and by making both sides (uniquely) compatible by 
[conditions. When CABCD=O' R=- 4X and the equa
tions of 5H close involving only objects r AB and SAB, 
then nothing forces us a priori to make any assumptions 
concerning r AB (equivalently, right semitorsion) which 
does not enter in the closed 5: structure. These closed 
structures shall be discussed in the next section. 

III. CLOSED SUBSTRUCTURES OF THE 
EINSTEINIAN STRUCTURE 

The results of the last section become particularly 
interesting in the case of the Einsteinian structure Vf, 
where with CABC~=O (and hence via SB, R =- 4X 
= const) there vanishes the last object which if not 
equal to zero implies a necessary mixing of pure 
"heavenly" and "hellish" objects within the sets of equa
tions 5H and 5; . We arrive thus at the following 
description of vf; First, we have the set of equations 

~( 
) dr A + rA r S lCA CD X A a B S f\ B = - ;;; BCD S -"6 S B, 

5:: (b)dSAB +3S(ABf\rC)c=0, (3.1) 

(c) 3S
AB 

f\ SCD = OA(COB D) SRS f\ SRS '" 0, 
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which involves the pure "heavenly" (self-dual) objects. 
These are: 

(a) 3·6 = 18 functions in objects SAB (of helicity + Ii) 

(b) 3·4 = 12 functions in left connection r AB = r(AB)' 

(c) 5 functions in C ABCD (of helicity + 2m. (3.2) 

It is now clear that the equatlOns 5: constitute exactly 
3' 6 + 3·4 + (6 - 1) = 35 equations for these 35 objects; 
notice that while C ABCD enter only algebraically in 5%, 
and are five in number, the pure algebraic conditions 
impose also exactly five constraints on 5 AB 'so There
fore, the set of equations Sf constitutes a closed sub
stucture on M which involves only the objects of positive 

helicity. 

Within the substructure 51~ we do have a metric; ac
cording to the results of the previous section, (3.1c) 
implies the existence of a base in A 1, gAB, determined 
modulo a SL(2, 0:) gauge such that 

(3.3) 

and this base defines a (unique!) metric, 
C 1 c. CAB 
g:=-;;;gAB0g. (3.4) 

S 

This metric-as such-can be used, e. g., to define the 
concept of the corresponding Hodge star, ~, within the 
substructure 5/f. It is not, however, covariantly con
stant within 51~ ! .The substructure 5ff does not involve 
the connection r A B! Thus, the concept of parallel trans
fer is meaningful within 51f only for the objects with pos
itive helicity (pure "heavenly," self-dual objects). E. go, 
we can define as the covariant differential of CAB CD' 

(3.5) 

and verify that this is a SL(2, 0:) tensor. Notice that 
within 51f, Eq. (3.3) can be treated as giving the repre
sentation of the fundamental S AB through "an algebraic 
potential" gAB defined up to SL(2, 0:) gauge. Condition 
(3. lc) is then the necessary and sufficient condition for 
the existence of that potential. 

We shall add that the integrability conditions of the 
substructure 51~ which follow from d2 = 0 can be easily 
seen to amount to 

a51~ : {(a) DCABCDf\SCD=O, (b) CABCD=C(ABCD)' 

(3.6) 

Of course, (3.6a) are just the "heavenly" GB identities 
(1.l6a); with V A~ well defined with respect to D(k, 0) ob
jects, they can be also stated in the form of VS;CABCS 

= O. As far as (3.6b) is concerned, only easily finds that 
this condition is necessary and sufficient within 5: to 
guarantee that d applied on (3.1b) amounts to 0=0. 

Closing this brief description of 5:, we should like 
to add that as it has been discussed in the Introduction, 
the subspace of A2, D(A2) spanned by SAB can be defined 
without the use of metrical concepts, just by the applica
tion of the natural decomposition of A2 into a direct sum 
of the three-dimensional wedge orthogonal subspaces; 
if we then introduce a fibration of D(A2) by identifying 
second order frames SAB by means of the SL(2, 0:) trans-
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formations, we obtain a bundle (over 111.), whose semi
metrical structure can be thought of as our SI~ substruc
ture. It is essential, however to remember that the 
metric g does fulfill the Einstein equations formulated, 
e. g., in the traditional local manner, GILv(gpcr) = Ai ILV' 
i. e., it assures C ABoD = 0, R = - 4>.. 

A second part of the v: structure is constituted by 
the substructure S: which can be looked upon as just 
another copy of the Sff substructure. (In the special 
case of the real V:, the S: equations are just complex 
conjugates of those from Sf.) The S: equations are 
thus: 

)( 
) drA. +rA' II r~' _ LcA" 'SoD >. SA' a B S B - - 2 BCD -"6 B, .. .. . 

S~: (b) dS AB + 3S(AB 1\ r C ) 0 = 0, (3.7) .. .... 
(c) 3SABI\SoD=6A(e6BD)SRs!\SR~' 

Again we have here, of course, a closed substructure, 
which involves 18 functions in SA~ (of helicity "- fi"), 
12 functions in the right connection r A~ = r (A~) and five 
C ABeD's (of the helicity "- 2ff "). These functions must 
fulfill 35 equations (3.7). Equations (3. 7c) are again the 
"algebraic integrability conditions" for the existence of 
the "potentials" tAB E: Al [given up to the SL(2, a:) gauge] 
such that 

(3.8) 

These "potentials" then define a (unique!) metric 
i , _~ • AB 
g'=-2gAB 0g (3.9) 

S 

The last metric permits us to define Hodge's t Sf. 
Again, inside SI~' the concept of D, and hence of the 
parallel transport, is well defined only for the purely 
"hellish" (anti-self-dual) D(O, l) objects, e. g., 

(3.10) 

is a SL(2, a:) tensor. The integrability conditions of 
(3.7) are of course: 

aSff : {(a) DCABeD lIS CD = 0, (b) C ABeD = C(ABOD)' 

(3.11) 

and (3.1l.a) are just "hellish" GB identities, (1. 16b), 
i. e., 'VDsCsABe=O, with 'V AB being defined in Sff only 
for D(O, l) objects. 

The crucial part of the vf structure consists of the 
"earthly" algebraic conditions, which are 

[ : {(a) SRS 1\ SRS +SRS IISRs = 0, (b) SAB I\SeD = 0. 

(3.12) 

These are the conditions which force that D(A2) and 
• 2 2 c i 
D(A ) add up to the whole A , the met,:ics g and g be-
come identical, 

c i 
g=g=g, (3.13) 

and, in the structure V: 0= Sff u [u sf, which has both 
types of connections, this universal metric (i) is co
variantly constants, and (ii) fulfills the Einstein empty 
space equations (with >'). The conditions [, which are 
the necessary and sufficient conditions for the synchro
nization of gAB with tAB by the means of the "right" and 
"left" gauges respectively, permit us to construct the 
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universal "algebraic potentials" for both substructures 
Sff and Sif simultaneously and therefore to construct 
relations (1. 4) and (1. 5) basic in the standard descrip
tion of the Riemannian structure. Summing up: In the 
present treatment of the Einstein equations, instead of 
working with gAB's, we work with SAB and SAB increas
ing the number of functions sought from 50 to 70 [com
pare (1. 20) and (1. 21), (1. 22)], which is compensated 
by the algebraic conditions on these functions, 5 in SI~ , 
5 in Slf, and 10 in [, respectively. The prize for doing 
so is that SI~ and Sf becomes autonomous closed sub
structures. At the same time, equations S;f u [u sX 
retain the basic shape of the Cartan structure equations 
with the built in Einstein equations, i. e., (i) the deriva
tives enter in these relations linearly, (ii) the remaining 
algebraic terms are all at most quadratic from the point 
of view of the degree of the nonlinearity. (This last 
property causes the SI~ u [l., Sf equations to form a 
convenient starting point in developing an invariant ap
proximation procedure for the Einstein equations; we 
intend to study this point with Hacyan. ) 

For the benefit of the physicists which still prefer 
to think in terms of the local components, it is perhaps 
advisable to describe the closed character of Sf: (cor
respondingly, Sl) in a local coordinate patch {x IL }, 
where 

S AB =tSABILvdxIL II dxv, SAB/J.V={SS(AB)/J.V _ 3' 6 functions, 
AB[/J.v] 

Then Sf equations can be stated in the form of 

(a) rAB[/J.,V] + rAS[/J.rsBlv] =- tCABCDSCDILV 

5.ff : >. A 
-12 S BILv, 

(b) SAB[/J.V,A] + 3S(AB[ILVrC) I Clv] = 0, 

(c) E"'8yoSAB"'8S~P=p6fA6:) 

(with p * ° to be determined), 

(3.14) 

(3.15) 

These equations are of course tensorial with respect to 
both the group of the coordinate transformations and the 
heavenly gauge SL(2, a:). In a sense they are equivalent 
to about one-half of the Einstein structure involving the 
metric and the complete connection. As far as the solu
tion of Einstein equations is concerned, SI, contains of 
course all information needed. 

All this leads to the idea that the (partial) separation 
of the structure V:, described in this section, into sub
structures which are purely "heavenly" or "hellish" 
(i. e., involve objects with the positive or negative 
helicity; partial, because [ equations should be still 
satisfied!), should be capitalized in the search for the 
effective solutions of the Einstein whole structure; one 
can proceed as follows: First study separately the 
"semi-Einsteinian" structure S,f and find the general 
integral variety of S AB/J. v, r AB/J.' accompanied by the 
corresponding CABCD'S. Because sf contains the metric 
If which fulfills the Einstein equations, it is interest to 
notice that this study will be already equivalent to the 
study at the integral variety of the Einstein equations. 
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Another copy of this solution can then serve as the 
general integral variety of Sff. Searching for the inte
gral variety of the whole strucutre, we can ignore for 
a time [ equations, which take the weight of an impor
tant part of the nonlinearity of vf structure. Having, 
however, the integral variety for Sf! and its copy for 
Sff, and substituting them into the mixing (algebraic) 
[ conditions, one can determine the restrictions which 
will guarantee that we obtained by this process a solu
tion of the whole Einstein structure. Of course, having 
a solution of 5: structure, one can also directly de
duce the corresponding SI~ structure and [ conditions 
by the "canonical extension" discussed in the end of the 
last section. The outlined above program of studying 
how [ conditions fulfill the role of pikcing up the cor
rect intersection of the two copies of the integral vari
ety of the 5% structure, can however give us a better 
insight in the nature of the whole Einsteinian structure 
studied. We can add that, the independent dynamical 
nature of the 5% and 5: structures in also emphasized 
by the existence of the variational prinCiples which lead 
to these structures; this will be discussed in the next 
section. 

IV. SEMIGRAVITONS 

The improvement of methods and progress in results 
of modern mathematical physics cause many practi
tioners of relativity to feel that the ideal goal of the 
theory of the Einstein equations, the construction of 
their integral variety by analytic means (the Wheeler 
dream!), is not as distant as it would seem on the basis 
of the experiences which accompany the (normally very 
difficult) birth of new Significant exact solutions. (The 
Tomimatsu-Sato solutionsl2-see also Refs, 13 and 
14-are good examples of solutions of this type.) 

Recently, high hopes were aroused by progress with 
complex methods in general relativity. "Heavens," 
which were first encountered as a space of "good cones" 
in the study of the complexified asymptotics of gravita
tional radiation by Newman (see Refs. 7-9), were given 
a bold a priori interpretation by Penrose 15.16 who pro
poses to identify this structure with a (complex) non
linear graviton of the helicity "+. 21I" (viz. "- 21I"). In 
terms of the notation of Ref. 2 and the present article 
the basic idea is this: Working in a complex Vf (with 
CABcD=O=R), Penrose understands as the nonlinear 
graviton a "left" wave of pure helicity "+. 21I, " i. e., a 
complex C ABCD which fulfills the field equation ""S DC SABC 
= 0, and, at the same time, is decoupled from the 
degrees of freedom with negative helicity (the "right" 
objects, "hellish" in the present terminology) just by 
requiring that CAE CD = 0, the last condition being the de
fining condition for the complex space-time H. The 
obj ect so constructed, restricted by the positive frequen
cy condition, is supposed to serve as the basic concept 
of Penrose's theory of quantized gravity. Moreoever, 
by working with curved twistors, Penrose constructs 
the integral variety of H, albeit in an implicit form from 
the point of view of space- time, by identifying it with 
the deformed twistorial space. 

The work of our group concerning "heavens" (Refs. 
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2-5 and 6) was founded upon the second heavenly 
equations2 

E>xx E>yy - [E>Xy]2 +. E>xu +. E>yS = 0, (4.1) 

which impliCitly defines the integral variety of heaven. 
Our efforts were mostly concerned with the explicit 
construction of "heavenly" solutions, in the hope that if 
these were known to~ether with their "hellish" counter
parts (i.e., spacesHwithCABCD=O, R=O=CABC.v), 
then we would have at our disposal some complex build
ing blocks which might permit us to construct real 
solutions. The key problem related to this program, 
however, consists in devising an effective mechanism 
which would allow for the superposition-in Penrose's 
terminology-of the left and right structures, produc
ing a real result. Unfortunately, H and Ii spaces super
pose neatly and simply only for N2J[ -] and [-]2JN 
solutions of the plane fronted wave type (i. e., the COlll

plexified Robinson N-wavel7 withf(z,u) +[(z,u), where 
treating z and z as independent variables one can set 
either lor f equal to zero). Moreover, H spaces as 
such do not possess (nontrivial) real cross sections. 

While looking for a mechanism which would permit 
us effectively to mix the left and right structures (i. e. , 
the "heavenly" and "hellish" objects), Robinson and the 
present author found that the existence of a null string, 3 

i. e., a totally null 2- surface in a complex V4, provides 
such a mechanism for the complex space-times degen
erated from one side. 18 In the subsequent work of our 
group, 19-23 among other things, the results were ex
tended to the case of the electro-vac structure with A 
present. In the vacuum case one equation for our "high
er heavens," HH, 18 neatly generalizes (4.1), which de
fined the integral variety of H isomorphic ally to the 
Penrose twistorial construction. One might thus hope 
that the day may come when by some ingenious applica
tion of twistorial techniques, the Penrose tour de force 
might be repeated with the group theoretic construction 
of the integral variety for the HH spaces (of the type 
degenerate 2J anything), which from their nature already 
do contain all algebraically degenerate real solutions in 
vacuum. 24 

Correlating all which has been said in this section 
with the equivalence theorem (proven in Sec. 2) and 
with the (partial) separation (in Sec. 3) of the autono
mous substructures within the classical Einsteinian 
structure, one is led to the idea that the present results 
are of significance in elucidating the roots of the mecha
nism which causes the mixing of the purely heavenly 
(positive helicity) and the purely hellish (negative 
helicity) objects within the Einstein dynamical structure. 

Indeed, this can be seen particularly clearly from the 
point of view of the variational prinCiples which lead to 
our SH structures. These we construct as follows: We 
define first over (analytiC) ]\114 three functionals: 

(a) A(S!!): = ir)sAB (\ (drAB +. r AS (\ r S B) 

+.~ CAB CD(3SAB (\SCD +. potco~)], 

(b) A (Sfi ) : = J [sAE (\ (dr AE +. r AS (, r S il) 
n ••.• • • 

+'ftCAilCD(3SAB I\SCD +.potco'J)]' (4.2) 
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(c)A(~)'- f' [leC "SABIlSci; R(SRS IIS c . -. [2 - 2 ABCD - 48 RS 

+SRS 115' ')~ 
RS 'J' 

where n is a domain of M 4 , symmetric r AB and r AB are 
in 1\1 and transform like connections, the symmetric 
SAB and SAB are in 1\2, and the objects CABCD=C(AB)(CD), 
CABci;=C(AB)(ci;), CABCi;=C(AB)(ci;), and R are all in
terpreted as Lagrange multiplier (E 1\0); p and pare 
some (* 0) 4-forms. Then, we consider 

(4.3) 

and we execute the variation of this action with respect 
to all objects listed above, obtaining as the equations 
for the extremum first the set 

or AB - dS AB + 3S(AB /\ rC) C = 0, 

op- CABCD=C(ABCD)' 

OCABCD-3SABIISCD+po1co~)=0, p*o, (4.4) 

OSAB -drAB + r Asil r S
B 

'C SCD R S 'C "Sci; = -" ABCD + 24 AB + 2 ABCD , 

which is exactly equivalent to S/i relations with all 
Lagrange multipliers acquiring the meaning of the 
spinorial images of the corresponding curvature 
quantities. The next set relations is equivalent to the 
set S· ;, 

or AB - dS AB + 3S(AB 1\ r~ = 0, 

op - C ABCi; = C(ABci;), .. .. 
oC AB CD - 3SAB /'.S ci; + potco~) = 0, p * 0, (4.5) 

OSAB - dr AB + r A S II r S B 

Eventually, by executing the variation of the action 
with respect to the remaining Lagrange multipliers we 
obtain 

oC ABCi; - SAB /\ Sci; = 0, (4.6) 
oR - SRS !,SRS + SRS !ISRS = 0, 

i. e., we derive the [conditions. Therefore, because 
of the equivalence from Sec. 3, M(V4) =0 implies (and 
is implled by) the whole general Riemannian structure. 

It is now obvious that with C ABCi; = ° (i. e., with the 
"local coupling constants" between SAB and SAB vanish
ing), we have the actions for SI~ and SI~ structures 
given by 

(a) A(S/':) = fn[SAB II (drAB + r Asil r~) 

+-Ac AB CD(3S AB IIS CD + potco~») 

A AB 5 ] + -S (, AB , 
12 

(b)A(S:)= JJSAB!\(drAB+rAS/lrSB) 
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(4.7) 

A AB •• 
+12 S IIS AB . 

The variation of A(Sf) with respect to p, SAB, r AB, 
CD ' and CAB leads to the complete set of the 5 ff relations-

which already imply the Einstein equations. Similarly, 
the action A(Sf) leads to all Sff equations. 

(An extremely useful discussion with Ernst during 
which the actions given above were derived is gratefully 
appreciated. ) 

Therefore, although given solutions of the Sff struc
ture, and there exists a "canonical" method of extend
ing it to the whole V: structure as described in the end 
of Sec. 2, it seems thatfrom the point of view of the 
dynamics involved, it is more plausible to consider the 
sywllletric S{ and Sff structures (with autonomical 
action principles) as originally dynamically independent 
and made to be correlated by [ conditions only in the 
final stages of the theory. This might be of particular 
importance from the point of view of the possible ap
proaches to the quantized gravity, where the proper 
identification of the (free) field theoretical degrees of 
freedom decides the shape of the theory. 

Thus, while agreeing with Penrose that the key to the 
Einstein equations consists in the separation of the left 
and right structures, and thus in a way following him, 
we can nevertheless propose an alternative concrete 
realization of a program similar but not identical to his. 

We can postulate that the autonomous substructure 
S/~ (1.uillzout a universal metric!), restricted in the 

c 
sense of its "left" metric g to solutions of positive fre-
quency, describes a sellligraviton of helicity " + 211, " 
which is, of course, nonlinear, but structurally COI11-

J)letely liberated from any restrictions which could fol
low from the nature of the solution ultimately to be 
taken from the other side as the semigraviton st of 
helicity "- 211. " (Note that this is not the case with 
Penrose's graviton which, being a heavenly solution, 
requires C ABCi; = ° as the mechanism which is supposed 
in a sense to decouple the left and right degrees of free
dom.) Of course the semgraviton Sif is to be restricted 
to the negative frequency-in the sense of the time re
lated to g. 25 

The degrees of freedom within the substructures Sif 
and S/~ can now be subjected to direct quantization, 
still on the level of the premetrical theory, where we 
have if and ,k but not as yet the universal metric g. This 
can be, e. g., done by applying a method which uses 
path integrals and is based on the actions A (5 t) and 
A(5}'). 

The mixing conditions, [, can be imposed in one of 
the later stages of the quantized theory, e. g., as 
weak conditions imposed upon the vector of state. 

Within these ideas it is of interest to notice that the 
flat Sff with CABCD=O is nothing else but the heavenH! 
(We put A = ° for simpliCity in the present argumenL ) 
Indeed, with A=O=C ABCD in (3.1), there exists such a 
SL(2, a;) gauge that r AB = ° and Eqs. (3.1a) are trivially 
satisfied. Equations (3. Ib) then say that all forms S AB 
are closed at the same time and, according to (3, lc), 
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possess the algebraic potentials gAS, i. e., they can be 
represented according to (3.3). But these relations 
were precisely the starting point of Ref. 2, Sec. 4, 
which was concerned with the determination of the most 
general (strongly) heavenly metric (with the roles of 
II and II interchanged in Ref. 2, however). According 
to the results obtained there, we can take for gAB the 
heavenly tetrad with the roles of e1 and e2 interchanged. 
Therefore, we have for the most general solution of the 
flat Sff (we apply notation devised in Ref. 6): 

rAB=O, 

where - pA: = (x,y) and qA: = (u, v) are two pairs of 
spinorial coordinates and e fulfills the second heavenly 
equation (4. 1). (The complete description of heaven 
from both sides was obtained in Ref. 2 by "canonical 
extension" of this SII structure on Sli ; with S AB in the 
form given above. Precisely Eq. (3), SAB AS CD+ po1cOB D) 

= 0, leads to the second heavenly equation.) This is, of 
course equivalent to the Penrose construction of II, , c 
where, however, in his scheme our g would play the 
role of the universal metric from both side:>. Notice 
that if one tries to mix flat II with the flat II by the [ 
conditions the result is-in the classical theory-neces
sarily aflat space V4• (Perhaps this does not neces
sarily apply in some variant of the quantized theory?) 

As a direct extension of this paper, it is planned to 
examine algebraically degenerate sf structures, with 
the intension of: (i) re-interpreting our results with 
those of Robinson18 from the present point of view 
(knowing empty space 1111 solutions, we thus possess 
the most general algebraically degenerate solution of 
the Sf structure), (ii) trying to illustrate the role of 
the mixing [ conditions in a reasonable test case, and 
(iii) exploring the possibility that the IT potential that 
played a role in the 1111 structure, when seen in the 
light of the separating of the structures Sif and Sif , 
and when properly understood, may help us in the expli
cit construction of the "gravitational Hertz potentials, " 
from the left and from the right, as anticipated by 
Robinson and the present author. 18 

We also plan, jointly with Ernst, to examine "semi
symmetries" of the substructures Sff, Sf with the hope 
of finding further clues to understanding the mechanism 
of generation of new solutions by means of [ potentials 
(see Refs. 26-28) using the methods developed by Kin
nersley.29 The essential role of D(1, 0) killing spinors 
(see Refs. 30 and 31) in the theory of D solutions strong
ly suggests the pertinence of this subject. 

It should be emphasized that, although our S/f and 
st substructures were identified in a complex space
time, the whole scheme can be considered just as a 
complexification of a real Vf of signature (+ + + - ) on 
a real M, with complex r AB and SAB, accompanied by 
r AB and S AB interpreted as their complex conjugates. 
With real Vf and S; = (5%)*, employing obvious sym
bolies, we still can separate from the structure the 
mixing [ conditions, postponing the study of their im-
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plications to the last act of the reconstruction of real 
space-time. 

Thus, in a real vf the semigraviton sf is just the 
complex conjugate of the semigraviton with the opposite 
helicity. The [ conditions have here an additional as
pect: they not only impose a universal metric from both 
sides, but they also in a way imply its reality. 

Of course, the S/f structures still require much deep
er study, particularly from the point of view of their 
geometric and physical meaning. It seems that parallel
ly to the nonlinear gravitons guided by their decomposi
tion into semigravitons, one can try to develop the 
quantum theory of the (complex) obj ects of the definite 
helicity, i. e., semineutrinos, semiphotons, etc., in 
their corresponding "semi" - space- times. 

To what extent the hopes associated with the ideas 
outlined above will be realized remains to be seen. The 
"twistorization" of these ideas seems to present a 
problem, the solution to which should not be too difficult 
and which may have interesting further consequences. 
In this respect notice that the Sf structure can be 
slightly generalized by taking as its gauge group in the 
place of SL(2, <r) the group GL(2, <r), which then acts 
effectively on its basic objects; the corresponding "con
formal" properties may thus be important in establish
ing a bridge between the present treatment and the 
curved tWistor theory. 32 
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